Foundations of Analysis II

 Week 11Domingo Toledo

University of Utah

Spring 2019

Integration

- Problem: define integration over k-dimensional subsets of \mathbb{R}^{n}.
- In this context need to understand:
- Integrands
- Domains of integration
- Integrals

Model: Line integrals $(k=1)$

- Looked at

$$
\int_{\gamma} \omega
$$

where

- $U \subset \mathbb{R}^{n}$ open.
- $\gamma:[a, b] \rightarrow U$ a parametrized curve.
- ω a one-form on $U\left(\right.$ written $\left.\omega \in A^{1}(U)\right)$
- One-form on U means a function

$$
\omega: U \times \mathbb{R}^{n} \rightarrow \mathbb{R} \text { written }(x, v) \rightarrow \omega_{x}(v)
$$

which is smooth in x and linear in v

- By definition

$$
\begin{equation*}
\int_{\gamma} \omega=\int_{a}^{b} \omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) d t \tag{1}
\end{equation*}
$$

- There exists a unique collection of smooth functions $p_{1} \ldots, p_{n}: U \rightarrow \mathbb{R}$ such that

$$
\omega=\sum_{i=1}^{n} p_{i} d x_{i}
$$

- Writing $\gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$

$$
\int_{\gamma} \omega=\int_{a}^{b}\left(\sum_{i=1}^{n} p_{i}(\gamma(t)) \gamma_{i}^{\prime}(t)\right) d t
$$

Pull-back

Give the integrand in (1) a name.

$$
\begin{equation*}
\gamma^{*} \omega=\omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) d t \tag{2}
\end{equation*}
$$

is called the pull-back of ω to $[a, b]$

- The definition of line integral now reads

$$
\int_{\gamma} \omega=\int_{a}^{b} \gamma^{*} \omega
$$

Independence of Parametrization

- $\gamma:[a, b] \rightarrow U$ smooth curve.
- $\phi:[c, d]: \rightarrow[a, b]$ smooth, strictly increasing and surjective.
- $\tilde{\gamma}=\gamma \circ \phi:[c, d] \rightarrow U$
- Then for all $\omega \in A^{1}(U)$

$$
\int_{\tilde{\gamma}} \omega=\int_{\gamma} \omega
$$

- Follows from the ehange of variables formula for integrals

Higher Dimensions

- For k-dimensional integration in an open set $U \subset \mathbb{R}^{n}$ we will need to define the corresponding objects:
- Integrands: smooth k-forms $\omega \in A^{k}(U)$.
- Domains of integration: smooth maps $\Phi: D \rightarrow U$, where D is a domain in \mathbb{R}^{k}.
- Integral:

$$
\begin{equation*}
\int_{\Phi} \omega=\int_{D} \Phi^{*} \omega \tag{3}
\end{equation*}
$$

- For this to make sense need
- Definition of k forms $\omega \in A^{k}(U)$ ~
- Definition of pull-back $\Phi^{*}: A^{k}(U) \rightarrow A^{k}(D)$
- Definition of the integral

$$
\int_{D}: A^{k}(D) \rightarrow \mathbb{R}
$$

- If $\eta \in A^{k}(D)$, where D is a domain in \mathbb{R}^{k}, then

$$
\int_{D} \eta=\int_{D} \phi\left(t_{1}, \ldots, t_{k}\right) d t_{1} \ldots d t_{k}
$$

an ordinary multiple integral.

- For all this to have geometric meaning, wnat Independence from parametrization
- This should follow from change of variable formula for mutiple integrals.

Summary

Differential forms reduce the theory of integration over
k-dimensional subspaces of \mathbb{R}^{n} to ordinary multiple integrals over domains $D \subset \mathbb{R}^{k}$.

$$
\begin{aligned}
& \text { here ant } \rightarrow \int_{a}^{b} \cdots d r \\
& \text { sung int } \rightarrow \text { SSqua der da }
\end{aligned}
$$

Domains of integration

- Want to reduce to I^{k}, the cartesian product of k intervals:

$$
\begin{equation*}
\mathbf{I}^{k}=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right], \quad a_{i}, b_{i} \in \mathbb{R}, \quad a_{i}<b_{i} . \tag{4}
\end{equation*}
$$

- Not open.
- If $C \subset \mathbb{R}^{k}$ is compact, say $f: C \rightarrow \mathbb{R}$ is smooth if it extends to a smooth function on some neighborhood of C.
- If $f: \mathbf{I}^{k} \rightarrow \mathbb{R}$ is continuous can define

$$
\int_{1^{k}} f\left(t_{1}, \ldots, t_{k}\right) d t_{1} \ldots d t_{k}
$$

as

- Limit of Riemann sums
- Iterated integral

$$
\begin{array}{r}
\|\| \\
\int f(s, t) d t \rightarrow \text { 却 ofs } \\
c \varepsilon
\end{array}
$$

$$
\begin{aligned}
& f=h_{1}\left(c_{1}\right) h_{2}(-2)-h_{h}(\theta a r) \int_{a}^{s}\left(\int_{c}^{d} f(s, c) \mu\right) d s \\
& \text { dos } n \\
& \text { clenemer } \\
& \text { out? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } D \subset \mathbf{I}^{k} \text {. } \\
& \text { Given } f: D \rightarrow \mathbb{R} \text { continuous, extend by } 0 \text { to } \\
& g: \mathbf{I}^{k} \rightarrow \mathbb{R} \text {, no longer continuous. } \\
& \text { If } g \text { is Riemann integrable, could define } \\
& I^{x-* I} \\
& 4-4018 \\
& f: D \rightarrow \mathbb{R} \quad g: I^{k} \rightarrow \mathbb{R} \\
& c^{k} \\
& g(x)=\left\{\begin{array}{cc}
f(x) & x \in D \\
0 & x \in O
\end{array}\right. \\
& \text { not cont. if } D_{R-\text { riot. }}
\end{aligned}
$$

Support of a function

- If X is a metric space and $f: X \rightarrow \mathbb{R}$ is continuous, the support of f is defined to be

$$
\operatorname{supp}(f)=\overline{\{x \in X: f(x) \neq 0\}}
$$

- If $f \in \mathcal{C}\left(\mathbb{R}^{k}\right)$ and $\operatorname{supp}(f)$ is compact, can define

$$
\int_{\mathbb{R}^{k}} f(t) d t=\int_{\mathbf{I}^{k}} f(t) d t
$$

for any \mathbf{I}^{k} containing $\operatorname{supp}(f)$.

- Differntial forms should be (linear) functions on a space that contains the tangent spaces to the images of the maps σ
- Given vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ linearly independent, want a way to manipulate the subspaces

$$
\begin{equation*}
\left\{t_{t} v_{1}+\cdots+t_{k} v_{k}: 0 \leq t \leq 1\right\} \subset \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

(the parallelipiped spanned by v_{1}, \ldots, v_{k}) and their volumes

The Grassmann Algebra

- For each $k, 1 \leq k \leq n$ want a symbol

$$
v_{1} \wedge v_{2} \wedge, \cdots \wedge v_{k}
$$

that represents the parallelipiped (7).

- Operations on these symbols that reflect the geometry.
- Example:

$$
v_{2} \wedge v_{1} \wedge v_{3} \cdots \wedge v_{k}=-v_{1} \wedge v_{2} \cdots \wedge v_{k}
$$

reflecting change of orientation.

Define The Grassmann Algebra

- Start with \mathbb{R}^{n} with its standard inner product $x \cdot y$ and it standard ON basis e_{1}, \ldots, e_{n}
- For each increasing sequence $/$ of k integers

$$
I=\left\{i_{1}, \ldots, i_{k}\right\} \text { with } 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n
$$

define a symbol

$$
e_{l}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}
$$

- There are $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ such symbols.
- For $k=0, \ldots, n$ define spaces $\Lambda^{k}=\Lambda^{k}\left(\mathbb{R}^{n}\right)$ by
- $\Lambda^{0}=\mathbb{R}$
- For $1 \leq k \leq n$,
$\Lambda^{k}=$ the \mathbb{R}-vector space with basis $\left\{e_{I}: \operatorname{card}(I)=k\right\}$
$-\operatorname{dim}\left(\wedge^{k}\right)=\binom{n}{k}$
- $\Lambda^{1}=$ the original \mathbb{R}^{n} with basis e_{1}, \ldots, e_{n}

Product

- If $I=\left\{i_{1}<\cdots<i_{k}\right\}$ as above, write $|I|=k$
- If $|I|=k$ and $|J|=\ell$, define $e_{I} \wedge e_{J}$ by

$$
e_{I} \wedge e_{J}=\left\{\begin{array}{l}
0 \text { if } I \cap J \neq \emptyset \tag{6}\\
\varepsilon(I, J) e_{K} \text { if } I \cap J=\emptyset
\end{array}\right.
$$

- K and $\varepsilon(I, J)$ defined as follows:
- Let $I \cup J$ denote the sequence $\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots j_{\ell}\right\}$
- K is the sequence $I \cup J$ arranged in increasing order.
- $\varepsilon(I, J)$ is the sign of the permutation that takes $I \cup J$ to K.
- This determines a product

$$
\Lambda^{k} \times \Lambda^{\prime} \rightarrow \Lambda^{k+1}
$$

- If $a=\sum_{l} a_{l} e_{l}$ and $b=\sum_{J} b_{J} e_{J}$, then

$$
a \wedge b=\sum_{l, J} a_{l} b_{J} e_{l} \wedge e_{J}
$$

- This sum can be rewritten, using the definition of $e_{l} \wedge e_{J}$ above, as

$$
\sum_{K} c_{K} e_{K}
$$

This is $a \wedge b$.

- Multiplication is associative

$$
(a \wedge b) \wedge c=a \wedge(b \wedge c)
$$

- Distributive law holds

$$
(a+b) \wedge c=a \wedge c+b \wedge c
$$

- If $a \in \Lambda^{k}$ and $b \in \Lambda^{\prime}$, then

$$
b \wedge a=(-1)^{k l} a \wedge b
$$

- $\Lambda^{k}\left(\mathbb{R}^{n}\right)$ has an inner product, with $\left\{e_{l}:|I|=k\right\}$ as ON basis.
- Explicitly, if $|I|=|J|$

$$
\left(\sum_{i} a_{i} e_{l}\right) \cdot\left(\sum_{J} e_{J}\right)=\sum_{l} a_{l} b_{l}
$$

and 0 otherwise.

- The corresponding norm is

$$
|a|=\left|\sum_{l} a_{i} e_{l}\right|=\sqrt{\sum_{l} a_{l}^{2}}
$$

- If $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly independent, then

$$
v_{1} \wedge \cdots \wedge v_{k} \in \Lambda^{k}\left(\mathbb{R}^{n}\right)
$$

represents the oriented parallelipiped (7)

$$
\left\{t_{1} v_{1}+\cdots+t_{k} v_{k}: 0 \leq t_{i} \leq 1\right\}
$$

- The norm

$$
\left|v_{1} \wedge \cdots \wedge v_{k}\right|
$$

is the k-dimensional volume of the parallelipiped.

$$
\begin{aligned}
& \Phi=\underbrace{\left[a_{1}, b_{1}\right] \cdots \cdots\left[a_{a} b_{2}\right]}_{\infty} \longrightarrow \mathbb{R}^{2} \\
& \operatorname{val}\left(\phi ⿻ \int_{D} \int \frac{\partial \Phi}{\partial t_{1}}, \left.\frac{\partial \Phi}{\partial t_{n}} \wedge-1 \frac{\partial G}{\partial \sigma_{n}} \right\rvert\, d G-d t_{n}\right. \\
& \left.k=\text { area } \quad \infty_{1}, \ldots r_{2}\right)=\Phi\left(t_{1}, t_{2}\right. \\
& x_{1}\left(f_{1} t_{1} l_{1},-x_{2}\left(e_{n}\right)\right. \\
& \frac{\iint\left(\frac{\partial \Phi}{\partial t_{1}}, \left.\frac{\partial \phi}{\partial t_{2}} \right\rvert\, d t_{2} d \psi_{2}\right.}{\frac{\partial \Phi}{\partial \epsilon_{1}}=\left(\frac{\partial \psi_{1}}{\partial t_{1}}, \frac{\partial x_{2}}{\partial t_{2}}--\right)} \\
& =\frac{\partial x_{1}}{\partial \alpha_{1}} e_{1}+\frac{\partial y_{2} e_{2}+}{\partial \mu_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\sum(11)^{2}}
\end{aligned}
$$

Introduction
Geometric Integration Theory by Haseler Whitney

Reality check

- v_{1}, \ldots, v_{k} are linearly independent and $w=$ linear combination of v_{2}, \ldots, v_{k}, then

- Example: for $k=2$

$$
v_{1} \wedge v_{2}=\left(v_{1}+\alpha v_{2}\right) \wedge v_{2} \text { for all } \alpha \in \mathbb{R}
$$

- Picture for area:

$$
\begin{aligned}
& \begin{array}{l}
\text { Rudin's } p \text { t for change of rars } \\
\text { formle }
\end{array} \\
& \mathbb{R}^{2} \\
& \because \sqrt{1} \\
& (u, v) \rightarrow(u, g(u, v)=\operatorname{cr}, v) \\
& \iint f(x, y) d y d y \\
& =\iint f(x, g(x, r)) d y d y \quad y=g(x, r) \\
& d u=\frac{29}{2 x} d u+\frac{29}{2 v} d r \\
& \text { duch } \left.\frac{29}{2 r} 2 u+\left(\frac{29}{2 v}\right) d r\right) \text { da } \\
& <\iint f\left(x, g(x, v) \frac{2}{\partial v}(x, v)(d u x d v)\right. \\
& \text { forenk, hased van iner } \\
& \left(n, T^{(x, \nu)} \approx\left(\begin{array}{cc}
1 & 0 \\
\operatorname{\partial g} \bar{g} n & \frac{\partial g}{2 v}
\end{array}\right)\right. \\
& d e r=29 / 25 \\
& G(n, v)=\left(n, g u_{n}, v\right) \\
& \text { Joal dr }{ }^{\text {r }}=2 S / 20 \\
& \operatorname{yen}^{4} \quad T b
\end{aligned}
$$

d 6
$|\operatorname{det}(d \phi)|$

- For $k=n$, if $v_{i}=A e_{i}$ for $i=1, \ldots, n$ then

$$
v_{1} \wedge \cdots \wedge v_{n}=\operatorname{det}(A) \boldsymbol{e}_{1} \wedge \cdots \wedge \boldsymbol{e}_{n}
$$

- Known $|\operatorname{det}(A)|=$ volume of parallelipiped.
- If $k=2$, let

$$
A=\left(\begin{array}{cc}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2} \\
\ldots & \ldots \\
a_{n, 1} & a_{n, 2}
\end{array}\right)
$$

- Let $v_{1}=\sum_{i} a_{i, 1} e_{i}$ and $v_{2}=\sum_{i} a_{i, 2} e_{i}$
- Check

$$
v_{1} \wedge v_{2}=\sum_{i<j}\left|\begin{array}{ll}
a_{i, 1} & a_{i, 2} \\
a_{j, 1} & a_{j, 2}
\end{array}\right| e_{i} \wedge e_{j}
$$

- For $k=n=2$ get
$v_{1} \wedge v_{2}= \pm$ area of parallelogram $\left\{t_{1} v_{1}+t_{2} v_{2}: 0 \leq t_{i} \leq 1\right\}$
- equivalently

$$
v_{1} \wedge v_{2}=\operatorname{det}(A) e_{1} \wedge e_{2}
$$

- equivalently

$$
|\operatorname{det}(A)|=\text { area of parallelogram }
$$

- For $k=2$ and $n=3$ get $v_{1} \wedge v_{2}$ is the sum

$$
\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right| e_{1} \wedge e_{2}+\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{3,1} & a_{3,2}
\end{array}\right| e_{1} \wedge e_{3}+\left|\begin{array}{ll}
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2}
\end{array}\right| e_{2} \wedge e_{3}
$$

- This looks like the cross product $v_{1} \times v_{2}$

$$
\left(\left|\begin{array}{ll}
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2}
\end{array}\right|,-\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{3,1} & a_{3,2}
\end{array}\right|,\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right|\right)
$$

- In any case, the two vectors have the same magnitude:

$$
\left|v_{1} \wedge v_{2}\right|=\left|v_{1} \times v_{2}\right|
$$

- So the new formula $\left|v_{1} \wedge v_{2}\right|$ and the old formula $\left|v_{1} \times v_{2}\right|$ for the area of the parallelogram agree.
- Similarly one can check the case $k=n=3$

$$
\left|v_{1} \wedge v_{2} \wedge v_{3}\right|=|\operatorname{det}(A)|=\left|\left(v_{1} \times v_{2}\right) \cdot v_{3}\right| \text { etc }
$$

for the volume of the parallelipiped.

General Formula

- The cases already discussed:
- $k=1, n$ arbitrary
- $k=2, n$ arbitrary, particularly $n=3$,
- $k=n$, particularly both $=3$.
are the most common
- General formula:

If for $j=1, \ldots, k, v_{j}=\sum_{i=1}^{n} a_{i, j} e_{i} \in \Lambda^{1}\left(\mathbb{R}^{n}\right)$, then $v_{1} \wedge \cdots \wedge v_{k}$ is given by

$$
\sum_{i_{1}<\cdots<i_{k}}\left|\begin{array}{ccc}
a_{i_{1}, 1} & \ldots & a_{i_{1}, k} \tag{7}\\
\ldots & \ldots & \ldots \\
a_{i_{k}, 1} & \ldots & a_{i_{k}, k}
\end{array}\right| e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}
$$

Differential k-forms in $\mathbb{R}^{n}(k \leq n)$

- k-dimensional integrands in \mathbb{R}^{n} are the differential k-forms.
- $U \subset \mathbb{R}^{n}$ open.
- A (smooth) differential k-form on U is smooth function

$$
\omega: U \times \widehat{\Lambda^{k}\left(\mathbb{R}^{n}\right)} \rightarrow \mathbb{R}
$$

written $\omega_{x}(w)$ for $x \in U$ and $w \in \Lambda^{k}$, which is smooth in x and linear in w.

- Notation: $A^{k}(U)=\{\omega: \omega$ smooth k - form on $U\}$

1-fonn x, v staget vector to U aty

- If e_{1}, \ldots, e_{n} is an $O N$ basis for \mathbb{R}^{n}, ω is determined by the $\binom{n}{k}$ functions

$$
a_{l}(x)=\omega_{x}\left(e_{l}\right)
$$

for all $I=\left\{i_{1}<\cdots<i_{k}\right\}$.

- Write $e_{l}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ for the basis elements of \wedge^{k}
- Write $d x^{\prime}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ for the dual basis of $L\left(\Lambda^{k}, \mathbb{R}\right)$.

- Then

$$
\omega=\sum_{l} a_{l}(x) d x^{\prime}
$$

- Explicitly

$$
\begin{align*}
& \omega=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}}(x) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \tag{8}\\
& \|^{k} \mathbb{R}^{n} \text { hes bom }\left\{d x_{1}^{i_{1} \ldots 1 d x^{i k}:} i_{11 \ldots, i_{k}}^{1<i_{1} \in \ldots}\right. \\
& \binom{n}{h} \\
& \left(d c_{c_{1}} 1-d n_{i n}\right)\left(e_{j, 1-\tilde{n}_{j} j_{k}}\right)=d \text { erep }
\end{align*}
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
d f_{i_{1 i}}\left(e_{j i}\right) & d v_{i_{i}}\left(e_{j n}\right) \\
d x_{i n}\left(e_{j i}\right) & \cdots & d x_{L_{2}}\left(e_{j 2}\right. \\
\cdots & \cdots & \cdots
\end{array}\right| \\
& d x_{i}\left(e_{j}\right)=\begin{array}{ll}
1 & i=\delta \\
0 & \theta i \neq j
\end{array} \\
& \left(d x_{i, i}-1 t_{t}\right)\left(e_{y=-j}\right. \\
& \Lambda^{k} \mathbb{R}^{n} \quad v_{1}^{n-v_{l}}
\end{aligned}
$$

- Let $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation $\left(A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right)$
- Define the associated linear transformation

$$
\Lambda^{k} A: \Lambda^{k}\left(\mathbb{R}^{m}\right) \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right)
$$

by

$$
\Lambda^{k} A\left(e_{l}\right)=A e_{i_{1}} \wedge A e_{i_{2}} \wedge \cdots \wedge A e_{i_{k}}
$$

- Also called the induced linear transformation.
- Often it's easier to say that $\Lambda^{k} A$ is defined by

$$
\wedge^{k} A\left(v_{1} \wedge \cdots \wedge v_{k}\right)=A v_{1} \wedge \cdots \wedge A v_{k}
$$

for all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$.

- Since

$$
\left\{v_{1} \wedge \cdots \wedge v_{k}: v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}\right\}
$$

spans $\Lambda^{k}\left(\mathbb{R}^{m}\right), \Lambda^{k} A$ is determined by these values.

- To know that the definition makes sense, that is, $A v_{1} \wedge \cdots \wedge A v_{k}$ depends just on $v_{1} \wedge \cdots \wedge v_{k}$, need

$$
v_{1} \wedge \cdots \wedge v_{k}=0 \Rightarrow A v_{1} \wedge \cdots \wedge A v_{k}=0
$$

- This is equivalent to
v_{1}, \ldots, v_{k} linearly dependent
$A v_{1}, \ldots, A v_{k}$ linearly dependent
- Clear

Pull-back

- $V \subset \mathbb{R}^{m}, U \subset \mathbb{R}^{n}$ open sets
- $f: V \rightarrow U$ smooth map
- Pull-back $A^{k}(U) \rightarrow A^{k}(V)$ is defined by

$$
\left(f^{*} \omega\right)_{t}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\omega_{f(t)}\left(d_{t} f\left(v_{1}\right) \wedge \cdots \wedge d_{t} f\left(v_{k}\right)\right)
$$

for all $t \in V$ and for all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$

- More concisely

$$
\left(f^{*} \omega\right)_{t}=\omega_{f(t)} \circ \Lambda^{k} d_{t} f
$$

for all $t \in V$.
$f=f_{1}\left(t_{1}+t_{2}\right)_{1} \cdots f_{m}\left(t_{1}+\left(k_{2}\right) \quad \mathbb{R}^{m}\right.$

$$
\left.\begin{array}{c}
k=0 \quad A^{0}(V) \stackrel{f^{\prime}}{ } A_{\dot{\varphi}}^{0}(U) \\
\varphi=V \rightarrow \mathbb{R} \\
\varphi
\end{array}\right)
$$

L4 $V \dot{c} \bar{O}$ undnon of a serhy
$0 \cos ^{2} \varphi=$ restricion of φ

$$
\begin{aligned}
& h=\varphi=A^{0}(v) . \\
& f^{*} \varphi(t)=\varphi\left(f^{(t)}\right) \\
& h=4 \\
& A^{k}(D)=\text { deff } k \text {-fons on } U \\
& \{\omega_{i} U \times \Lambda^{k} \mathbb{R}_{X_{\mathbb{R}}^{n}} / \underbrace{\omega_{x}(v)}_{\text {smank ar, lemana }} \\
& \omega=\sum_{\substack{I \\
I=\left(i_{1}-v_{n}\right) \\
1 \leq v_{1}<i_{n}<-c i_{n} \leq n}} a_{I}(x) d x_{I} \\
& g_{s}: U \rightarrow \mathbb{R} \\
& A^{0}(E)=\operatorname{sink} h \rightarrow \\
& A^{\prime}(U)=\operatorname{sinch}(-m) \\
& =\left\{a_{1} d k_{1}+\cdots+a_{2} d a_{n}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon=a_{1}(x) d y_{y} \cdots+a_{a}(x) d x \\
& \left.f^{*}(d x i)\right)^{L_{i}}=d x^{\prime}(\underset{t}{d} f)\left(e_{d}\right)=d x\left(\frac{\partial f_{\varepsilon}}{\partial v_{i}}, e_{0}\right) \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& f^{*} d x^{i}=d f^{i} \\
& =\frac{\partial f_{c}}{\partial t_{1}} d t_{1}+\frac{\partial f_{c}}{\partial t_{2}} d t_{2}+\cdots \\
& a_{1}(x) d x_{1}+a_{2}(x) d x_{2}+\cdots+a_{n}(x) d x_{n} \\
& f^{*} C \\
& =f^{*}\left(a_{1}(x) d x_{1}\right)+f^{*}\left(a_{2}(x) d x_{2}\right) \ldots f^{*}\left(a_{n}\left(c_{1}\right) d x_{n}\right) \\
& =\left(f^{*} a_{1}\right) f^{*}\left(d \varphi_{1}\right)+\left(f^{*} a_{2}\right) f^{*} d r_{2}+\cdots\left(f^{*} \varepsilon_{n}\right) f^{*} d n_{n_{n}} \\
& a_{1}\left(f(\theta) d f^{\prime}+a_{2}\left(f(a) d f^{2} \ldots\left(\epsilon_{1}\right) \ldots, t_{m}\right) \quad m\right. \\
& =\frac{a_{1}(f(t))\left[\frac{\partial f_{1}}{\partial}\left(d t_{1}+\frac{\partial f_{1}}{\partial} d t_{2}+\ldots+\frac{\partial f_{1}}{\partial t_{n}} d t_{m}\right)\left(c_{c_{1}}, \ldots x_{n}\right) n\right.}{d} \\
& \begin{array}{l}
=a_{1}(f(t))\left(\frac{\partial f_{1}}{\partial t_{1}} d t_{1}+\frac{\partial f_{1}}{\partial t_{2}} d t_{2}+\cdots+\frac{\partial f_{1}}{\partial t_{m}} d t_{m}\right] \\
\left.\left.+\begin{array}{c}
a_{2}\left(f\left(t_{1}\right)\right. \\
\vdots \\
\frac{\partial f_{2}}{\partial t_{1}} \\
a_{n}(f(c) \cdots
\end{array}\right) d t_{1}+\frac{\partial f_{2}}{\partial t_{2}} d t_{1}+\cdots \frac{\partial f_{2}}{\partial t_{m}} d t_{2}\right)
\end{array} \\
& \text { Example } \\
& \text { (See FWW }{ }^{4} \text {) } \\
& F^{*}-(d x, d y) \\
& F(\varphi, \theta)=((a+b \cos \varphi \mid \cdot \operatorname{sen} \theta,(a+b \cos) \sin \theta, \\
& \text { 为 } \\
& F^{x}(d x a d y) \\
& x=(a+b \cos \varphi) \sin \\
& F^{*} d x=(-b \cos \varphi \cos \theta) d \varphi+(a+h \cos \varphi)(-\operatorname{sen} \theta) d \theta \\
& y=(a+b \cos \varphi) \mathrm{m} \sigma \\
& F^{*} d g=\{-b \sin \varphi \operatorname{men} \theta d \varphi+(a+s \cos \varphi) \cos \theta d \theta \\
& F^{*}(\text { daradg })
\end{aligned}
$$

$$
\begin{aligned}
& F^{f}(d x \sim d y) \\
& d y \sim d z \\
& \text { chndes }
\end{aligned}
$$

$$
\begin{aligned}
& -\underline{b}\left(a+b \cos ^{\circ} \phi\right) \sin \varphi, d \varphi r d \theta \\
& \text { i (afberey) soo } \\
& \begin{array}{l|l}
0 \leq \varphi \leq \pi & \pi \leq \varphi \in n_{0} \\
0 \leq \theta \leq 2 \pi & 0 \leqslant \theta \leq 2 \pi
\end{array} \\
& T=T+\nu T-
\end{aligned}
$$

$$
\begin{aligned}
& \left.\pi c(a+h)^{2}+(a-4)^{2}\right)_{\sigma-} \\
& \text { 24at ans an } \\
& a\left((a+b)^{2}-b^{2}\right) \\
& =\pi\left(a^{2}+2 a b\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2Rt (} \left.\int_{0}^{\pi} a \operatorname{minq}+6 \text { engmp }\right) \\
& \int_{0}^{\pi} \sin \phi d p \\
& \text { act }\left.\frac{\sin ^{2} \phi}{2}\right|_{0} ^{\pi} 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Ftor } \\
& f^{*}\left(\sum a_{y} d x_{y}\right) \\
& \Sigma\left(f^{2} a_{1}\right)(d+)^{-k} \\
& d x_{0,1} d t_{i_{k}} x_{c_{k}}=f_{i=}= \\
& f^{*}
\end{aligned}
$$

- In terms of coordinates $t=\left(t_{1}, \ldots, t_{m}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$
- $x=f(t)=\left(f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right)$
- $\omega=\sum_{l} a_{l}(x) d x^{\prime}=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}}(x) d x_{i_{1}} \wedge \ldots d x_{i_{k}}$
- Then

$$
\begin{equation*}
f^{*} \omega=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}}(f(t)) f^{*}\left(d x_{i_{1}}\right) \wedge \cdots \wedge f^{*}\left(d x_{i_{k}}\right) \tag{9}
\end{equation*}
$$

- Using (3), this can be rewritten as

$$
\begin{equation*}
f^{*} \omega=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}}(f(t))\left(d_{t} f_{i_{1}}\right) \wedge \cdots \wedge\left(d_{t} f_{i_{k}}\right) \tag{10}
\end{equation*}
$$

- Writing $d f_{i}=\sum_{j=1}^{m} \frac{\partial f_{i}}{\partial t_{j}} d t_{j}$ and expanding $d f^{\prime}$ in the same manner as (9) we get an explicit expression for $f^{*} \omega$ as a sum

$$
\sum_{J} c_{J}(t) d t^{J}
$$

- Perhaps more useful than an explicit but complicated formula is to observe the multiplicative properties of f^{*}.
- If $a: U \rightarrow \mathbb{R}$ is a smooth function, that is, $a \in A^{0}(U)$, let

$$
f^{*}: A^{0}(U) \rightarrow A^{0}(V)
$$

be defined by

$$
\left(f^{*} a\right)(t)=a(f(t))
$$

- Then (11) says

$$
f^{*}\left(\sum_{\underline{l=i_{1}<\cdots<i_{k}}} a_{l} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=\sum\left(f^{*} a_{l}\right)\left(f^{*} d x_{i_{1}}\right) \wedge \cdots \wedge\left(f^{*} d x_{i_{k}}\right)
$$

- Suggests the following
- There is a product

$$
L\left(\Lambda^{k}, \mathbb{R}\right) \times L\left(\Lambda^{\prime}, \mathbb{R}\right) \rightarrow L\left(\Lambda^{k+\prime}, \mathbb{R}\right)
$$

defined just as in (8) using the dual basis $d x^{\prime}$ rather than e_{l}

- Induces a product $A^{k}(U) \times A^{\prime}(U) \rightarrow A^{k+\prime}(U)$.
- If $\omega \in A^{k}(U)$ and $\eta \in A^{\prime}(U)$, then $\omega \wedge \eta \in A^{k+\prime}(U)$.
- If $f: V \rightarrow U$ is smooth, then

$$
\begin{equation*}
f^{*}(\omega \wedge \eta)=\left(f^{*} \omega\right) \wedge\left(f^{*} \eta\right) \tag{11}
\end{equation*}
$$

Some properties of pull-back

- $f^{*}(\omega \wedge \eta)=f^{*}(\omega) \wedge f^{*}(\eta)$ as above
- $f^{*}\left(\omega_{1}+\omega_{2}\right)=f^{*} \omega_{1}+f^{*} \omega_{2}$
- $f: V \rightarrow U$ and $g: W \rightarrow V$ smoooth maps of open sets. then

$$
(f \circ g)^{*}=\underline{g}^{*} \circ f^{*}: A^{k}(U) \rightarrow A^{k}(W)
$$

$$
\begin{aligned}
& \left((f \circ g)^{*} a\right)(x) \\
& =a f(x, x) \\
& =a\left(g(f x)=g^{*} a(f) \quad g^{*} f^{x}\right.
\end{aligned}
$$

$$
\begin{aligned}
& (f \circ g)^{k}=g^{2} \cdot f^{k} \\
& \int_{+_{+}^{+}} \frac{d x a d y}{} \frac{d x a d y}{\Lambda^{2} R^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{T^{+}} d x d y=\int_{[0, \pi) \cdot(a, 2 e} F^{x} d x a d y \\
& F:[0, E]:[0,2 a 7] \rightarrow \mathbb{R}^{3} \\
& \text { dxady }=
\end{aligned}
$$

Integration over k-cells

- Let $D=\mathbf{I}^{k}$ be a k-cell as in (6)
- Let $\alpha \in A^{k}(D)$ be a smooth k-form.
- Then

$$
\alpha=\phi(t) d t_{1} \wedge \cdots \wedge d t_{k}
$$

for some smooth $\phi: D \rightarrow \mathbb{R}, t=\left(t_{1}, \ldots, t_{k}\right)$

- Define

$$
\int_{D} \alpha=\int_{D} \phi(t) d t_{1} \ldots d t_{k}
$$

the Riemann integral of ϕ over $D=\mathbf{I}^{k}$.

- If $\sigma: D \rightarrow U$ is smooth and $\omega \in A^{k}(U)$, define

$$
\int_{\sigma} \omega=\int_{D} \sigma^{*}(\omega)
$$

- Would like $\int_{\sigma} \omega$ to be independent of parametrization.
- This means that if E is another k-cell and

$$
\Phi: E \rightarrow D
$$

is smooth, bijective, $\operatorname{det}(d \Phi)>0$ everywhere on E, then

$$
\int_{\sigma \circ \Phi} \omega=\int_{\sigma} \omega
$$

- This follows from the change of variables formula
- If $\Phi: E \rightarrow D$ and $\alpha \in A^{k}(D)$ as before, then

$$
\int_{E} \Phi^{*} \alpha=\int_{D} \alpha
$$

- More usual formulation:
- If $\alpha=a(t) d t_{1} \wedge, \cdots \wedge d t_{k}$ then

$$
\int_{E} a(\Phi(t))\left|\operatorname{det}\left(d_{t} \Phi\right)\right| d t_{1} \ldots, d t_{k}=\int_{D} a(t) d t_{1} \ldots d t_{n}
$$

- Note how the absolute vaue $|\operatorname{det}(d \Phi)|$ appears, rathen than $\operatorname{det}(d \Phi)$. Results from orientation.

Recall Pullback

- $f: V \rightarrow U, x=f(t)$, where

$$
x=\left(x_{1}, \ldots, x_{n}\right), t=\left(t_{1}, \ldots, t_{m}\right)
$$

-

$$
\omega=\sum_{l} a_{l}(x) d x_{l} \in A^{k}(U)
$$

sum over all $i=\left\{i_{1}, \ldots, i_{k}\right\}$ with $1 \leq i_{1}<\cdots<i_{k} \leq n$ - a_{i} : $U \rightarrow \mathbb{R}$ smooth functions

$$
d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

- The pull-back of ω by f is defined as

$$
f^{*}(\omega)_{t}=\sum_{l} \underline{a_{l}(f(t))\left(d_{t} f\right)_{l}}
$$

- where

$$
\left(d_{t} f\right)_{I}=d_{t} f_{i_{1}} \wedge d_{t} f_{i_{2}} \wedge \ldots d_{t} f_{i_{k}}
$$

- And, as usual,

$$
d_{t} f_{i}=\sum_{j=1}^{m} \frac{\partial f_{i}}{\partial t_{j}}(t) d t_{j}
$$

$$
f^{*}(\text { Gunction } a)_{t}=a(f(t)) \quad \text { Comorin }
$$

- Putting all these into a single formula would be quite long.
- An easy way to remember:
arondes

$$
d f_{1} d d f_{2}
$$

- If $a \in A^{0}(U)$ is a smooth function, then $f^{*} a \in A^{0}(V)$ is

$$
\left(f^{*} a\right)(t)=a(f(t))
$$

$d_{x_{G}} \in \mathbb{A}^{(\mathcal{T})}$ If $\left.x_{i}\right) U \rightarrow \mathbb{R}$ is one of the coordinate functions, then $f^{*} d x_{i} \in A^{1}(V)$ is

$$
\frac{f^{*}\left(d k_{v}\right)}{=d f_{E}^{*}}
$$

$$
\left(f^{*}\left(d x_{i}\right)\right)_{t}=d_{t} f_{i}=\sum_{j=1}^{m} \frac{\partial f_{i}}{\partial t_{j}}(t) d t_{j}
$$

- $f^{*}: A(U) \rightarrow A(V)$ is multiplicative

$$
f^{*}(a \wedge b)=f^{*} a \wedge f^{*} b \text { for all } a \in A^{k}(U), b \in A^{\ell}(U)
$$

- These properties determine f^{*} uniquely.

- Used $A(U)$ for the totality of differential forms on U. Usually take this to mean direct sum

$$
A^{0}, A^{c}, A^{2} \cdots \operatorname{sinfe}_{v c} A \quad A(U)=\oplus_{0}^{n} / A^{k}(U)
$$

- $A(U)$ is then an algebra.
- $f^{*}: A(U) \rightarrow A(v)$ is an algebra homomorphism.

$$
\begin{aligned}
& \alpha, \beta, \gamma- \\
& \frac{A_{A^{d} c} A_{A^{l}} c_{A^{d}}}{\alpha_{\alpha \beta} \in A^{k l}}
\end{aligned}
$$

$\alpha+\beta ? A^{k} \in A^{l} 7$ doncteris
$\left.d(\Phi)^{g}\right) \sim \Phi_{2}$
Form aratra $\frac{\alpha \beta \beta=(-1)^{\mid \alpha+}|\beta|-\sin \alpha}{|\alpha|=h \rightarrow \alpha c \alpha}$
d df $f \in A^{\circ}(u) c=$ $s \quad \operatorname{deg}$ des
freen $d f=$ anal debate $d f$ - $\sum \frac{2 f}{\partial x_{c}} d o$
$\int \operatorname{deg}(\alpha)=k \Leftrightarrow \alpha \in A^{k}$
$\alpha \wedge \beta=(-1)^{\operatorname{da}(\alpha) \operatorname{dg}(\beta)} \rho_{1} \alpha$

$$
d(\alpha, \beta)=d \alpha \uparrow \beta+(-1)^{d g(\alpha)} \alpha \wedge d \beta
$$

$$
d f=\sum \frac{\partial f}{\partial x_{c}} d x_{c} \quad d\left(d x_{c}\right)=0
$$

$$
d\left(a_{1} d x_{1}+a_{2} d x_{2}-a_{2} d x_{0}\right)=d\left(a_{1} d x_{1}\right) \in d\left(a_{2} d x_{1} \ldots d\left(a_{2} x_{1}\right)\right.
$$

$$
\begin{aligned}
& d f=\sum \frac{\partial f}{\partial x c} \text { drcc } \\
& \Phi^{*}(d x a d y) \quad \Phi_{1}(\varphi, \theta)=(a+b \cos \varphi) \cos \theta \\
& =\left(\Phi^{2} d_{x}\right)_{1}\left(\Phi^{*} d_{y}\right) \quad \Phi_{n}(\varphi, \alpha)=(a-\cos \varphi) \operatorname{sen} \theta
\end{aligned}
$$

$\frac{f, d e}{L}$
nubn
$\frac{d f}{1} \quad d($ dres $)=\sigma$

$\sum a_{\text {ci-ctu }}$ deonon

$$
=d a_{1} n d r_{1}+a d\left(d_{x_{1}}\right)
$$

$d\left(d x_{1}\right)$

$$
d^{2}=0 \quad d\left(d x_{0}\right)=0
$$

$$
d x_{1}=\frac{\partial y_{1}}{\partial \pi_{i}}
$$

$$
\begin{aligned}
& d\left(a_{1} d x_{2}+a_{2} d r-\right. \\
= & d a_{1} _d r_{1}+a d_{0}^{2}
\end{aligned}
$$

$$
d\left(a_{1} d_{r}+a_{0} c_{1}-\right)
$$

$$
d a_{1} d r_{1}+a_{1} d c_{0} p_{0}+d a_{1} d r_{2}-
$$

$$
\begin{aligned}
& d .\left(d r_{1} \cap d s_{s_{1}}\right)=d\left(d x_{2}\right) \cdot d r_{2}+d r_{r_{1}}+d\left(d_{6}\right)_{b}=0 \\
& d\left(d d_{x_{0,1}-1 d_{n} \mid}=0\right. \\
& d\left(a_{L_{c-v \pi}} d r_{a_{n}} r_{2}\right)=\delta a_{c_{1}^{\prime}, \varepsilon_{2}} 1 d r_{0}-\mu . \\
& d(d f)=d\left(\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots \frac{\partial f}{\partial x_{1}} d r_{2}\right) \\
& d\left(\frac{\partial f}{\partial v_{2}}\right) \alpha_{1}, t-d\left(\frac{\partial f}{\partial z_{1}}\right) d r_{n_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \partial^{2} f
\end{aligned}
$$

$$
\begin{aligned}
& f \in C^{R}=d^{\prime} f=0
\end{aligned}
$$

Integrals of k-forms

- $D \subset \mathbb{R}^{k}$ a "domain", for example $D=\mathcal{I}^{k}$ a product of intervals.
- If $\eta \in A^{k}(D)$ is a smooth k form, should know how to integrate η over D :
- $\eta=\phi(t) d t_{1} \wedge \cdots \wedge d t_{k}$
- Define

$$
\int_{D} \eta=\int_{D} \phi(t) d t_{1} \ldots d t_{k} \text { or, simply } \int_{D} \phi(t) d t
$$

- RHS is an ordinary k-dimensional integral, a Riemann integral or itetared integral.
- RHS is independent of orientation, while LHS depends on orientation.
- Suppose $\Phi: D \rightarrow U$ is a smooth map.
- May also want to assume $d_{t} \Phi$ is injective at each $t \in D$.
- If $\omega \in A^{k}(U)$ is a smooth k-form, define

$$
\int_{\Phi} \omega=\int_{D} \Phi^{*} \omega
$$

Change of Variables Formula

- D_{1}, D_{2} domains in \mathbb{R}^{k}
- $F: D_{1} \rightarrow D_{2}$ smooth, bijective, $d_{s} F$ isomorphism for all $s \in D_{1}$
- $\phi: D_{2} \rightarrow \mathbb{R}$ smooth function.
- Then

$$
\int_{D_{1}} \phi(F(s))\left|\operatorname{det}\left(d_{s} F\right)\right| d s_{1} \ldots d s_{k}=\int_{D_{2}} \phi(t) d t_{1} \ldots d t_{k}
$$

- The absolute value of the Jacobian determinat $\operatorname{det}(d F)$ comes because of orientation: if F is orientation reversion reversing $(\operatorname{det}(d F)<0)$ does not affect these integrals.
- For differential forms $\eta \in A^{k}\left(D_{2}\right)$ the theorem says

$$
\int_{D_{1}} F^{*} \eta=\int_{D_{2}} \eta
$$

Independence of Parametrization

- Finally, if $\Phi: D_{2} \rightarrow U$ is a parametrized k-surface and $f: D_{1} \rightarrow D_{2}$ is a change of variables, then

$$
\int_{\Phi \circ F} \omega=\int_{\Phi} \omega
$$

since

$$
\int_{D_{1}}(\Phi \circ F)^{*} \omega=\int_{D_{1}} F^{*}\left(\Phi^{*} \omega\right)=\int_{D_{2}} \Phi^{*} \omega
$$

Recall Torus
Recall we looked at the parametrization
$\Phi:[0,2 \pi] \times[0,2 \pi] \rightarrow \mathbb{R}^{3}$ of a torus

$$
\left.\begin{array}{l}
x=(a+b \cos \phi) \cos \theta \\
y=(a+b \cos \phi) \sin \theta \\
z=b \sin \phi
\end{array}\right\}
$$

$d([a+b \cos \varphi \mid \cos \theta)$

$$
(-b \sin \varphi \cos \theta d \varphi+(a+b \cos \varphi)(-\sin \theta d \theta)
$$

$$
\wedge(-b \sin \varphi \sin \theta d y+(a+b \cos \varphi) \cos \theta d \theta)
$$

- Did this by calculating

$$
d((a+b \cos \phi) \cos \theta) \wedge d((a+b \cos \phi) \sin \theta)
$$

by following the procedures above.

$$
\begin{aligned}
& \pi(a+b)^{2} \\
- & \pi(a-b)^{2} \\
= & \pi(a)^{2}+2 a b+b^{2} \\
- & \pi\left(k^{2}-2 a b+b^{2}\right) \\
= & a r a b
\end{aligned}
$$

- Reality check: worked out

$$
\int_{[0, \pi] \times[0,2 \pi]}(-b(a+b \cos \phi) \sin \phi) d \phi d \theta
$$

- Compared our answer with the area of the projection of the top half of the torus to the x, y-plane. This can be done by elementarty goemetry.
- If all is correct, one answer should be \pm the other.
- It worked!

Formula for Area
H. A. Schwarz example

From thin Schuctz
Mathe mutiorde Ab handerangen

$$
\begin{aligned}
& \text { Vol II } \\
& \text { P.309-311 }
\end{aligned}
$$

Similar Pictures

$$
\begin{aligned}
(v, v) & \rightarrow(\cos x, \sin \cos v) \\
& \sin \text { and } \Delta f \rightarrow \infty
\end{aligned}
$$

