Foundations of Analysis II

 Week 10Domingo Toledo

University of Utah

Spring 2019

Integration

$$
k \text {-dim incerh }
$$

- Need to define
- Integrands
- Domains of integration
- Integrals
- Model: Line integrals in \mathbb{R}^{2}. Given
- $U \subset \mathbb{R}^{2}$ opem and \mathcal{C}^{1}-functions $p, q: U \rightarrow \mathbb{R}$.
- $\gamma:[a, b] \rightarrow U$ parametrized \mathcal{C}^{1}-curve,

$$
\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)
$$

- Define

$$
\int_{\gamma} p d x+q d y=\int_{a}^{b} p(\gamma(t)) \gamma_{1}^{\prime}(t)+q(\gamma(t)) \gamma_{2}^{\prime}(t) d t
$$

Examples
What is

$f(t)=(\cos t, \sin t)$
$p d_{t}+q d y=g d x+x d y$

$$
\left.\int_{x} q_{y} d x+x d y \quad r(t)=e_{0} t, m x\right)
$$

$$
=\int_{0}^{\pi}((\sin t)(\sin t)+(\cos t) \cos t) d t
$$

$$
=\int_{0}^{\pi}\left(-\sin ^{2} t+\cos ^{2} t\right) d t
$$

$$
=\int_{0}^{\pi} \cos 2 t d t
$$

(asthma) $\quad 6 \leq t \leq 2 \pi$

Language
$x l_{y}+y$ or $=d(x y)$
to moke sense

$$
=\int_{0}^{2 \pi}\left(\sin ^{2} t+\operatorname{sen}^{2} t\right) d t=2 \pi
$$

What is $p d x+q a y ?$

Differential one-forms
Smooth $=\mathcal{C}^{\infty}$

- Smooth one-form on open $U \subset \mathbb{R}^{n}$ means a function
$-\omega: U \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
written
x
$\omega_{x}(v)$ rather than $\omega(x, v)$
where $x \in U, v \in \mathbb{R}^{n}$ and
- $\omega_{x}(v)$ is smooth in x and linear in v.

$$
\begin{gathered}
\omega: U_{x} \mathbb{R}^{x} \rightarrow \underset{(x, v)}{w} \rightarrow w_{x}(v)
\end{gathered}
$$

- Usually think of

$$
\begin{gathered}
x, v \\
x \in U \\
v \in \mathbb{R}^{n} \\
(x, v) v \text { favus } t \\
v \text { art. }
\end{gathered}
$$

- x a point in U

Def ${ }_{\text {form }}{ }^{n} v$ a tangent vector to \mathbb{R}^{n} based at the point $x \in U$.

$$
\omega: U \times \mathbb{R}^{x} \rightarrow \mathbb{R}
$$

$$
\underset{\substack{\text { smooth in } \\ \text { sm, }}}{\longrightarrow} \longrightarrow \omega(r, v)
$$

linear in v
(mental pictures V is a tengeat redan at)

Example

- If $f: U \rightarrow \mathbb{R}$ is smooth, then $d f$ is a smooth one-form on U.
- Note $d_{x} f(v)$ is smooth in x, linear in v.
- Usually write

$$
\underline{d\left(x_{y}\right)=y d y+x d y}
$$

$$
\begin{aligned}
& v=\left(v_{1},-, v_{n}\right) d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} \\
& \left(d_{g} f\right)\left(v_{i}\right)=\frac{\partial f}{\partial x_{1}}(x) v_{1}+\frac{\partial f}{\partial x_{2}}(x) v_{2}+-\frac{\partial f}{\partial x_{x}}\left(x_{i} v_{n}\right.
\end{aligned}
$$

What's $d x_{i}$?

- Let $x_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the $i^{\text {th }}$ coordinate function:

- If $x=\left(x_{1}, \ldots, x_{n}\right)$, then $x_{i}(x)=x_{i}$
- dx x_{i} is literally the differential of x_{i}
- Check that

$$
\left.\int_{1}^{a}-2\right)^{q}
$$

$$
x_{i}(x+h)-x_{i}(x)=d_{x} x_{i}(h)+o(|h|),
$$

where $o(|h|)=0$ in this case.

$$
d h_{i}
$$

$$
-(x)_{c} \frac{\Sigma x_{b}}{n_{c}}=\left(d x_{0}(n)\right.
$$

Look at \mathbb{R}^{2}
$\cup \subset \mathbb{R}^{2} \quad x:(x, 9) \rightarrow x$

$$
\longrightarrow p(x, y) d \pi_{F}+P_{0}(x, y) d \pi_{y}
$$

bot
Frade io $p(r, g) d x+q(x, g) d g$

$$
\begin{gathered}
d \pi_{c}(h)=h_{c} \\
((0,-1,1-0) \\
d \pi_{c}\left(e_{j}\right)
\end{gathered}
$$

$$
\pi_{i}\left(x_{1}--\mu_{i}\right)^{2}=x_{i} \quad d \pi_{i}
$$

$$
\underset{\left.\left(d \pi_{i}\right)^{(e)}\right)}{\substack{\left.\left(x_{i}\right) \\ x_{i}\right)}}
$$

$$
\pi_{i}\left(x_{1},-x_{1}\right)=r_{i}
$$

$$
\begin{aligned}
& x: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& (x, y) \rightarrow x \\
& x \text { is ditt } x((x+h, y+k))-x(x, y) \\
& =x \text { th }-x=\underline{h} \\
& =\ln n+0 \\
& =\operatorname{lng}+0(\sqrt{x-4}) \\
& \begin{array}{l}
x \text { 的dNb } \\
\frac{d x(h, h)}{}=h
\end{array} \\
& =\text { lanar } \\
& p(x, y) d x+q(x, y) d y
\end{aligned}
$$

Dual Basis

$$
\left(d x_{i}\right)\left(e_{j}\right)= \begin{cases}1 & \psi i=j \\ 0 & c \neq j\end{cases}
$$

- Another interpretation:
- $d x_{1}, \ldots, d x_{n} \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is the basis for $L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ dual to the standard basis e_{1}, \ldots, e_{n} for \mathbb{R}^{n}.
- This means

$$
d x_{i}\left(e_{j}\right)=\left\{\begin{array}{lc}
1 & \text { if } i=j \\
0 & \text { otherwise } .
\end{array}\right.
$$

- Strictly speaking should write $d_{x} x_{i}$, but it is independent of $x \in U$.

$$
\begin{aligned}
& d_{r_{c}} L L\left(\eta^{x}, n\right) \\
&\left(d \varphi_{c c}\right)\left(e_{f}\right)=\delta_{v_{j} c} \\
&=\left\{\begin{array}{cc}
1 & c=\delta \\
\sigma & 0 \leftleftarrows \delta
\end{array}\right.
\end{aligned}
$$

Explicit Expressions Using Components

- ω smooth one-form on U
there exists a unique collection of smooth functions $p_{1} \ldots, p_{n}: U \rightarrow \mathbb{R}$ such that

$$
\omega=\sum_{i=1}^{n} p_{\hat{A}} d x_{i}
$$

- In fact

$$
p_{i}(x)=\omega_{X}\left(e_{i}\right) \quad \begin{gathered}
v_{2} v_{i} e_{1}+\cdots v_{n} e_{2} \\
2\left(\sigma_{1},+v_{n}\right) \\
T_{1}
\end{gathered}
$$

$$
e_{x}(v)=\sum \omega_{x}\left(c_{0}\right) v_{i}
$$

$$
\begin{aligned}
& \binom{x_{1}}{b_{x}} \quad 1 \quad 1 \\
& L\left(\begin{array}{l}
x_{1} \\
i_{2} \\
n_{2}
\end{array}\right)=\underline{\left(x_{1}--m_{n}\right)}\left(\begin{array}{l}
y_{1} \\
\vdots \\
x_{2}
\end{array}\right) \\
& \operatorname{Com}\left(\begin{array}{l}
x_{1} \\
1 \\
r_{2}
\end{array}\right)^{R^{2}} \\
& \text { (} 10-0 \text {) } \\
& \text { (ion } 1, \ldots) \\
& \begin{array}{lll}
h & 0 \\
0 & 1 \\
\vdots & 0 & \\
\vdots & 0 & 2 \\
e_{1} & e_{2} & -
\end{array} \\
& \operatorname{rars}\left(x_{1}-x_{2}\right) \quad() \quad\left(x_{1}-x_{n}\right) \\
& \text { on } L\left(\mathbb{R}^{n}, \mathbb{R}\right) \\
& (1,1)(1)
\end{aligned}
$$

- If $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, then

$$
\omega_{x}(v)=\sum_{i+1}^{n} p_{i}(x) v_{i}
$$

- In this notation, if $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right):[a, b] \rightarrow \boldsymbol{U}$ is a smooth curve, then

$$
\int_{\gamma} \omega=\int_{a}^{b}\left(\sum_{i=1}^{n} p_{i}(\gamma(t)) \gamma_{i}^{\prime}(t)\right) d t
$$

- Need to make the notation more concise.

$$
\text { LGon an } \mathbb{P (x , y)} d x+q(x, y) d y \quad n, q: U \rightarrow \mathbb{R}
$$

$\left.\operatorname{avn}_{\gamma(t)}^{\omega_{x}(n)}\right)$

Talse Rudin's def of k-fom on $\cup\binom{$ dee 10,10}{p ot }
Specirlus $k=1$

$$
\omega=\sum a_{i}(x) d r_{i}
$$

a func assis.

$$
\begin{gathered}
\Phi: I \sim T \\
\sum_{c^{\prime}} \int_{a}^{b a, b]} a_{i}\left(\Phi(t) \frac{\partial x_{c^{\prime}}}{\partial t} d t\right.
\end{gathered}
$$

Rudern

$$
\begin{aligned}
& \frac{\left.\partial \psi_{\left(k_{i}, \ldots\right.} x_{i k}\right)}{\left.\partial y_{i} \ldots u_{k}\right)}
\end{aligned}
$$

= the $i_{1} . . i_{i}$ Marar

$$
\theta\left\{\quad \partial x_{1}\right.
$$

车

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}\right)=\Phi\left(u_{1, \ldots}, u_{n}\right) \\
& k \leq x \\
& x_{1}=\Phi_{1}\left(u_{1}-u_{n}\right) \\
& { }_{c_{n}}^{\prime}=\Phi_{n}\left(u_{1},-u_{k}\right) \\
& \Phi: \underbrace{T}_{k} x-\times I \rightarrow 0 \\
& \sum \sum a_{c}(x) d c_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{k=1 \quad \oiint_{T} U\right. \\
& -\sum_{i=1}^{n} \int_{F_{i}} a(\phi(x)) \frac{d x_{i}}{\partial x} d u \\
& \pm=[a, b]
\end{aligned}
$$

$$
h=2 \sum_{i i_{j}} a_{i ; j}(x) d x_{i} \wedge d r_{j j}
$$

$$
\begin{aligned}
& \sum_{i=j_{j}} \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} a_{i j j}\left(\bar{d}\left(a_{1}, u_{2}\right) j^{d, x_{i}}\right. \\
& \left.\begin{array}{l}
a_{c j^{\prime}} \\
d^{\prime}
\end{array}\right] \quad\left|\begin{array}{ll}
\frac{\partial x_{i}}{} & \partial x_{i} \\
\partial x_{i} & \frac{\partial x_{2}}{\partial x_{j}} \\
\frac{\partial x_{i}}{\partial x_{1}} & \frac{\partial y_{r}}{\partial y_{r}}
\end{array}\right| d u_{1} d u_{2}
\end{aligned}
$$

Stant igan
$U \subset \mathbb{R}^{n}$ open $\quad y_{0}\left(x_{n},\left(x_{1}\right)\right.$
f-form $\mathcal{A}: \tau \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad v=\left(v, 1-v_{n}\right)$

$$
(v, v) \rightarrow \omega_{p}(v)
$$

Saoth in x, linear inv.
Ex $0 f_{1} U \rightarrow \mathbb{R}$ smooth fune
$d f: \nabla \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& V \times \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& (u, v) \rightarrow d_{x} f(v)
\end{aligned} \quad\left(f(x, v)-f(x)=d_{x} f^{\llcorner }(v)_{t o}((x))^{\prime}\right.
$$

(2) Special ersi $f(x, y)=x_{i}$

$$
\begin{gathered}
\underset{v}{\left.d f(v)=(x+v)_{i}=x_{v}\right)=v_{v} \Rightarrow \underset{v}{d}(v)=v_{v}} \\
\text { indpoby } \\
\text { call it } d v_{c} \underset{x}{d x_{v}(v)=v_{v}}
\end{gathered}
$$

Exemple

$$
\begin{aligned}
& \int_{a}^{b} f(t) d t \\
& \ln (\sum \underbrace{f\left(\xi_{i}\right)}_{\text {hak } k} \underbrace{\left(t_{i}+t_{i n}\right)}_{\text {hcre }}) \\
& t=\text { lonen }(+c) \\
& t=\log t h+c \quad t_{i c}-t_{i-1}=\operatorname{loger}\left[t_{i-1}, t_{i}\right] \\
& \Delta t=\Delta \operatorname{lin}\left(\vec{e}_{e}\right) \quad d t(e)=1 \\
& d t=\log A x \text {. } \\
& f(f) d t \quad 1-\text { fom } \\
& \text { chan, } t=g(s) \quad s \in[c, d] \quad[c, d] \rightarrow[a, b \\
& \int_{c}^{d} f(g(s)) d g=\int_{c}^{d} f\left(g(s) g^{\prime}(s) \frac{\nearrow_{1-1, \text { oux }}}{\equiv} \quad t=\ln \right. \\
& y_{S}=\operatorname{les} t_{\text {mem }}^{\text {mer }} \\
& \frac{g^{\prime}(s) d s}{g(s)}=b-x+c
\end{aligned}
$$

$$
\text { Inferrote 1-farms over }[a, 3]
$$

(not fushon)

$$
\sum \frac{f\left(\xi_{c}\right)}{\left(t_{i}-z_{w-1}\right)} \underbrace{\sin b_{c}}_{\sin c \mid}
$$

Chane of smulls

$$
\begin{aligned}
& t \Rightarrow g(s) \\
& f(t) d t \rightarrow f(g(s)) d g^{e} \\
& \\
& =f\left(g(s) g^{e}\left(C_{s}\right) d s\right.
\end{aligned}
$$

$f(t) d t$ fore or $x, v \quad \pi, v \rightarrow f(x) d x(v)$

$$
x, v \rightarrow f(x) v
$$

$$
(x, r) \longrightarrow\left[g(r), g^{\prime}(g, r)\right.
$$

Rull-back of $\left.g_{\text {gurn }}^{g^{*}(f d t)}=f(g \mid s)\right] g^{(s)} d s$
or R
don't integrate functrons
Integrate 1- forms

$$
\begin{aligned}
& \int_{\text {ame }} \text { in } \mathbb{R}^{k} \\
& {\text { " } B_{0} x^{\prime \prime}}^{D}=I^{k} \\
& \int_{D} f\left(x_{n}\right) d d y n \\
& \int_{D} f\left(x_{1}-x_{n}\right) d x \cdot d / n
\end{aligned}
$$

hetrally infegral of a k - form.
2.fom

$$
\begin{aligned}
& \square
\end{aligned}
$$

over $[a, b]$ integrote $1-$ for $f(t)$ at

$$
\begin{aligned}
\text { or }\left[a_{1}, b_{1}\right) \times\left[a_{1}, b_{2}\right] \text { infe, } & 2-\text { form } \\
\vdots & f\left(t_{1}, t_{2}\right) d t_{11} d t_{2} \\
{\left[a_{1}, b_{1}\right] \times\left[a_{n}, b_{1}\right] \cdots } & 1 \text {-form }
\end{aligned}
$$

$$
d t ; 1 \cdots 1 d t_{n}
$$

$$
d t_{1} \wedge d t_{2}=-d t_{2} d t_{1} \quad \text { orientetion. }
$$

$$
\iint f\left(\epsilon_{1}, \epsilon_{2}\right) d t_{1} d t_{2}
$$

$$
\text { q- fon } f\left(t_{1}, t_{2}\right) \xrightarrow{d t_{1} \wedge d t_{2}}
$$

Erea + ownano

$$
d t_{1} \wedge d t=-d t_{2} \wedge d t
$$

$\xrightarrow{c_{2}} e_{1}^{\infty} \xrightarrow{\infty}$

\qquad

Pull-back of differential forms

- Write $A^{1}(U)$ for the collection of smooth one-forms on U.
- If $V \subset \mathbb{R}^{n}$ is open and $f: V \rightarrow U$ is smooth, define the pull-back

$$
f^{*}: A^{1}(U) \rightarrow A^{1}(V)
$$

by

$$
\left(f^{*} \omega\right)_{x}(v)=\omega_{f(x)}\left(d_{x} f(v)\right)
$$

Change of variables for double m.

$$
\begin{aligned}
& \operatorname{sanh} \underset{J_{2}}{\left[e_{2}, b_{1}\right]_{x}\left[c_{2}, d_{2}\right]} \xrightarrow{\Phi} \frac{\left(a_{1}, b_{1}\right] \times\left[a_{2} h\right]}{I_{2}} \\
& T_{2} \int_{I_{2}} f\left(t_{1} t_{2}\right) d t_{1} d t_{2}=\iint_{I_{1}} f\left(\Phi\left(x_{1}, m_{2}\right)\right)
\end{aligned}
$$

ser able cha..

$$
\begin{aligned}
& t_{1}=t_{1}\left(u_{1} u_{2}\right) \quad d t_{1}=\frac{\partial t_{1}}{\partial u_{1}} d u_{1}+\frac{\partial t_{\pi}}{\partial u_{2}} d u_{2} \\
& t_{2}=t_{2}\left(x_{2}-2\right) \\
& d f_{2}=\frac{\partial t_{2}}{\partial u_{1}} d u_{1}+\frac{\partial f_{2}}{\partial a_{2}} d u_{2} \\
& d t, \operatorname{adt}=(1) \\
& d u_{1} \wedge d u_{2} \\
& =-d u_{1} d u_{s} \\
& d u_{1}+d_{1}=-d u_{n} x \alpha_{1}=0 \\
& \frac{\partial t_{1}}{\partial m_{1}} \frac{\partial t_{2}}{\partial x_{2}} \partial u_{1} n d u_{1}+\frac{\partial t_{1}}{\partial u_{1}: \partial t_{2}} d u_{2} d x_{1} \text { cm } \\
& \frac{\partial f_{1}}{\partial u_{2}} \frac{d r_{2}}{\partial u_{1}} \cdot d u_{2} d u_{1}+\left({ }^{2}\right) d u_{n} d r_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{d t_{1}}{\partial u_{1}} & \frac{a_{1} f_{2}}{\partial u_{2}} \\
-\frac{d t_{1}}{\partial u_{2}} & \frac{\partial u_{2}}{\partial u_{1}}
\end{array}\right) \cdot d u_{1} 1 d u_{2} \\
& \left(\begin{array}{ll}
\frac{\partial t_{1}}{\partial u_{1}} & \frac{\partial t_{1}}{\partial u_{2}} \\
\partial t_{2} & \frac{\partial t_{2}}{\partial u_{2}}
\end{array}\right)
\end{aligned}
$$

Wrthout thash:
in $n^{\prime} \quad d x_{i, 1 \sim-1} d x_{i c}$

$$
d x_{c} \wedge d x_{c_{c}}=-d x_{j_{j}}, d x_{x_{c}}
$$

Cecometric picture

bosed atac
intervals ${ }^{\text {in in }} R^{P}$ parallecu. in \mathbb{R}^{3}
in $\mathbb{R}^{x} \quad v_{11}-v_{k} \operatorname{lin}$ inder vects.
"parillelink-4 $P\left(v_{1}, \ldots v_{k}\right)$

$$
\begin{aligned}
& \Rightarrow P\left(v_{1}, \cdots v_{k}\right) \\
& =\left\{t_{1} v_{1}+t_{2} v_{2}+t_{4} v_{k}, c c t_{c} \leq 1\right\}
\end{aligned}
$$

"pursir"
pernts

$$
\sqrt{1,2}-\sqrt{h}
$$

ene Gy sende hearen
area

Grassmann (tls
expedrent to derme it in terms gt an ON besis e_{1}, \cdots, l_{m} for $R^{x}=x^{N} R^{2}$
from these the symbts

F R R R R^{2}
they suggest how to defene
moltiplization

- In terms of components, choose coordinates
- $\left(t_{1}, \ldots, t_{m}\right)$ for \mathbb{R}^{m}, basis $\bar{e}_{1}, \ldots, \bar{e}_{m}$ dual to $d t_{1}, \ldots d t_{m}$
- $\left(x_{1}, \ldots, x_{n}\right)$ for \mathbb{R}^{n}, basis e_{1}, \ldots, e_{n} dual to $d x_{1}, \ldots d x_{n}$
- $f: V \rightarrow U$ given explicitly by $x=f(t)$, that is

$$
x_{i}=f_{i}\left(t_{1}, \ldots, t_{m}\right) \quad i=1, \ldots, n
$$

- Then

$$
f^{*}\left(d x_{i}\right)=d f_{i} \text { for } i=1, \ldots, n
$$

- more precisely, for all $t \in V$ have

$$
\left(f^{*}\left(d x_{i}\right)\right)_{t}=d_{t} f_{i}
$$

- Check definition

$$
\left(f^{*} d x_{i}\right)_{t}\left(\bar{e}_{j}\right)=\left(d x_{i}\right)\left(d_{t} f\left(\bar{e}_{j}\right)\right)=\frac{\partial f_{i}}{\partial t_{j}}(t)
$$

- This means

$$
\left(f^{*} d x_{i}\right)_{t}=\sum_{j=1}^{m} \frac{\partial f_{i}}{\partial t_{j}}(t) d t_{j}
$$

- In other words,

Back to Line Integrals

- Let
- U be open in \mathbb{R}^{n}
- ω be a smooth one-form on U.
- $\gamma:[a, b] \rightarrow U$ be a smooth curve.
- Then

$$
\gamma^{*} \omega(t)=\omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) d t
$$

- Define

$$
\begin{equation*}
\int_{\gamma} \omega=\int_{a}^{b} \gamma^{*}(\omega) \tag{2}
\end{equation*}
$$

- We recover a concise form of

$$
\int_{\gamma} \omega=\int_{a}^{b} \omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) d t
$$

- Which in turn was a concise form of

$$
\int_{\gamma} \omega=\int_{a}^{b}\left(\sum_{i=1}^{n} p_{i}(\gamma(t)) \gamma_{i}^{\prime}(t)\right) d t
$$

Tndependence of Parametrization

- $\gamma:[a, b] \rightarrow U$ smooth curve.
- $\phi:[c, d]: \rightarrow[a, b]$ smooth, strictly increasing and surjective.
- $\tilde{\gamma}=\gamma \circ \phi:[c, d] \rightarrow U$
- Then for all $\omega \in A^{1}(U)$

$$
\int_{\tilde{\gamma}} \omega=\int_{\gamma} \omega
$$

Special Case: $\omega=d f$

- In this case

$$
\int_{\gamma} d f=\int_{a}^{b}\left(d_{\gamma(t)} f\right)\left(\gamma^{\prime}(t)\right) d t
$$

which by the chain rule and fundamental theorem of calculus is

$$
\int_{a}^{b} \frac{d}{d t}(f(\gamma(t)) d t=f(b)-f(a)
$$

- In other words, integral depends only on the endpoints of γ
- Loosely: "path independent".

Higher Dimensions

- For 1-dimensional integration in \mathbb{R}^{n} we made precise:
- Integrands: smooth one-forms $\omega \in A^{1}(U)$.
- Domains of integration: smooth maps $\gamma:[a, b] \rightarrow U$.
- Integral: $\int_{a}^{b} \gamma^{*} \omega=\int_{a}^{b} \omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) d t=\int_{a}^{b} f u n c(t) d t$.
- To define integral need pull-back of one-forms
- To prove integral independent of parametrization need change of variable formula for integrals.
- In higher dimensions we need the k-dimensional analogues.
- Start with domains of integration:
- Let I^{k} denote the cartesian product of k intervals:

$$
\begin{equation*}
\mathbf{I}^{k}=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right], \quad a_{i}, b_{i} \in \mathbb{R}, \quad a_{i}<b_{i} \tag{3}
\end{equation*}
$$

- Let $\sigma: \mathbf{I}^{k} \rightarrow \mathbb{R}^{n}$ be a smooth map
- $C \subset \mathbb{R}^{k}$ is compact,
- $f: C \rightarrow \mathbb{R}^{n}$ a map.
- Say f is smooth
there exists an open set $U \subset \mathbb{R}^{k}, C \subset U$, such that f extends to a smooth map $g: U \rightarrow \mathbb{R}^{n}$.
- Next define the integrands: smooth k-forms.
- Should be linear functions on a space that contains the tangent spaces to the images of the maps σ
- Given vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ linearly independent, want a way to manipulate the subspaces

$$
\begin{equation*}
\left\{t_{t} v_{1}+\cdots+t_{k} v_{k}: 0 \leq t \leq 1\right\} \subset \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

(the parallelipiped spanned by v_{1}, \ldots, v_{k}.)

The Grassmann Algebra

- For each $k, 1 \leq k \leq n$ want a symbol

that represents the parallelipiped (4).
- Operations on these symbols that reflect the geometry.
- Example:

$$
v_{2} \wedge v_{1} \wedge v_{3} \cdots \wedge v_{k}=-v_{1} \wedge v_{2} \cdots \wedge v_{k}
$$

reflecting change of orientation.

Define The Grassmann Algebra

- Start with $\sqrt[\mathbb{R}^{n}]{ }$ and an ON basis e_{1}, \ldots, e_{n}
- For each increasing sequence l of k integers
(道位 $\leq x$

$$
I=1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n
$$

define a symbol

$$
e_{1}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}
$$

- There are $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ such symbols.
by
- $\Lambda^{0}=\mathbb{R}$
- For $1 \leq k \leq n$, weds ar and er
$\Lambda^{k}=$ the \mathbb{R}-vector space with basis $\left\{e_{I}:\right.$ card $\left.(I)=k\right\}$
$-\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$
- $\Lambda^{1}=\mathbb{R}^{n}$ with basis e_{1}, \ldots, e_{n}

$$
\begin{aligned}
& \mathbb{R}=0 \quad \mathbb{R} \quad e_{\phi}=1 \\
& h=1 \quad e_{1, \ldots, e_{n}} \quad \mathbb{R}^{2} \\
& h=2 \quad\left\{e_{c i n j}: c^{2} \dot{j}\right\} \quad e_{1} \wedge e_{2} e_{1} n e_{3} \text {-eng } \\
& \text { ernes. - } \\
& \binom{x}{x} \rightarrow \quad\left(\quad\binom{x}{e}=\frac{x(x-1)}{2}\right. \\
& k=n \quad e_{1}, \ldots 1 e_{n} \\
& \text { Wat: } e_{i} 1 e_{y} \text { re- } e_{j} \cdot 1 e_{1} \\
& \Rightarrow e_{\text {col }}=0 \quad \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& e_{1} 1 e_{2} \text { knuw e } \\
& \text { sthe } e_{2} \wedge e_{1}=-e, n e_{c} \\
& e, 1 e, n e,<0 \\
& \frac{e_{2} e_{9} e_{1}}{1}=-e_{2 n} e_{1} n e_{9}=+e_{1 n} e_{129} \\
& e_{c i} \cdots 1 e_{c_{i n}} \text { foar }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sum_{I \operatorname{mon}} a_{I} e_{I}\right) \sim\left(\sum_{j n c} b_{J} e_{\delta}\right) \\
& \text { c.c.ch } \\
& J=g-\infty \\
& 8.40^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon(5, J)=\left\{\begin{array}{c}
0 \text { if InJ } f \phi \\
\operatorname{signc}
\end{array}\right. \\
& \{131\{20\} \\
& \text { hem }
\end{aligned}
$$

$$
\begin{aligned}
& L_{1},-, i_{h}, \text { ji - }- \text { de } \\
& \text { - Cucunesner } \\
& e(43),(2,5)=-1 \\
& \text { parallel.nme } P\left(v_{1},->v_{n}\right) \text {. } \\
& v_{1} \wedge-1 v_{k} \text { repenses } \\
& \text { in } R^{s} e_{1, e_{2}}^{L=0} \\
& \angle_{C l}^{\text {erise }}
\end{aligned}
$$

h wh $v_{11} \ldots, v_{h}$ represtat a $P\left(n-1 v_{4}\right)$
$v_{1} n-n v_{h}=v_{1} n \cdots v_{x}$ diffeat nots

lie in the same h-dm sulte of \mathbb{R}^{2}, hare sene velue.

$$
\begin{aligned}
& \left(e_{e_{e}^{1}-1 e_{e}}\right) \xrightarrow{e_{1}^{e_{2}}} \\
& e_{1}, a_{9}+e_{2} \\
& \left\|\sum a_{r} e_{r}\right\|=\sqrt{\sum a_{ \pm}^{2}} \\
& \left\|v_{1} \cap-1 v_{k}\right\|=\text { volame of } P\left(v_{1},-v_{k}\right) \\
& k=1 \quad\left\|v_{1}\right\|=\ln \mu \quad v_{1} \\
& h=2 \quad\left\|v_{1} v_{2}\right\| \\
& \left(\begin{array}{cc}
a_{11} & a_{2} a_{2} \\
a_{u} & a_{1}
\end{array}\right) \begin{array}{l}
v_{1}=a_{11} e_{1}+a_{2} e_{2} \\
v_{2}=a_{12} e_{1}+a_{2} \varepsilon
\end{array} \\
& v_{1} \wedge v_{2}=\left|\begin{array}{ll}
a_{1} & a_{12} \\
a_{4} & a_{22}
\end{array}\right| e_{1} n e_{2} \\
& \text { (二) } \quad\left(\begin{array}{c}
a_{11}, u_{1} \\
1-1 \\
c_{1}, a_{1}
\end{array}\right) \quad \begin{array}{l}
v_{1}=a_{11} e_{1}+a_{21} e_{2} \ldots+a_{21} e_{n} \\
v_{2}=a_{k 2} e_{1}+a_{2} e_{2}-a_{21} e_{2}
\end{array} \\
& e_{1} \wedge e_{2} \\
& v_{1} \wedge v_{2}=\sum_{i, j}\left(1 e_{c} A e_{1}\right. \\
& \sum_{i<\gamma}\left|\begin{array}{ll}
a_{41} & a_{i / 2} \\
a_{d,} & o_{d, 2}
\end{array}\right| e_{l n}, c_{1}
\end{aligned}
$$

$$
A^{\prime}=\text { vetm }=R^{2}
$$

$$
\begin{aligned}
& e_{i} \text { rejuly } i<j^{\circ}<k \text { bass } \\
& e_{2} 1 c_{1} 1 e_{3}=-e_{1} 1 e_{2} 1 e_{3} \\
& =0 e_{61 e_{5} 1 e_{1} \wedge e_{1}} \\
& e_{2}+e_{6}+e_{5}+e_{1} \\
& \text { - } e_{2} 2 e_{51} e_{6} 1 e_{1} \\
& \text { (} \lll \lll 1 \\
& \left\{e_{i=1} e_{j}<e_{k} i c c_{j}<k\right\} \text { bess } \\
& \left(\sum_{i<j} a_{i j} e_{v i e_{j}}\right)_{1}\left(\bar{\sum} b_{e} e_{e}\right) \\
& =\sum_{(L \beta j), l} a_{i j,} b_{e} e_{\sigma} \tau_{0}, e_{e} \\
& e_{i}, e_{j}=-e_{1} e_{r} \\
& e_{1}+e_{i}=0 \\
& \text { (} a_{12} e_{1} 1 e_{21}+\underline{a_{13}} e_{1} 1 e_{3}+a_{14} e_{1 n e_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& -a_{13} b_{2} e_{1 r e} e_{3} \\
& \sum_{i<j 2 k} c_{i j k} e_{i} \wedge e_{j} 1 e_{k} \\
& I=i_{1}, \cdots i_{n} \\
& c_{c}<\cdots c_{e} \\
& \underline{J}=j_{1}<\cdots \dot{k} \\
& e_{I}=e_{\text {じ }} 1 \ldots-\mu \\
& e_{J}, e_{J}^{r_{J}}=0 \text { if } \frac{\operatorname{InJ} \neq \phi}{\varepsilon(J, J) \cdot \frac{I_{1} J \rightarrow K}{\text { coucutenation op } I_{l} \sigma}} \\
& k+\varepsilon \quad i_{1}, i_{2}, \ldots i_{k}, j_{1}, Q_{2} \ldots \\
& \text { Prity demat } \forall \pm=5
\end{aligned}
$$

\mathbb{R}^{4}

$$
\begin{aligned}
& \sum_{I J J} a^{a_{N} b_{J} \underbrace{e_{J}+e_{J}}_{c \cos J}} \\
& k=k\left(I_{1}\right) \\
& \text { - } 0 \text { 上の丁取 } \\
& \text { Ever }(5,0) \\
& \left(e_{1}, r e_{3}, e_{1}\right)+\left(e_{2}, e_{1}\right) \\
& \text { tan onouls are. } \\
& =e_{1} \sqrt{l_{3}} \sqrt{1 e_{1}} \hat{i e} \dot{e}_{2} n e_{1} \\
& =e_{1} a e_{1} \text { a } e_{5} r e_{1} 1 e_{p} \\
& =e_{1} a e_{2}+e_{4} 1 e_{5}+e_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Want vector } v_{1} \rightarrow v_{n} \text { in } \mathbb{R}^{x}=\Lambda^{1} \mathbb{R}^{2} \\
& v_{1} \text { a } \ldots v_{k} \in X^{k} \mathbb{R}^{n} \text { is now che } \\
& v_{1} t \cdots n v_{k}=0 \Leftrightarrow\left\{v_{1, \cdots}, v_{k}\right\} \text { lin deli } \\
& \text { fore } \sqrt{1,-y} \sqrt{x} \neq \sigma \nLeftarrow\{3 \text { inclewei } \\
& t_{1} v_{1}+t_{2} v_{2}++t_{2} \sqrt{k} \quad \sigma \leq t_{1} \leq 1 \\
& \text { < } \\
& v_{1}, v_{2} \quad t_{1}+t_{2} \sqrt{n} \\
& \left(v_{1}+a v_{2}\right) v_{2}=v_{1} 1 v_{2}+G v_{1} \sin \\
& =v i n \sqrt{2}
\end{aligned}
$$

Product

- If $I=\left\{i_{1}<\cdots<i_{k}\right\}$ as above, write $|I|=k$
- If $|I|=k$ and $|J|=I$, define $e_{l} \wedge e_{J}$ by

$$
e_{I} \wedge e_{J}=\left\{\begin{array}{l}
0 \text { if } I \cap J \neq \emptyset \tag{5}\\
\varepsilon(I, J) \\
e_{K} \text { if } I \cap J=\emptyset .
\end{array}\right.
$$

- K and $\varepsilon(I, J)$ defined as follows:
- Let $I \cup J$ denote the sequence $\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots j_{l}\right\}$
- K is the sequence $I \cup J$ arranged in increasing order.
- $\varepsilon(I, J)$ is the sign of the permutation that takes $I \cup J$ to K.
- This determines a product

$$
\Lambda^{k} \times \Lambda^{\prime} \rightarrow \Lambda^{k+1}
$$

- If $a=\sum_{l} a_{l} e_{l}$ and $b=\sum_{J} b_{J} e_{J}$, then

$$
a \wedge b=\sum_{l, J} a_{l} b_{J} e_{l} \wedge e_{J}
$$

- This sum can be rewritten, using the definition of $e_{l} \wedge e_{J}$ above, as

$$
\sum_{K} c_{K} e_{K}
$$

This is $a \wedge b$.

- Multiplication is associative

$$
(a \wedge b) \wedge c=a \wedge(b \wedge c)
$$

- Distributive law holds

$$
(a+b) \wedge c=a \wedge c+b \wedge c
$$

- If $a \in \Lambda^{k}$-and $b \in \cdot \Lambda^{\prime}$, then
$b \wedge a=(-1)^{k l} a \wedge b$
- $\Lambda^{k}\left(\mathbb{R}^{n}\right)$ has an inner product, with $\left\{e_{l}:|I|=k\right\}$ as ON basis.
- The corresponding norm is

$$
|a|=\left|\sum_{l} a_{i} e_{l}\right|=\sqrt{\sqrt{\sum_{l}} a_{l}^{2}}
$$

- If $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly independent, then

$$
v_{1} \wedge \cdots \wedge v_{k} \in \Lambda^{k}\left(\mathbb{R}^{n}\right)
$$

represents the oriented parallelipiped (4)

$$
\left\{t_{1} v_{1}+\cdots+t_{k} v_{k}: 0 \leq t_{i} \leq 1\right\}
$$

- The norm

$$
\left|v_{1} \wedge \cdots \wedge v_{k}\right|
$$

is the k-dimensional volume of the parallelipiped.

Reality check

- v_{1}, \ldots, v_{k} are linearly independent and $w=$ linear combination of v_{2}, \ldots, v_{k}, then

$$
v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}=\left(v_{1}+w\right) \wedge v_{2} \wedge \cdots \wedge v_{k}
$$

- Same is true for volume

- Example: for $k=2$

$$
v_{1} \wedge v_{2}=\left(v_{1}+\alpha v_{2}\right) \wedge v_{2} \text { for all } \alpha \in \mathbb{R}
$$

- Picture for area:
- For $k=n$, if $v_{i}=A e_{i}$ for $i=1, \ldots, n$ then

$$
v_{1} \wedge \cdots \wedge v_{n}=\operatorname{det}(A) \boldsymbol{e}_{1} \wedge \cdots \wedge \boldsymbol{e}_{n}
$$

- Known $|\operatorname{det}(A)|=$ volume of parallelipiped.
- If $k=2$, let

$$
A=\left(\begin{array}{cc}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2} \\
\ldots & \ldots \\
a_{n, 1} & a_{n, 2}
\end{array}\right)
$$

- Let $v_{1}=\sum_{i} a_{i, 1} e_{i}$ and $v_{2}=\sum_{i} a_{i, 2} e_{i}$
- Check

$$
v_{1} \wedge v_{2}=\sum_{i<j}\left|\begin{array}{ll}
a_{i, 1} & a_{i, 2} \\
a_{j, 1} & a_{j, 2}
\end{array}\right| e_{i} \wedge e_{j}
$$

- For $k=n=2$ get
$v_{1} \wedge v_{2}= \pm$ area of parallelogram $\left\{t_{1} v_{1}+t_{2} v_{2}: 0 \leq t_{i} \leq 1\right\}$
- equivalently

$$
v_{1} \wedge v_{2}=\operatorname{det}(A) e_{1} \wedge e_{2}
$$

- equivalently

$$
|\operatorname{det}(A)|=\text { area of parallelogram }
$$

- For $k=2$ and $n=3$ get $v_{1} \wedge v_{2}$ is the sum

$$
\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right| e_{1} \wedge e_{2}+\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{3,1} & a_{3,2}
\end{array}\right| e_{1} \wedge e_{3}+\left|\begin{array}{ll}
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2}
\end{array}\right| e_{2} \wedge e_{3}
$$

- This looks like the cross product $v_{1} \times v_{2}$

$$
\left(\left|\begin{array}{ll}
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2}
\end{array}\right|,-\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{3,1} & a_{3,2}
\end{array}\right|,\left|\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right|\right)
$$

- In any case, the two vectors have the same magnitude:

$$
\left|v_{1} \wedge v_{2}\right|=\widehat{\left|v v_{1} \times v_{2}\right|}
$$

- So the new formula $\left|v_{1} \wedge v_{2}\right|$ and the old formula $\left|v_{1} \times v_{2}\right|$ for the area of the parallelogram agree.
- Similarly one can check the case $k=n=3$

$$
\left|v_{1} \wedge v_{2} \wedge v_{3}\right|=|\operatorname{det}(A)|=\left|\left(v_{1} \times v_{2}\right) \cdot v_{3}\right| \text { etc }
$$

for the volume of the parallelipiped.

General Formula

- The cases already discussed:
- $k=1, n$ arbitrary
- $k=2, n$ arbitrary, particularly $n=3$,
- $k=n$, particularly both $=3$.
are the most common
- General formula:

If for $j=1, \ldots, k, v_{j}=\sum_{i=1}^{n} a_{i, j} e_{i} \in \Lambda^{1}\left(\mathbb{R}^{n}\right)$, then $v_{1} \wedge \cdots \wedge v_{k}$ is given by

$$
\sum_{i_{1}<\cdots<i_{k}}\left|\begin{array}{ccc}
a_{i_{1}, 1} & \ldots & a_{i_{1}, k} \tag{6}\\
\ldots & \ldots & \ldots \\
a_{i_{k}, 1} & \ldots & a_{i_{k}, k}
\end{array}\right| e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}
$$

Differential k-forms in $\mathbb{R}^{n}(k \leq n)$

- k-dimensional integrands in \mathbb{R}^{n} are the differential k-forms.
- $U \subset \mathbb{R}^{n}$ open.
- A (smooth) differential k - form on U is smooth function

$$
\omega: U \times \Lambda^{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}
$$

written $\omega_{x}(w)$ for $x \in U$ and $w \in \Lambda^{k}$, which is smooth in x and linear in w.

- Notation: $A^{k}(U)=\{\omega: \omega$ smooth k - form on $U\}$
- If e_{1}, \ldots, e_{n} is an ON basis for \mathbb{R}^{n}, ω is determined by the $\binom{n}{k}$ functions

$$
a_{l}(x)=\omega_{x}\left(e_{l}\right)
$$

for all $I=\left\{i_{1}<\cdots<i_{k}\right\}$.

- Write $e_{I}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ for the basis elements of Λ^{k}
- Write $d x^{\prime}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ for the dual basis of $L\left(\Lambda^{k}, \mathbb{R}\right)$.
- Then

$$
\omega=\sum_{l} a_{l}(x) d x^{\prime}
$$

- Explicitly

$$
\begin{equation*}
\omega=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}}(x) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \tag{7}
\end{equation*}
$$

- Let $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation $\left(A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right)$
- Define the associated linear transformation

$$
\Lambda^{k} A: \Lambda^{k}\left(\mathbb{R}^{m}\right) \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right)
$$

by

$$
\Lambda^{k} A\left(e_{l}\right)=A e_{i_{1}} \wedge A e_{i_{2}} \wedge \cdots \wedge A e_{i_{k}}
$$

- Also called the induced linear transformation.
- Often it's easier to say that $\Lambda^{k} A$ is defined by

$$
\wedge^{k} A\left(v_{1} \wedge \cdots \wedge v_{k}\right)=A v_{1} \wedge \cdots \wedge A v_{k}
$$

for all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$.

- Since

$$
\left\{v_{1} \wedge \cdots \wedge v_{k}: v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}\right\}
$$

spans $\Lambda^{k}\left(\mathbb{R}^{m}\right), \Lambda^{k} A$ is determined by these values.

- To know that the definition makes sense, that is, $A v_{1} \wedge \cdots \wedge A v_{k}$ depends just on $v_{1} \wedge \cdots \wedge v_{k}$, need

$$
v_{1} \wedge \cdots \wedge v_{k}=0 \Rightarrow A v_{1} \wedge \cdots \wedge A v_{k}=0
$$

- This is equivalent to
v_{1}, \ldots, v_{k} linearly dependent
$A v_{1}, \ldots, A v_{k}$ linearly dependent
- Clear

Pull-back

- $V \subset \mathbb{R}^{m}, U \subset \mathbb{R}^{n}$ open sets
- $f: V \rightarrow U$ smooth map
- Pull-back $A^{k}(U) \rightarrow A^{k}(V)$ is defined by

$$
\left(f^{*} \omega\right)_{t}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\omega_{f(t)}\left(d_{t} f\left(v_{1}\right) \wedge \cdots \wedge d_{t} f\left(v_{k}\right)\right)
$$

for all $t \in V$ and for all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$

- More concisely

$$
\left(f^{*} \omega\right)_{t}=\omega_{f(t)} \circ \Lambda^{k} d_{t} f
$$

for all $t \in V$.

- In terms of coordinates $t=\left(t_{1}, \ldots, t_{m}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$
- $x=f(t)=\left(f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right)$
- $\omega=\sum_{l} a_{l}(x) d x^{\prime}=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1}, \ldots, i_{k}}(x) d x_{i_{1}} \wedge \ldots d x_{i_{k}}$
- Then

$$
\begin{equation*}
f^{*} \omega=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}}(f(t)) f^{*}\left(d x_{i_{1}}\right) \wedge \cdots \wedge f^{*}\left(d x_{i_{k}}\right) \tag{8}
\end{equation*}
$$

- Using (1), this can be rewritten as

$$
\begin{equation*}
f^{*} \omega=\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, j_{k}}(f(t))\left(d_{t} f_{i_{1}}\right) \wedge \cdots \wedge\left(d_{t} f_{i_{k}}\right) \tag{9}
\end{equation*}
$$

- Writing $d f_{i}=\sum_{j=1}^{m} \frac{\partial f_{i}}{\partial t_{j}} d t_{j}$ and expanding $d f^{\prime}$ in the same manner as (6) we get an explicit expression for $f^{*} \omega$ as a sum

$$
\sum_{J} c_{J}(t) d t^{J}
$$

- Perhaps more useful than an explicit but complicated formula is to observe the multiplicative properties of f^{*}.
- If $a: U \rightarrow \mathbb{R}$ is a smooth function, that is, $a \in A^{0}(U)$, let

$$
f^{*}: A^{0}(U) \rightarrow A^{0}(V)
$$

be defined by

$$
\left(f^{*} a\right)(t)=a(f(t))
$$

- Then (8) says

$$
f^{*}\left(\sum_{l=i_{1}<\cdots<i_{k}} a_{l} \wedge \cdots \wedge d x_{i_{k}}\right)=\sum\left(f^{*} a_{l}\right)\left(f^{*} d x_{i_{1}}\right) \wedge \cdots \wedge\left(f^{*} d x_{i_{k}}\right)
$$

- Suggests the following
- There is a product

$$
L\left(\Lambda^{k}, \mathbb{R}\right) \times L\left(\Lambda^{\prime}, \mathbb{R}\right) \rightarrow L\left(\Lambda^{k+\prime}, \mathbb{R}\right)
$$

defined just as in (5) using the dual basis $d x^{\prime}$ rather than $e_{\text {I }}$

- Induces a product $A^{k}(U) \times A^{\prime}(U) \rightarrow A^{k+\prime}(U)$.
- If $\omega \in A^{k}(U)$ and $\eta \in A^{\prime}(U)$, then $\omega \wedge \eta \in A^{k+\prime}(U)$.
- If $f: V \rightarrow U$ is smooth, then

$$
\begin{equation*}
f^{*}(\omega \wedge \eta)=\left(f^{*} \omega\right) \wedge\left(f^{*} \eta\right) \tag{10}
\end{equation*}
$$

Some properties of pull-back

- $f^{*}(\omega \wedge \eta)=f^{*}(\omega) \wedge f^{*}(\eta)$ as above
- $f^{*}\left(\omega_{1}+\omega_{2}\right)=f^{*} \omega_{1}+f^{*} \omega_{2}$
- $f: V \rightarrow U$ and $g: W \rightarrow V$ smoooth maps of open sets. then

$$
(f \circ g)^{*}=g^{*} \circ f^{*}: A^{k}(U) \rightarrow A^{k}(W)
$$

Integration over k-cells

- Let $D=\mathbf{I}^{k}$ be a k-cell as in (3)
- Let $\alpha \in A^{k}(D)$ be a smooth k-form.
- Then

$$
\alpha=\phi(t) d t_{1} \wedge \cdots \wedge d t_{k}
$$

for some smooth $\phi: D \rightarrow \mathbb{R}, t=\left(t_{1}, \ldots, t_{k}\right)$

- Define

$$
\int_{D} \alpha=\int_{D} \phi(t) d t_{1} \ldots d t_{k}
$$

the Riemann integral of ϕ over $D=\mathbf{I}^{k}$.

- If $\sigma: D \rightarrow U$ is smooth and $\omega \in A^{k}(U)$, define

$$
\int_{\sigma} \omega=\int_{D} \sigma^{*}(\omega)
$$

- Would like $\int_{\sigma} \omega$ to be independent of parametrization.
- This means that if E is another k-cell and

$$
\Phi: E \rightarrow D
$$

is smooth, bijective, $\operatorname{det}(d \Phi)>0$ everywhere on E, then

$$
\int_{\sigma \circ \Phi} \omega=\int_{\sigma} \omega
$$

- This follows from the change of variables formula
- If $\Phi: E \rightarrow D$ and $\alpha \in A^{k}(D)$ as before, then

$$
\int_{E} \Phi^{*} \alpha=\int_{D} \alpha
$$

- More usual formulation:
- If $\alpha=a(t) d t_{1} \wedge, \cdots \wedge d t_{k}$ then

$$
\int_{E} a(\Phi(t))\left|\operatorname{det}\left(d_{t} \Phi\right)\right| d t_{1} \ldots, d t_{k}=\int_{D} a(t) d t_{1} \ldots d t_{n}
$$

- Note how the absolute vaue $|\operatorname{det}(d \Phi)|$ appears, rathen than $\operatorname{det}(d \Phi)$. Results from orientation.

