
QUIZZES AND EXAMS FOR MATH 1321
ACCELERATED ENGINEERING CALCULUS 2

NICOLA TARASCA

Week 1 Quiz

Find the value of c such that
∞∑
n=2

(1 + c)−n =
1

2
.(1)

Solution. Since the geometric series (1) converges, we have that∣∣∣∣ 1

1 + c

∣∣∣∣ < 1.(2)

We obtain
∞∑
n=2

(1 + c)−n =
∞∑
n=2

(
1

1 + c

)n
=

∞∑
n=0

(
1

1 + c

)n
−

1∑
n=0

(
1

1 + c

)n
=

1

1− 1
1+c

− 1− 1

1 + c

=
1

c(c+ 1)
=

1

2
.

Alternatively
∞∑
n=2

(1 + c)−n =
1

(1 + c)2

∞∑
n=0

(
1

1 + c

)n
=

1

(1 + c)2
· 1

1− 1
1+c

=
1

c(c+ 1)
=

1

2
.

In both cases, we deduce
c2 + c− 2 = 0.

Date: Fall 2013.
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This is an equation in c of degree 2: the two solutions are c = 1 and c = −2. Note
that the value c = −2 does not satisfy (2), indeed the series

∞∑
n=2

(1 + c)−n =
∞∑
n=2

(−1)−n

diverges. The only solution for (1) is c = 1. �

Week 2 Quiz

Test the following series for convergence or divergence
∞∑
n=1

n!

nn
.

What can you deduce about limn→∞
n!
nn ?

Solution. We use the ratio test. Let an := n!
nn . Then we have∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)!

(n+ 1)n+1
· n

n

n!

=
n!(n+ 1)

(n+ 1)(n+ 1)n
· n

n

n!

=
nn

(n+ 1)n

=

(
n

n+ 1

)n
=

(
1

1 + 1
n

)n
.

Hence

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
1

1 + 1
n

)n
=

1

limn→∞
(
1 + 1

n

)n
=

1

e
.

Since 1
e
< 1, we conclude that the series converges. Since the series converges, then

limn→∞ an = 0. �
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Week 3 Quiz

Use power series to compute the following limit

lim
x→0

1− cos(x)

1 + x− ex
.

Solution. Since we are considering values of x arbitrarily close to 0, we can replace
cos(x) and ex with the respective Maclaurin series. We have

cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!

= 1− x2

2!
+
x4

4!
− · · ·

and

ex =
∞∑
n=0

xn

n!

= 1 + x+
x2

2!
+ · · · .

Hence we have

lim
x→0

1− cos(x)

1 + x− ex
= lim

x→0

1−
∑∞

n=0(−1)n x2n

(2n)!

1 + x−
∑∞

n=0
xn

n!

= lim
x→0

1− (1− x2

2!
+ x4

4!
− · · · )

1 + x− (1 + x+ x2

2!
+ x3

3!
+ · · · )

= lim
x→0

x2

2!
− x4

4!
+ · · ·

−x2

2!
− x3

3!
− · · ·

= lim
x→0

x2

2!
(1− x2

12
+ · · · )

−x2

2!
(1 + x

3
+ · · · )

= lim
x→0
−

1− x2

12
+ · · ·

1 + x
3

+ · · ·
= −1.

�
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Week 4 Super Quiz

Problem 1. Find the Maclaurin series of sin−1(x) and its radius of convergence.

Hint: Use the following
d

dx
sin−1(x) =

1√
1− x2

.

Problem 2. Do the points A = (1, 3, 2), B = (3,−1, 6), C = (5, 2, 0), D = (3, 6,−4)
in R3 lie in the same plane?

Solution Problem 1. Using the binomial series, one has

(1− x2)−
1
2 =

∞∑
m=0

(
−1

2

m

)
(−x2)m

for |x| < 1. Using the hint, we deduce

sin−1(x) =

∫
1√

1− x2
dx

=

∫ ∞∑
m=0

(
−1

2

m

)
(−x2)mdx

=
∞∑
m=0

(
−1

2

m

)∫
(−x2)mdx

=
∞∑
m=0

(
−1

2

m

)
(−1)m

x2m+1

2m+ 1
.

Since the Maclaurin series of sin−1(x) is obtained integrating the binomial series, the
radius is 1.
Extra. Note that (

−1
2

m

)
=
−1

2
(−3

2
)(−5

2
) · · · (−2m−1

2
)

m!

= (−1)m
1 · 3 · 5 · · · (2m− 1)

2m ·m!
.

Hence the Maclaurin series for sin−1(x) can be simplified as

sin−1(x) =
∞∑
m=0

1 · 3 · 5 · · · (2m− 1)

2m ·m!

x2m+1

2m+ 1
.

�
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Solution Problem 2. The points A,B,C,D lie in the same plane if and only if the

vectors
−→
AB,
−→
AC,
−−→
AD lie in the same plane. We have

−→
AB = < 2,−4, 4 >
−→
AC = < 4,−1,−2 >
−−→
AD = < 2, 3,−6 > .

The above vectors lie in the same plane if and only if the following determinant∣∣∣∣∣∣
2 −4 4
4 −1 −2
2 3 −6

∣∣∣∣∣∣
is zero. One computes∣∣∣∣∣∣

2 −4 4
4 −1 −2
2 3 −6

∣∣∣∣∣∣ = 2(6 + 6) + 4(−24 + 4) + 4(12 + 2) = 0.

Hence the four points lie in the same plane. �

Week 5 Quiz

1) Find the equation of the plane which contains the point (0, 1, 2) and the line L
with parametric equation x = 1 + t, y = 1− t, z = 2t.

2) Find the vector equation of the line passing through the point (0, 1, 2) and
meeting the line L orthogonally.

Midterm 1

Problem 1. Find the radius of convergence and interval of convergence of the fol-
lowing series

∞∑
n=0

32n+1xn

(n+ 2)2
.

Problem 2. Use series to evaluate the following limit

lim
x→0

1− (1− 2x2)2013

ln(1 + 2x)− 2x
.

Problem 3. Let P1 = (3, 2, 0), P2 = (0,−1,−3) be two points in R3, and let L be
the line with parametric equation x = 1 + 2t, y = −2t, z = t− 2, with t ∈ R.

i) Show that the line L and the points P1, P2 are coplanar, and find the equation
of the plane containing L, P1, P2.
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ii) Find a vector equation of the line passing through P1 and meeting the line L
orthogonally.

Problem 4. Let z = z(x, y) be a function of two variables such that

x5 + x4y + y5 + xy2z2 + z5 = 5.

Use implicit differentiation to find the partial derivatives ∂z
∂x

and ∂z
∂y

.

Week 8 Quiz

Find the local maximum and minimum and saddle points of the following function:

f(x, y) =

(
x4

4
− x2

2
+

1

2

)
cosh(y).

Solution. Let us first find the set of critical points. The gradient of the function
f(x, y) is

∇f = 〈(x3 − x) cosh(y),

(
x4

4
− x2

2
+

1

2

)
sinh(y)〉.

Since cosh(y) is positive for all y, we have that fx = 0 if and only if x3 − x = 0.
This is a polynomial of degree 3 and the three roots are x = 0, x = −1, x = 1.
Plugging these values in fy, we see that for x ∈ {0,−1, 1} we have fy = 0 if and only
if sinh(y) = 0, that is, y = 0. We conclude that the critical points are (0, 0), (−1, 0)
and (1, 0).

The determinant of the matrix of second order partial derivatives of f is

Hf (x, y) :=

∣∣∣∣∣ (3x2 − 1) cosh(y) (x3 − x) sinh(y)

(x3 − x) sinh(y)
(
x4

4
− x2

2
+ 1

2

)
cosh(y)

∣∣∣∣∣
= (3x2 − 1)

(
x4

4
− x2

2
+

1

2

)
cosh2(y)− (x3 − x)2 sinh2(y).

Let us compute Hf (x, y) at the three critical points. Since Hf (0, 0) = −1
2
< 0, we

have that the point (0, 0) is a saddle point. Since Hf (1, 0) = Hf (−1, 0) = 1
2
> 0 and

fxx(1, 0) = fxx = (−1, 0) = 2 > 0, the points (−1, 0), (1, 0) are local minimum points
of the function f . �

Week 9 Super Quiz

Problem 1. Find the points on the ellipsoid

x2

4
+ 4y2 +

z2

4
= 4

that are nearest to and farthest from the origin.
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Solution Problem 1. The problem is asking for the points on the given ellipsoid
with extreme values with respect to the distance function G(x, y, z) =

√
x2 + y2 + z2.

Such points have also extreme values of the function G̃(x, y, z) = x2 + y2 + z2, hence

we can replace G with G̃. Using the method of the Lagrange multipliers, we solve
the system


x
2

= λ2x
8y = λ2y
z
2

= λ2z
x2

4
+ 4y2 + z2

4
= 4

.(3)

Note that

x

2
= λ2x ⇔ x = 0 or λ =

1

4
8y = λ2y ⇔ y = 0 or λ = 4
z

2
= λ2z ⇔ z = 0 or λ =

1

4
.

There are only two possible values for λ, namely λ = 1
4

or λ = 4. If λ = 1
4
, then

necessarily y = 0. Plugging y = 0 in the last equation in (3), we obtain x2 + z2 = 16,
that is, the circle on the plane y = 0 of radius 4 centered at the origin. If λ = 4,
then necessarily x = z = 0, and plugging these constraints in the last equation in (3),
we obtain y2 = 1, that is y = ±1, hence the two points (0,±1, 0). These last two
points have distance 1 from the origin, while the points on the circle x2 + z2 = 16,
y = 0 have distance

√
x2 + 02 + z2 = 4. It follows that the two point (0,±1, 0) have

minimal distance, while the points on the circle x2 + z2 = 16, y = 0 have maximal
distance. �

Problem 2. Find the volume of the solid that lies under the surface z = x4+sin(y)+2
and above the rectangle [−1, 0]× [−π, π].

Solution Problem 2. The volume of the solid is given by the double integral

∫∫
[−1,0]×[−π,π]

x4 + sin(y) + 2 dA.
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By the Fubini theorem, we have∫∫
[−1,0]×[−π,π]

x4 + sin(y) + 2 dA =

∫ 0

−1

∫ π

−π
x4 + sin(y) + 2 dydx

=

∫ 0

−1

[
x4y − cos(y) + 2y

]y=π
y=−π dx

=

∫ 0

−1

2πx4 + 4π dx

=

[
2π
x5

5
+ 4πx

]x=0

x=−1

=
2π

5
+ 4π

=
22π

5
.

�

Week 10 Quiz

Find the volume of the solid below the paraboloid z = 10 − 2x2 − 2y2 and above
the z = 0 plane.

Solution. Using polar coordinates, we have that the volume of the solid is given by∫∫
D

(10− 2r2)rdrdθ

where D is the disk with border 10 − 2x2 − 2y2 = 0, that is, D = {(r, θ) | 0 ≤ r ≤√
5, 0 ≤ θ ≤ 2π}. We have∫∫

D

(10− 2r2)rdrdθ =

∫ 2π

0

∫ √5

0

(10− 2r2)rdrdθ

=

∫ 2π

0

dθ

∫ √5

0

(10− 2r2)rdr

= 2π

∫ √5

0

(10r − 2r3)dr

= 2π

[
5r2 − 2

r4

4

]r=√5

r=0

= 2π

(
25− 25

2

)
= 25π.

�
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Midterm 2

Problem 1. Find the points on the surface 1 − x2 + (y − 1)4 − z2 = 0 which are
closest to the point (0, 1, 0).

Solution Problem 1. We have to look for the points which minimize the function
F (x, y, z) =

√
x2 + (y − 1)2 + z2 under the constraint 1 − x2 + (y − 1)4 − z2 = 0.

The local minimum points for the function F (x, y, z) are also local minimum points
for the function (F (x, y, z))2, hence we can replace F (x, y, z) with (F (x, y, z))2 =
x2 + (y − 1)2 + z2. Using the Lagrange multipliers method, we look for the solution
of the following system:


2x = λ(−2x)
2(y − 1) = λ4(y − 1)3

2z = λ(−2z)
1− x2 + (y − 1)4 − z2 = 0

.(4)

Note that

2x = λ(−2x) ⇔ x = 0 or λ = −1

2(y − 1) = λ4(y − 1)3 ⇔ y = 1 or (y − 1)2 =
2

4λ
2z = λ(−2z) ⇔ z = 0 or λ = −1.

Suppose that x = z = 0. Then from the last equation in (4) we have that (y − 1)4 =
−1, a contradiction (the left hand side is positive!). Hence necessarily λ = −1. We
use the second and forth equation in (4) to find the remaining information. Since
λ = −1, we cannot have (y − 1)2 = 2

4λ
(the left hand side is positive!). Hence

necessarily y = 1. From the forth equation in (4), we have that if y = 1, then
x2 + z2 = 1. Hence the outcome of the Lagrange multipliers method is the circle
given by the two equations y = 1, x2 + z2 = 1. It remains to show whether the points
on this set have minimal or maximal distance from (0, 1, 0). We pick an arbitrary
point on the surface 1 − x2 + (y − 1)4 − z2 = 0 and we compute the distance from
(0, 1, 0): the point (

√
2, 2, 0) has distance

√
3 from the point (0, 1, 0). The distance

from a point on the circle y = 1, x2 + z2 = 1 is 1 (<
√

3). Hence the points on the
circle y = 1, x2 + z2 = 1 are the points on the surface 1 − x2 + (y − 1)4 − z2 = 0
closest to the point (0, 1, 0). �

Problem 2. Find a such that the part of the surface z = 10x2 + 10y2 below the
plane z = a has surface area 182

75
π.
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Solution Problem 2. The area of the surface z = 10x2 +10y2 below the plane z = a
is given by the formula ∫∫

D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA

where D is

D := {(x, y) | 10x2 + 10y2 ≤ a}

=

{
(r, θ) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤

√
a

10

}
.

We have ∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA =

∫∫
D

√
1 + (20x)2 + (20y)2dA

=

∫ 2π

0

∫ √ a
10

0

√
1 + 400r2 rdrdθ

=

∫ 2π

0

dθ

∫ √ a
10

0

√
1 + 400r2 rdr

= 2π

[
2

3

1

800
(1 + 400r2)

3
2

]√ a
10

0

=
π

600

(
(1 + 40a)

3
2 − 1

)
.

From the desired equality

π

600

(
(1 + 40a)

3
2 − 1

)
=

182

75
π

we recover the value of a:

a =

(
1457

2
3 − 1

)
40

.

�

Problem 3. Find a such that the solid above the surface z = 10x2 + 10y2 and below
the plane z = a has volume 4

5
π.

Solution Problem 3. The volume of the solid is given by∫∫
D

∫ a

10r2
dzdA
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where D is as in the previous problem

D =

{
(r, θ) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤

√
a

10

}
.

We have ∫∫
D

∫ a

10r2
dzdA =

∫ 2π

0

∫ √ a
10

0

∫ a

10r2
dzrdrdθ

=

∫ 2π

0

dθ

∫ √ a
10

0

∫ a

10r2
dzrdr

= 2π

∫ √ a
10

0

(a− 10r2)rdr

= 2π

[
a
r2

2
− 10

r4

4

]√ a
10

0

= 2π

(
a2

20
− a2

40

)
= 2π

a2

40
.

Imposing the volume to be equal to 4
5
π, we recover the value of a: a = 4. �

Week 14 Quiz

Verify that Stokes’ Theorem is true for the vector field ~F =< y, z, x > and the
part of the paraboloid z = x2 + y2 that lies below the plane z = 1, oriented inward.

Final Exam

Problem 1. Find the local maximum and minimum values and saddle points of the
following function

f(x, y) = sin(x) + 3y2.

Problem 2. Use Lagrange multipliers to find the points on the surface (x − 8)6 +
8− y2 − z2 = 0 which are closest to the point (8, 0, 0).

Problem 3. Verify that Stokes’ theorem is true for the vector field ~F =< z, x, y >

and the surface defined by x2 + y2 + z2 = 1 and 0 ≤ z ≤
√

2
2

.

Problem 4. Verify that the divergence theorem is true for the vector field ~F =<
z, y, x > and the region z2 + y2 ≤ x and 1 ≤ x ≤ 2.


