QUIZZES AND MIDTERMS FOR MATH 2280 INTRODUCTION TO DIFFERENTIAL EQUATIONS

NICOLA TARASCA

Week 2

Problem. Suppose that a population $P(t)$ has birth rate $\beta=\frac{1}{1000} P$ and constant death rate δ.
i) Find the equilibrium solution;
ii) If $P(0)=100$ and $P^{\prime}(0)=8$, find $P(t)$;
iii) Will there be a population explotion? When?

Week 3

Problem. Consider the following differential equation

$$
\frac{d y}{d x}=y^{2}-9
$$

i) Find the critical points and determine whether each critical point is stable or unstable;
ii) Find $y(x)$ which satisfies the above differential equation together with the initial condition $y(0)=4$.

Week 4

Problem. Solve the following initial value problem

$$
\left\{\begin{array}{l}
y^{(3)}+6 y^{(2)}+9 y^{\prime}=0 \\
y(0)=0 \\
y^{\prime}(0)=0 \\
y^{(2)}(0)=9
\end{array}\right.
$$

Week 5 Super Quiz

Problem 1. Consider the following differential equation

$$
3 y^{(2)}-6 y^{\prime}+3 y=3 x e^{x} .
$$

i) Find the general solution of the associated homogeneous differential equation.
ii) Find the general solution of the above non-homogeneous differential equation.

Problem 2. Solve the following initial value problem

$$
\left\{\begin{array}{l}
x y^{\prime}=y \\
y(1)=5
\end{array}\right.
$$

Midterm 1

Problem 1. Find the solution of the following initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}=2 y \\
y^{\prime}=-2 x \\
x(0)=5 \\
y(0)=3
\end{array}\right.
$$

Problem 2. Find the general solution of the following differential equation

$$
y^{(3)}-8 y^{(2)}+16 y^{\prime}=e^{4 x} .
$$

Problem 3. Use the method of variation of parameters to find a particular solution of the following differential equation

$$
y^{(2)}-8 y^{\prime}+16 y=e^{4 x} .
$$

Problem 4. Find the solution of the following initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=e^{x-y} \\
y(0)=5
\end{array}\right.
$$

Week 9

Problem. Apply the method of undetermined coefficients to find a particular solution of the following system

$$
\left\{\begin{array}{l}
x^{\prime}=y+\sin (t) \\
y^{\prime}=x+2 \sin (t)
\end{array}\right.
$$

Week 11 Super Quiz

Problem 1. Find all critical points of the following system

$$
\left\{\begin{array}{l}
x^{\prime}=4 x-x^{2}-2 x y \\
y^{\prime}=3 y-2 x y+y^{2}
\end{array}\right.
$$

and investigate the type and stability of each.

Problem 2. i) Find the general solution of the following system

$$
\left\{\begin{array}{l}
x^{\prime}=x+y \\
y^{\prime}=3 x-y
\end{array}\right.
$$

ii) Find all critical points of the above system and investigate the type and stability of each.

Midterm 2

Problem 1. Use the method of undetermined coefficients to find a particular solution of the following system

$$
\left\{\begin{array}{l}
x^{\prime}=x-y+t e^{t} \\
y^{\prime}=2 x+y+2 t e^{t}
\end{array} .\right.
$$

Problem 2. Find all critical points of the following system

$$
\left\{\begin{array}{l}
x^{\prime}=y^{2}-1 \\
y^{\prime}=x^{2}-1
\end{array}\right.
$$

and investigate the type and stability of each.
Problem 3. Use Laplace transforms to solve the following initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}-4 x^{\prime}+13 x=13 \\
x(0)=x^{\prime}(0)=0
\end{array} .\right.
$$

Week 15 Quiz

Problem. Let $f(t)$ be the periodic function of period 1 defined by

$$
f(t)=\cos (\pi t)
$$

for $0<t \leq 1$.
a) Compute the Fourier series of $f(t)$.
b) What is the value of the Fourier series at the points $t \in \mathbb{Z}$?

Hint: Use the following equalities:

$$
\begin{aligned}
& \cos (A) \cos (B)=\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\
& \sin (A) \cos (B)=\frac{1}{2}(\sin (A+B)+\sin (A-B))
\end{aligned}
$$

Final Exam

Problem 1. Consider the following differential equation

$$
y^{(4)}+4 y^{(2)}=\sin (x) .
$$

i) Find the general solution of the associated homogeneous differential equation.
ii) Find the general solution of the above non-homogeneous differential equation.
iii) Find the solution of the above non-homogeneous differential equation satisfying the following initial conditions:

$$
y(0)=y^{\prime}(0)=0, \quad y^{(2)}(0)=4, \quad y^{(3)}(0)=-16 .
$$

Problem 2. Find all critical points of the following system

$$
\left\{\begin{array}{l}
x^{\prime}=x-3 x^{2}+8 x y \\
y^{\prime}=8 y-2 y^{2}-2 x y
\end{array}\right.
$$

and investigate the type and stability of each.
Problem 3. Use Laplace transforms to solve the following initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}-8 x^{\prime}+20 x=0 \\
x(0)=2 \\
x^{\prime}(0)=16
\end{array} .\right.
$$

Problem 4. Find formal Fourier series solutions of the following endpoint value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=t^{2}+1 \\
x^{\prime}(0)=x^{\prime}(\pi)=0
\end{array} .\right.
$$

