Foundations of Analysis II Week 1

Domingo Toledo

University of Utah

Spring 2019

Spaces of Continuous Functions

- X metric space
- $\mathcal{C}(X)=\{f: X \rightarrow \mathbb{R} \mid f$ bounded and continuous $\}$
- Norm;|f||$\}=\sup _{x \in X}\{|f(x)|\}$

norm normed vector space

$$
V=\begin{gathered}
\text { vector space } \\
\text { Cover } \mathbb{R})
\end{gathered} \quad\left(\text { ex } \mathbb{R}^{n}\right)
$$

$$
\begin{array}{ll}
v \in V & v+w \\
d \in \mathbb{R} & d w
\end{array}
$$

$C(X)$ is a abe shes. "becorty $\in f: x \rightarrow \mathbb{R}$
$\psi^{\mathbb{R}}{ }_{6} C^{C(x)}$ Hah" Constant hum

$$
\alpha, f^{6} \rightarrow(\alpha f) \in C(x)
$$

Pet

$$
f, g \rightarrow f+g
$$

norm on $V \rightarrow \mathbb{R}$

$$
v \rightarrow\|v\|
$$

i) $\|v\| z 0,=0$

$$
\Leftrightarrow v=0
$$

2) $\|\alpha v\|=|\alpha| \| v \mid)$
3) $\|v+w-\| \leq\|v\|+\|w-\|$

$$
E x: \mathbb{R}^{x}
$$

$C(x)$

Theorem

$$
\mathcal{C}(X) \text { is a complete metric space. }
$$

$$
\begin{aligned}
& d:(f, g) \\
& =\|f--1\|
\end{aligned}
$$

Cauchiy sed \Rightarrow converaeros

$$
\begin{aligned}
& \text { Cavany }\left(\left\{f_{N}\right\} \text { sed fus } \forall \varepsilon>0 \quad \exists \mathrm{~N}\right. \text { sit. } \\
& m_{n}, n>N=\left(\mid f_{m}-f_{n} \|<\varepsilon\right) \\
& \Longrightarrow \quad \forall f \in C(x) \text { sto } \forall \varepsilon>0 \quad \exists \mathrm{~N} \text { sis } \\
& n \rightarrow N \Rightarrow\left\|f_{n}-f\right\|<q
\end{aligned}
$$

$$
\begin{aligned}
& f_{x} \rightarrow f \text { in }\|\| \\
& \Leftrightarrow f_{m} \rightarrow f \frac{\text { unifornly }}{\text { in } x} \\
& X \xrightarrow{f} \mathbb{R} \\
& {\left[f_{n}\right\} \text { ent feros }\left(i f_{n} S \operatorname{ci} C(x)\right)} \\
& f_{x} \rightarrow f \text { uniformly on } x \\
& \Rightarrow f \text { is con } l \text {. } \\
& f_{x} \rightarrow f \quad\left|f_{n}(x)-f(x)\right|<\varepsilon \text { ? } \\
& (f(x)-f(y))<\varepsilon \quad w \\
& \left\{f(y)-f(g) \mid \quad f_{m}(x)-f_{(x)}\right) \\
& =\left|f(x)-f_{x}(x)+f_{x}(x)-f(y)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon>0 \exists \bar{N} \text { s. } \epsilon_{0} \quad x>N \Rightarrow\left|f_{m}(x)-f(y)\right|<\varepsilon \\
& \text { cont of } f \text { at } x_{0} \\
& \text { Top-ove: } \forall \varepsilon>0 \quad 78 \quad\left|x-T_{0}\right|<8 \Rightarrow\left(f(\lambda)-f\left(x_{1}\right)<\varepsilon\right. \\
& \forall \varepsilon \text { rof } \mathcal{f} \text { si } x=N っ \mid f_{n}(x)-f(x)<\varepsilon \forall x \\
& \left|f(x)-f\left(x_{0}\right)\right|=\mid f(x)-f_{x}(x)+f_{x}(x)-f\left(x_{0}\right) \\
& +\widehat{f\left(x_{0}\right)-f_{n}}\left(v_{v}\right) \mid
\end{aligned}
$$

gurn $\varepsilon>0 \quad \exists s_{a}$ s.t. $\mid f(x)-f\left(x_{0}\right)$

$\left\{x^{n}\right\}$ on $(0,1)$
piwne lat
nt eant
\Rightarrow Cour nut unfor

$$
\begin{aligned}
& \xrightarrow[f_{n} \rightarrow f]{f_{n} \text { and }}[0,1] \\
& \Rightarrow \int_{0}^{1} f_{a}(x) d x \rightarrow \int_{0}^{1} f(x) d y
\end{aligned}
$$

$$
\int_{0}^{c}\left(f_{x}(x)-f(x)\right) d y
$$

LastTime:

Defined Normed Vector Space:

- Vector space V (over \mathbb{R}) and a function $V \rightarrow \mathbb{R}$, written $v \rightarrow\|v\|$ satisfying
$\|v\| \geq 0$ and $\|v\|=0 \Longrightarrow v=0$
- $\|\alpha v\|=|\alpha|\|v\|$ for all $\alpha \in \mathbb{R}$ and $v \in V$.
- For all $u, v \in V$

$\xrightarrow$$$
\stackrel{\|u+v\| \leq\|u\|+\|v\|}{ }
$$$$

- This gives a metric space V, d where

$$
d(u, v)=\|u-v\|
$$

Examples

- \mathbb{R}^{n} with any one of the following norms:

$$
\begin{gathered}
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \\
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
\end{gathered}
$$

- The space $\mathcal{C}(X)$ of bounded continuous functions on a metric space X, with norm

$$
\|f\|=\sup _{x \in X}\{|f(x)|\}
$$

Visualize norms on \mathbb{R}^{2}

- Norms determined by the
- Unit sphere $\{v:\|v\|=1\}$ or - Unit ball $\{v:\|v\| \leq 1\}$
- Picture in \mathbb{R}^{2} :

Cl mons on $\mathbb{R}^{n}\left(\varepsilon_{y} \mathbb{R}^{2}\right)^{10}$ ane equivaler
c $\|x\| \leq\|x\|, \leq c^{2} \| x / 2$

$$
\begin{aligned}
& \|v\|_{2}=1 \\
& \lim _{v_{2}=0} a c_{\infty} \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { fonite din vec } S p \\
& C[0,1] \text { ? aeartanm: }
\end{aligned}
$$

$$
\begin{aligned}
& v \rightarrow\|v\| \quad \text { equar } \\
& v-2\|v\|^{\prime} \\
& \exists \text { conkat } C_{d j} C^{\prime}>0 \\
& c\|v\| \leq \sqrt{\|v\|^{\prime}} \leqslant c^{\prime}\|v\| \\
& \forall v \in V \\
& \left\|v_{n}\right\|^{\circ} \rightarrow 0 \\
& \Rightarrow\left\|V_{n}\right\|^{\prime} \rightarrow 0 \\
& 0 \leq\left\|\sigma_{m}\right\|_{\frac{1}{b}}^{\prime} \leq c^{\prime} \| \frac{\tau_{2} \|}{\tau_{r}} \\
& N O H=\frac{1}{C} \| r a^{\prime} \\
& 0 \text { 的。 }
\end{aligned}
$$

EX Frud the best conrtht
for auy two ot

$$
\begin{aligned}
& \text { for any } \\
&\|\sigma\|_{1},\|v\|_{2},\|v\|_{2} \text { in } \mathbb{R}^{2} \\
&\left(\text { in } \mathbb{R}^{a}\right)
\end{aligned}
$$

selise is the perne

Spaces of Continuous Functions

- X metric space
- $\mathcal{C}(X)=\{f: X \rightarrow \mathbb{R} \mid f$ bounded and continuous $\}$
- Norm $||f||=\sup _{x \in X}\{|f(x)|\}$
- Theorem

A sequence $\left\{f_{n}\right\}$ in $\mathcal{C}(X)$ converges to $f \in \mathcal{C}(X)$
f_{n} converges to f uniformly on X.

Proof

$\Rightarrow t_{n} \rightarrow$ fin the norm of $\mathcal{C}(X) \Longleftrightarrow$

- For any $\epsilon>0$ there exists N so that

$$
\left\|f_{n}-f\right\|<\epsilon \text { for all } n>N
$$

$$
\Longleftrightarrow
$$

- For any $\epsilon>0$ there exists N so that

$$
\sup _{x \in X}\left|f_{n}(x)-f(x)\right|<\epsilon \text { for all } n>N \Longleftrightarrow
$$

- For any $\epsilon>0$ there exists N so that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \text { for all } n>N \text { and for all } x \in X
$$

which is the definition of uniform convergence.

$$
-f_{n} r f
$$

Theorem

$\mathcal{C}(X)$ is a complete metric space.

Proof:

- Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\mathcal{C}(X)$.
- $\forall \epsilon>0 \exists N$ such that $m, n>N \Rightarrow\left|f_{m}(x)-f_{n}(x)\right|<\left.\right|_{\epsilon}$.
- In particular,for each $x \in X,\left\{f_{n}(x)\right\}$ is a Cauchy sequence in \mathbb{R}, has a limit $f(x)$.
- Get a function $f: X \rightarrow \mathbb{R}$ so that $f_{n} \rightarrow f$ pointwise
- Need to prove convergence is uniform.

for ercha ew

$$
\begin{aligned}
& \mid \underline{f\left(x-f_{x}(x)\right.} \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Remark

This proof shows how powerful Cauchy's condition is:

Important Examples

- X compact metric space. Then

$$
\underset{\sim}{\mathcal{C}}(X)=\{f: X \rightarrow \mathbb{R} \mid f \text { continuous }\}
$$

(boundedness is automatic)

$$
-X=[0,1] \quad[a, b]
$$

$$
\text { - } X=\{1,2\}
$$

$$
x=\frac{\{1,2, \ldots, n\}}{C\left(\left\{x_{1},-, x_{2}, 1, \mathbb{R}\right)=\mathbb{R}^{n},\|r\|_{\infty}\right)}
$$

Space $\mathcal{C}\left(X,\left(\frac{Y}{2}\right)\right.$

- If Y is a metric space, can define $\mathcal{C}(X, Y)$
- If $f, g \in \mathcal{C}(X, Y)$, their distance is defined by

$$
D(f, g)=
$$

- Check this is a metric.

Functions on $\overline{\mathcal{C}([0,1])}$

- Is / continuous?
cont at θ

$$
\begin{aligned}
& \text { gen } \varepsilon=00^{-75} \frac{\operatorname{sh}\|f\|<\delta \Rightarrow|I(f)|<\varepsilon}{} \\
& \| f-g u<s \Rightarrow\left[\begin{array}{r}
(t)-I(v)<\varepsilon \\
+1
\end{array}\right. \\
& (I(f+g)) \\
& |I(f)-\Gamma(g)|=\iint_{0}^{1} f(x) d x-\int_{0}^{1} g(x) d x \mid
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equir Forthes) }=\left|\int_{0}^{1}(f(x)-g(x)) d x\right| \\
& \text { foref infug } \leq \int_{0}^{1}|f(x)-g(x)| d x
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{sun}\left|f(x)-g a_{1}\right| \\
& =\|f-g\| \\
& \underbrace{\| I(f)-I(g) \mid}_{\& C_{l}([0,2])} \leq \underbrace{\|f-g\|}_{|I(f)-\Sigma(f)| \leq 2\|-g\|}
\end{aligned}
$$

$$
\text { Define } B: C([0,1]) \rightarrow \mathcal{C}([0,1]) \text { by }_{\text {cont }}^{s=\varepsilon / C}
$$

- Is I continuous?

$$
\underline{\underline{\mathbf{I}}(f)}=\int_{0}^{\dot{x}} f(t) d t .=\begin{aligned}
& \text { indef } \\
& \text { in } b \\
& f
\end{aligned}
$$

$$
\begin{aligned}
& =2\left|\int_{0}^{1}(f(x)-g(t))^{c} d r\right| \\
& \leq \int_{0}^{r} d f(t)-g(t)(d x \\
& \text { E. } 11 \&-g \| \text { acre }
\end{aligned}
$$

PMen

$$
\text { daff } \Rightarrow \operatorname{con}
$$

$$
\begin{aligned}
& \begin{array}{l}
0 \leq r<1 \\
\sum \lambda f-g \|
\end{array} \\
& \forall r,|I(f)(x)-I(g)(x)| \leq\|f-g\| \\
& \Rightarrow \operatorname{sen} 1 \stackrel{\because}{\therefore}-1 \leq a f-5 t
\end{aligned}
$$

- Let $\mathcal{C}^{1}([0,1]) \subset \mathcal{C}([0,1])$ be the subspace of continuously diffféntiable functions, that is,
$\mathcal{C}^{1}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{R}: f^{\prime}\right.$ exists and is continuous $\}$
norm on $\mathcal{C}^{1}=$ restriction of norm on \mathcal{C}.
- Define $\mathbf{D}: C^{1}([0,1]) \Rightarrow \mathcal{C}([0,1])$ by

$$
\begin{aligned}
& C^{\prime} \text { cuntatoi } \\
& \forall \varepsilon=0 \quad f \delta z 0 \text { s } \in\|f\|<\delta \Rightarrow\left\|f^{\prime}\right\|<\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\text { Nijs }} \sqrt{ }^{\mathrm{Ns}} \Rightarrow\left(f^{\prime \prime}<\varepsilon\right.
\end{aligned}
$$

canna is
SAntalll
4
$\sin _{n}(x)=\frac{\sin n x}{\sqrt{\sqrt{n}}}$

$$
\begin{aligned}
f_{n}^{\prime}(x) & =\frac{x \sin x}{\sqrt{x}} \\
& =\frac{\sqrt{x} \cos x x}{} \\
-\left\|f_{x}^{\prime}(x)\right\| & \rightarrow \infty
\end{aligned}
$$

Change Norm
make- of cont.
nom on $C^{\prime}:\|f\|_{1}=\sin (\mathbb{F}(0))$

$$
\left.+\left|f^{\prime}(x)\right|\right\rangle
$$

Restutux

$$
\left.\begin{array}{l}
f_{\infty}^{\prime} \rightarrow f^{\prime}+n b \\
f_{n}(0) \rightarrow f(0)
\end{array}\right\} \Rightarrow f_{2} \rightarrow f+x
$$

Exercise: comparir norms in \mathbb{R}^{2}

Look Rodin Pf of 7.17
we fo' ant and me flousfitill

$$
\underset{i x-c^{2} e s}{g(x)}=\int_{0}^{\prime} g^{\prime}(w) d r
$$

Fexrcises

Draft

NArial Exercise
posted meat mon
Jan 14
Doe Jan 21

Fr cmt, diff

$$
\begin{aligned}
& f_{n}{ }^{\prime} \rightarrow \text { cosineverases enifants on }[0,1] \\
& \text { and } \left.f_{x}(0) \rightarrow \quad\left[\begin{array}{c}
f_{i x} a_{i n} x_{1}\left(x_{i}\right) \\
a_{i}
\end{array} f_{x}\left(x_{0}\right) \rightarrow f_{01}\right)\right] \\
& \text { Converges } \\
& =f_{n} \xrightarrow{\operatorname{sing}} f \\
& f_{n}^{\prime} \rightarrow f^{\prime}
\end{aligned}
$$

Rmk: of $f_{m}{ }^{\prime}$ are arnared Contimas
then shate fo uncy fond then of calcelen

$$
f_{x}^{i x^{2 n} g}
$$

$$
\frac{\int_{0}^{x} f_{n}^{\prime}(t) d t=\frac{f_{n}(x)-f_{n}(0)}{\int_{0}^{1} g(t) d t}}{\varepsilon_{\varepsilon_{0}}}
$$

$$
\begin{aligned}
& \int_{0}^{r}\left|f_{n}^{\prime}(t)-g(t)\right| d t \\
& \text { 巴 } \\
& \varepsilon>0 \quad \exists N \quad n>x \Rightarrow \frac{\left|f_{n}^{\prime}(t)-g(t)\right|<\varepsilon}{\forall t}
\end{aligned}
$$

Other norms on $\mathcal{C}([0,1])$

$$
\begin{aligned}
& \|f\|_{\mathbb{C}}=\int_{0}^{1}|f(x)| d x \\
& \|f\|(2)=\left(\int_{0}^{1}|f(x)|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

$$
-\quad\|f\|_{\infty}=\operatorname{san}_{x<x} l f(x) \|
$$

The p-Norms, $1 \leq p \leq \infty$

- General formula, if $1 \leq p<\infty$

$$
\begin{aligned}
& p=1 \\
& p=2
\end{aligned} \quad\|f\|_{p}=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}
$$

- and for $p=\infty$

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|
$$

- Similar formulas in $\mathbb{R}^{n}=\mathcal{C}(\{1, \ldots n\})$:
- Replace integrals by sums
- If $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
\|x\|_{p}=\left(\sum\left(\left|x_{1}\right|^{p}+\ldots\left|x_{n}\right|^{p}\right)\right)^{1 / p}
$$

- and

$$
\|X\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

- Picture for $n=2$

Figure: Unit Balls of p-norms in \mathbb{R}^{2}

- Figure shows, from inside out, $p=1,7 / 6,3 / 2,2,3,7, \infty$
- In \mathbb{R}^{n} (n an integer) all norms are equivalent.
- Example:

- Shows that $1 \leq\|x\|_{1} \leq 2$ on $\|x\|_{\infty}=1$
- Same:

$$
\|x\|_{\infty} \leq\|x\|_{1} \leq 2\|x\|_{\infty}
$$

on \mathbb{R}^{2}

- On $\mathcal{C}([0,1])$ have

$$
\|f\|_{1} \leq\|f\|_{\infty}
$$

- But no constant $C>0$ such that

$$
C\|f\|_{1} \leq \mid f \|_{\infty}
$$

Completeness?

Equicontinuity
Compact subsis)

$$
d C(x)
$$

- Definition
x ener, metor.
A subset (family) $\underset{\mathcal{F} \subset \mathcal{C}(X) \text { is equicontinuous } \Longleftrightarrow}{ } \Longleftrightarrow$

$$
\begin{aligned}
& \{f: \gamma \rightarrow \mathbb{R}\} \\
& \varepsilon, \delta, f, x, y
\end{aligned}
$$

$$
\begin{aligned}
& \forall \varepsilon r_{0} \text { vi } f s, \forall y=\therefore
\end{aligned}
$$

