QUIZZES AND EXAMS

Week 1 Quiz

Problem 1. Find the volume of the solid obtained by rotating the region bounded by the curves $y=x(3-x)$ and $y=0$ about the line $x=-1$.

Problem 2. Find the exact length of the curve $x=1+4 \sin (2 t), y=4 \cos (2 t)-3$, $0 \leq t \leq \pi$.

Week 2 Quiz

Problem 1. Find the average value of the function $f(x)=\sin (\pi x)$ on the interval $[-1 / 2,1]$.

Problem 2. Find the solution of the differential equation

$$
y^{\prime}=\frac{y}{\sqrt{x-1}}
$$

that satisfies the initial condition $y(5)=-3 e^{4}$.

Week 3 Quiz

Problem 1. Determine whether the sequence

$$
a_{n}=\ln \left(\frac{n^{2}-1}{3+n^{2}}\right) \quad \text { for } n \geq 2
$$

converges or diverges. If it converges, find the limit.
Problem 2. A sequence $\left\{a_{n}\right\}_{n}$ is given by

$$
a_{1}=1 \quad \text { and } \quad a_{n+1}=\frac{1}{4}\left(a_{n}+6\right) \quad \text { for } n \geq 1
$$

i) Show that $\left\{a_{n}\right\}_{n}$ is increasing.
ii) Show that $\left\{a_{n}\right\}_{n}$ is bounded above by 2 .
iii) Determine whether the sequence converges or diverges.

Super Quiz 1

Problem 1. (6 points.) Find the value of c such that the following holds

$$
\sum_{n=2}^{\infty} 2 c^{n}=1
$$

Solution. Since the series converges, we have $|c|<1$. We will solve for c, and we will verify this inequality at the end. We have

$$
1=\sum_{n=2}^{\infty} 2 c^{n}=\sum_{n=0}^{\infty} 2 c^{n}-\sum_{n=0}^{1} 2 c^{n}=\frac{2}{1-c}-2-2 c
$$

Hence, we have

$$
\frac{2}{1-c}-2-2 c=1
$$

Multiplying by $1-c$ and rearranging, we have $2 c^{2}+c-1=0$. Solving for c, we find two solutions: $c=-1$ and $c=\frac{1}{2}$. Since we must have $|c|<1$, the only valid solution is $c=\frac{1}{2}$.

Problem 2. (4 points.) Determine whether the following series converges or diverges; if it converges, find its limit:

$$
\sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{3-k}
$$

Solution. The series can be rewritten as follows

$$
\sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{3-k}=\left(\frac{1}{3}\right)^{3} \sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{-k}=\left(\frac{1}{3}\right)^{3} \sum_{k=0}^{\infty} 3^{k}
$$

The series on the right-hand side is a geometric series with common ratio equal to $3 \geq 1$, hence the series diverges.

Problem 3. (5 points.) Determine whether the following series converges or diverges; if it converges, find its limit:

$$
\sum_{k=2}^{\infty} \frac{2}{k^{2}-1}
$$

Solution. This is a telescoping series. Using partial fractions decomposition, one has

$$
\frac{2}{k^{2}-1}=\frac{1}{k-1}-\frac{1}{k+1} .
$$

Hence, one has

$$
\begin{aligned}
\sum_{k=2}^{m} \frac{2}{k^{2}-1}= & \sum_{k=2}^{m}\left(\frac{1}{k-1}-\frac{1}{k+1}\right) \\
= & \left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{m-2}-\frac{1}{m}\right) \\
& +\left(\frac{1}{m-1}-\frac{1}{m+1}\right) \\
= & 1+\frac{1}{2}-\frac{1}{m}-\frac{1}{m+1} \xrightarrow{m \rightarrow \infty} \frac{3}{2}
\end{aligned}
$$

The series thus converges to $\frac{3}{2}$.
Problem 4. (5 points.) Find the solution of the differential equation

$$
\left(x^{2}+2\right) y^{\prime}=x y
$$

that satisfies the initial condition $y(0)=2$.
Solution. Using the method of separation of variables, one has

$$
\int \frac{1}{y} d y=\int \frac{x}{x^{2}+2} d x
$$

Hence, one has

$$
\ln |y|=\frac{1}{2} \ln \left(x^{2}+2\right)+C
$$

for some constant C. This implies

$$
|y|=e^{\frac{1}{2} \ln \left(x^{2}+2\right)+C}=e^{\frac{1}{2} \ln \left(x^{2}+2\right)} \cdot e^{C},
$$

and finally

$$
y=B \cdot e^{\frac{1}{2} \ln \left(x^{2}+2\right)}=B \cdot\left(e^{\ln \left(x^{2}+2\right)}\right)^{\frac{1}{2}}=B \sqrt{x^{2}+2}
$$

for some constant B. Using the initial condition, one has $2=y(0)=B \sqrt{2}$, hence $B=\sqrt{2}$. The solution is thus $y(x)=\sqrt{2 x^{2}+4}$.

Midterm 1

Problem 1. (12 points.) A sequence $\left\{a_{n}\right\}_{n}$ is given by

$$
a_{1}=7 \quad \text { and } \quad a_{n+1}=\frac{2}{3}\left(a_{n}+2\right) \quad \text { for } n \geq 1
$$

i) Show that $\left\{a_{n}\right\}_{n}$ is decreasing.
ii) Show that $\left\{a_{n}\right\}_{n}$ is bounded below by 4 .
iii) Determine whether the sequence converges or diverges.
iv) If the sequence converges, find its limit.

Problem 2. (12 points.) Solve the following initial-value problem

$$
\frac{y^{\prime}}{\cos (x)}=-y \cdot \sin ^{2}(x), \quad y(0)=\pi
$$

Solution. Using the method of separation of variables, one has

$$
\int \frac{1}{y} d y=-\int \sin ^{2}(x) \cos (x) d x
$$

One deduces

$$
\ln |y|=-\frac{\sin ^{3}(x)}{3}+A
$$

for some constant A. Solving for y, one has first

$$
|y|=e^{-\frac{\sin ^{3}(x)}{3}+A}=B \cdot e^{-\frac{\sin ^{3}(x)}{3}}
$$

for some constant B, and then

$$
y=C \cdot e^{-\frac{\sin ^{3}(x)}{3}}
$$

for some constant C. Using the initial condition, one has $\pi=y(0)=C$, hence the final answer is $y=\pi \cdot e^{-\frac{\sin ^{3}(x)}{3}}$.

Problem 3. (12 points.) Determine whether the following series converges or diverges; if it converges, find its limit

$$
\sum_{k=1}^{\infty} \frac{6}{k^{2}+2 k}
$$

Solution. Using partial fractions decomposition, one has

$$
\frac{6}{k^{2}+2 k}=\frac{3}{k}-\frac{3}{k+2} .
$$

Hence, the partial sums simplify as follows

$$
\begin{aligned}
\sum_{k=1}^{m} \frac{6}{k^{2}+2 k}= & \sum_{k=1}^{m}\left(\frac{3}{k}-\frac{3}{k+2}\right) \\
= & (3-1)+\left(\frac{3}{2}-\frac{3}{4}\right)+\left(1-\frac{3}{5}\right)+\cdots+\left(\frac{3}{m-1}-\frac{3}{m+1}\right) \\
& +\left(\frac{3}{m}-\frac{3}{m+2}\right) \\
= & 3+\frac{3}{2}-\frac{3}{m+1}-\frac{3}{m+2} \xrightarrow{m \rightarrow \infty} 3+\frac{3}{2}=\frac{9}{2}
\end{aligned}
$$

The series thus converges to $\frac{9}{2}$.

Problem 4. (12 points.) Find the interval of convergence of the following power series

$$
\sum_{k=3}^{\infty}(-1)^{k+1} \frac{2^{2 k+1}}{\sqrt{2 k+1}}(x-1)^{k}
$$

Problem 5. (12 points.) Find a power series representation for the following function, and determine the radius of convergence

$$
f(x)=\frac{x^{2}}{x^{3}+8}
$$

Problem 6. (6 Bonus points.) Find a rational function whose power series representation is equal to the following series

$$
\sum_{n=2}^{\infty} n(n-1) x^{n}
$$

Week 8 Quiz

Problem 1. Find the area of the parallelogram with vertices $A=(0,0), B=(1,4)$, $C=(6,6)$, and $D=(5,2)$.

Problem 2. Find the angle between the vectors $\langle 1,-1,0\rangle$ and $\langle 2,-1,-2\rangle$.

Week 9 Super Quiz

Problem 1. Find the Maclaurin series of the following function, and determine its radius of convergence

$$
f(x)=\frac{1}{\sqrt[3]{27-x^{3}}}
$$

Solution. Using the binomial series, one has

$$
\begin{aligned}
f(x) & =\left(27-x^{3}\right)^{-1 / 3}=27^{-1 / 3}\left(1-\frac{x^{3}}{27}\right)^{-1 / 3}=\frac{1}{3} \sum_{n=0}^{\infty}\binom{-1 / 3}{n}\left(-\frac{x^{3}}{27}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{-\frac{1}{3}\left(-\frac{1}{3}-1\right) \cdots\left(-\frac{1}{3}-n+1\right)}{n!} \frac{x^{3 n}}{3^{3 n+1}}
\end{aligned}
$$

The radius of the binomial series is preserved, hence we have that $\left|x^{3} / 27\right|<1$, which is equivalent to $-3<x<3$. The radius is 3 .

Problem 2. Use series to evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{1-3 x-e^{-3 x}}
$$

Solution. Since x is approaching 0, we can replace each function with its Maclaurin series. We obtain

$$
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{1-3 x-e^{-3 x}}=\lim _{x \rightarrow 0} \frac{1-\left(1-\frac{4 x^{2}}{2}+\cdots\right)}{1-3 x-\left(1-3 x+\frac{9 x^{2}}{2}+\cdots\right)}=\lim _{x \rightarrow 0} \frac{\frac{4 x^{2}}{2}}{-\frac{9 x^{2}}{2}}=-\frac{4}{9}
$$

Problem 3. Find the area of the triangle with vertices $A=(-1,-1), B=(2,3)$, and $C=(5,1)$.

Solution. We can consider the points A, B, and C living on the plan $z=0$. The coordinates will then be $A=(-1,-1,0), B=(2,3,0)$, and $C=(5,1,0)$. The vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are now in \mathbb{R}^{3}, and we can take their cross product. The area of the triangle is given by

$$
\text { Area }=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}|\langle 3,4,0\rangle \times\langle 6,2,0\rangle|=\frac{|-18 \vec{k}|}{2}=9
$$

Problem 4. Determine whether the planes $x-y+z=1$ and $y-2 z=2$ are parallel, perpendicular, or neither. If they are not parallel, find the line of intersection.

Solution. The normal vector to the plane $x-y+z=1$ is $\vec{n}_{1}=\langle 1,-1,1\rangle$, and the normal vector to the plane $y-2 z=2$ is $\vec{n}_{2}=\langle 0,1,-2\rangle$. Since the normal vectors \vec{n}_{1} and \vec{n}_{2} are not proportional, the planes are not parallel. Since $\vec{n}_{1} \cdot \vec{n}_{2} \neq 0$, the two normal vectors are not perpendicular, hence the two planes are not perpendicular. To find the line of intersection, we need a point on the line, and a parallel vector \vec{v}.

A point on the line is on both planes, so we need to find a solution of the system

$$
\left\{\begin{array}{l}
x-y+z=1 \\
y-2 z=2
\end{array}\right.
$$

There are infinitely many solutions to this system (corresponding to the line of intersection). To find one point, we can fix one more condition, like $z=0$, and solve for x and y. We find that the point $(3,2,0)$ lies on both planes, hence lies on the line of intersection.

To find a parallel vector \vec{v}, we use the fact that \vec{v} must be orthogonal to both \vec{n}_{1} and \vec{n}_{2} (since the line must lie on both planes). Hence, we can take

$$
\vec{v}=\vec{n}_{1} \times \vec{n}_{2}=\langle 1,2,1\rangle .
$$

The line of intersection has vector equation

$$
\langle x, y, z\rangle=\langle 3,2,0\rangle+t\langle 1,2,1\rangle,
$$

for $t \in \mathbb{R}$.

Week 11 Quiz

Problem 1. Find the length of the curve

$$
\vec{r}(t)=\langle 4 \sin (t), 3 t, 4 \cos (t)\rangle
$$

for $0 \leq t \leq \pi$.
Problem 2. Find the curvature $\kappa(t)$ of the curve

$$
\vec{r}(t)=\left\langle 2-t, 4 t^{2}, 3+t\right\rangle .
$$

What is the curvature at the point $(2,0,3)$?

Midterm 2

Problem 1. (12 points.) Consider the following space curves

$$
\begin{aligned}
\vec{r}_{1}(t) & =\left\langle 1-t^{3}, 3, t^{2}-1\right\rangle \\
\vec{r}_{2}(s) & =\langle 2+s, 1-2 s, 4+5 s\rangle
\end{aligned}
$$

i) Find the point of intersection of $\vec{r}_{1}(t)$ and $\vec{r}_{2}(s)$.
ii) Find the angle of intersection of $\vec{r}_{1}(t)$ and $\vec{r}_{2}(s)$.

Problem 2. (14 points.) i) Find the equation of the plane that contains the point (1, 1, 2) and the line $x=2+t, y=1-t, z=3 t$.
ii) Find the equation of the line passing through the point $(1,1,2)$ and meeting the line

$$
\vec{r}(t)=\langle 2,1,0\rangle+t\langle 1,-1,3\rangle
$$

orthogonally.
Problem 3. (12 points.) Consider the curve

$$
\vec{r}(t)=\left\langle\sin (3 t), 2 t^{\frac{3}{2}}, \cos (3 t)\right\rangle .
$$

i) Find the length of the curve $\vec{r}(t)$ for $0 \leq t \leq 3$.
ii) Find the point P on the curve $\vec{r}(t)$ such that the length of the curve $\vec{r}(t)$ between the points $(0,0,1)$ and P is 52 .

Problem 4. (12 points.) Consider the following curve

$$
\vec{r}(t)=\left\langle t^{3}-1, t, 1-t\right\rangle .
$$

i) Find the curvature $\kappa(t)$ of the curve $\vec{r}(t)$.
ii) Find the point on the curve $\vec{r}(t)$ where the curvature is 0 .

Problem 5. (7 points.) Sketch the graph of the surface

$$
2 x^{2}-8 x-y^{2}+2 y+7-4 z=0
$$

Problem 6. (7 points.) Compute the following limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{2}}{x^{4}+y^{2}}
$$

Week 14 Quiz

Problem 1. Let $z(x, y)=\cos (x y)$ with $x=e^{s} \cdot t$ and $y=t^{3}$. Use the Chain Rule to find the partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ when $s=0$ and $t=1$.

Problem 2. Let $f(x, y)=\cos (x y)+x y$.
i) Find the maximum rate of change of $f(x, y)$ at $(2,0)$ and the direction in which it occurs.
ii) Find the directional derivative of $f(x, y)$ at $(2,0)$ in the direction of $\vec{v}=\langle 1,1\rangle$.

Final Exam
Problem 1. (4 points.) Let $f(y)$ be the force in Newtons of gravity upon a rocket with mass $m \mathrm{~kg}$ as a function of the height y from the Earth's center:

$$
f(y)=\frac{G m M}{y^{2}}
$$

where M is the mass of the earth, and G is the gravitational constant. Suppose $G m M=$ 100 N meters-squared.
i) Develop an expression for the work W in Joules that must be consumed to overcome the gravitational force to get the rocket from the Earth's surface $y=6.3 \times 10^{6}$ meters to the low-earth orbit $y=8.3 \times 10^{6}$ meters.
ii) Compute your result in (i). You may leave an algebraic expression as an answer.

Problem 2. (10 points.) Consider the function $f(x)=\cos (3 x)$ on the interval $[-\pi, \pi]$.
i) Compute the Taylor series of $f(x)$ centered at the point $a=0$.
ii) Compute the second-order Taylor polynomial approximation $T_{2}(x)$ of $f(x)$ centered at $a=0$.
iii) Using Taylor's inequality, find a bound for the maximum error $\left|T_{2}(x)-f(x)\right|$ between the approximation $T_{2}(x)$ and $f(x)$ on the interval $[-\pi, \pi]$.
iv) Suppose that for a practical application, we require that the error does not exceed $1 / 10$ on this interval. Based on your bound in the previous problem, will the second-order Taylor polynomial $T_{2}(x)$ ensure the required accuracy?

Problem 3. (8 points.) Let $G(x, y)=4-x^{2}-y^{2}$. Find the points (x, y) that produce the maximum value of G subject to the constraint $F(x, y)=2 x y=1$.

Problem 4. (12 points.) Find the interval of convergence of the following power series

$$
\sum_{k=2}^{\infty}(-1)^{k} \frac{2^{2 k}}{3 k-1}(x-2)^{k}
$$

Problem 5. i) (4 points.) Find the equation of the tangent plane to $z=x^{6}+y^{6}-6 x y+4$ at the point $(0,1,5)$.
ii) (8 points.) Find the local maximum and minimum values and saddle points of the function

$$
f(x, y)=x^{6}+y^{6}-6 x y+4
$$

Problem 6. i) (7 points.) Find the vector equation of the line of intersection of the planes $x+y-2 z=2$ and $x-y+3 z=0$.
ii) (7 points.) Find the equation of the plane containing the line of intersection of the planes $x+y-2 z=2$ and $x-y+3 z=0$ and perpendicular to the plane $x-2 y+z=1$.

