QUIZZES AND EXAMS FOR MATH 1310 ENGINEERING CALCULUS I

NICOLA TARASCA

Week 1 Quiz

Problem. Let

$$f(x) = \sqrt{4 - 2^x},$$

$$h(x) = \sqrt{4 - x}.$$

- a) (2 points.) Find the domain of f(x).
- b) (2 points.) Find the domain of h(x).
- c) (4 points.) Find the inverse function of f(x).
- d) (2 points.) Find a function g such that $f \circ g = h$.

Week 2 Quiz

Problem 1. (6 points.) Sketch the graph of the following function

$$f(x) := \begin{cases} e^x & \text{if } 0 \le x < 1\\ \lfloor x \rfloor & \text{if } 1 \le x \le 3\\ \cos\left(\frac{\pi}{3}x\right) & \text{if } x > 3 \end{cases}.$$

Then find each of the following, or state that does not exist:

$$\lim_{x \to 1^{-}} f(x) = \dots \qquad \lim_{x \to 1^{+}} f(x) = \dots \qquad \lim_{x \to 1} f(x) = \dots \qquad f(1) = \dots$$
$$\lim_{x \to 2^{-}} f(x) = \dots \qquad \lim_{x \to 2^{+}} f(x) = \dots \qquad \lim_{x \to 2} f(x) = \dots \qquad f(2) = \dots$$
$$\lim_{x \to 3^{-}} f(x) = \dots \qquad \lim_{x \to 3^{+}} f(x) = \dots \qquad \lim_{x \to 3} f(x) = \dots \qquad f(3) = \dots$$

Date: Fall 2015.

Problem 2. (4 points.) Evaluate the following limit

$$\lim_{t \to 0} \frac{t^2}{2 - \sqrt{4 + t^2}}$$

Week 3 Quiz

Problem 1. i) (4 points.) Compute the following limits

$$\lim_{x \to (\frac{\pi}{2})^+} \frac{x}{\cos(x)}, \qquad \qquad \lim_{x \to (\frac{\pi}{2})^-} \frac{x}{\cos(x)}.$$

ii) (2 points.) Find the vertical asymptotes to the graph of the function $y = \frac{x}{\cos(x)}$. **Problem 2.** (4 points.) Compute the following limit using the squeeze theorem

$$\lim_{x \to 0} \left(e^x - 1 \right) \cos\left(\frac{1}{x^2}\right).$$

Super Quiz 1

Problem 1. (3 points.) Find the horizontal and vertical asymptotes of

$$y = \frac{1 - x^2 + 3x}{4x^2 - 8x - 12}.$$

Problem 2. (5 points.) Find the following limit

$$\lim_{t \to \infty} \left(t - \sqrt{t^2 + 4t} \right).$$

Problem 3. i) (5 points.) Find the derivative of

$$f(x) = \sqrt{3x - 1}.$$

ii) (2 points.) Find the tangent line to $y = \sqrt{3x - 1}$ at $(\frac{5}{3}, 2)$.

Problem 4. (5 points.) Find the following limit

$$\lim_{x \to 0^-} e^{\frac{1}{x}} \sin\left(\frac{1}{x}\right).$$

Week 5 Quiz

Problem 1. (6 points.) Find the tangent line to $y = \frac{\sqrt{x}}{e^x}$ at $(4, \frac{2}{e^4})$.

Problem 2. (4 points.) Compute the following limit

$$\lim_{x \to 0} \frac{1 - 2015x - (1 - x)^{2015}}{x^2}.$$

Midterm 1

Problem 1. Sketch the graph of the following function

$$f(x) := \begin{cases} 2^{-x} & \text{if } 0 \le x \le 2\\ \lfloor x \rfloor & \text{if } 2 < x \le 4\\ \frac{1}{4-x} & \text{if } x > 4 \end{cases}.$$

i) (2 points.) Find the vertical and horizontal asymptotes to the graph of f.

Solution. Since

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{4 - x} = 0,$$

the x-axis is a horizontal asymptote. The function f(x) has only jump discontinuities on the interval [0, 4) and is continuous on $(4, \infty)$, hence there is at most one vertical asymptote, namely x = 4. Since

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} = \frac{1}{4 - x} = -\infty,$$

the line x = 4 is indeed a vertical asymptote.

ii) (12 points.) Find each of the following, or state that it does not exist:

$$\lim_{x \to 2^-} f(x) = \dots \qquad \lim_{x \to 2^+} f(x) = \dots \qquad \lim_{x \to 2} f(x) = \dots \qquad f(2) = \dots$$
$$\lim_{x \to 3^-} f(x) = \dots \qquad \lim_{x \to 3^+} f(x) = \dots \qquad \lim_{x \to 3} f(x) = \dots \qquad f(3) = \dots$$
$$\lim_{x \to 4^-} f(x) = \dots \qquad \lim_{x \to 4^+} f(x) = \dots \qquad \lim_{x \to 4} f(x) = \dots \qquad f(4) = \dots$$

Solution.

$$\lim_{x \to 2^{-}} f(x) = \frac{1}{4} \qquad \lim_{x \to 2^{+}} f(x) = 2 \qquad \lim_{x \to 2} f(x) = DNE \qquad f(2) = \frac{1}{4}$$
$$\lim_{x \to 3^{-}} f(x) = 2 \qquad \lim_{x \to 3^{+}} f(x) = 3 \qquad \lim_{x \to 3} f(x) = DNE \qquad f(3) = 3$$
$$\lim_{x \to 4^{-}} f(x) = 3 \qquad \lim_{x \to 4^{+}} f(x) = -\infty \qquad \lim_{x \to 4} f(x) = DNE \qquad f(4) = 4.$$

Problem 2. i) (4 points.) Find the horizontal and vertical asymptotes to the graph of

$$f(x) = \frac{e}{\sin(2x)},$$

if any.

Solution. Note that

$$\lim_{x \to \infty} \frac{e}{\sin(2x)} = \frac{e}{\lim_{x \to \infty} \sin(2x)}.$$

The limit in the denominator on the right-hand side does not exist, hence the limit on the left-hand side does not exist. The same holds for the limit for $x \to -\infty$. Hence there are no horizontal asymptotes. We have a vertical asymptote when

$$\sin(2x) = 0 \quad \Leftrightarrow \quad 2x = k \cdot \pi \quad \text{for } k \in \mathbb{Z} \quad \Leftrightarrow \quad x = \frac{k \cdot \pi}{2} \quad \text{for } k \in \mathbb{Z}.$$

ii) (5 points.) Find the domain of the following function

$$f(x) = \frac{\sqrt{x^2 - 1}}{x \cdot \ln(x)}.$$

Solution. The domain of $\sqrt{x^2 - 1}$ is $(-\infty, -1] \cup [1, \infty)$. The domain of $\ln(x)$ is $(0, \infty)$. Moreover, we require the denominator to be non-zero, that is, $x \neq 0$ and $x \neq 1$. The intersection of all such sets is $(1, \infty)$.

Problem 3. i) (4 points.) Compute the following limit

$$\lim_{x \to \infty} \sqrt[3]{\frac{(9x-3)(3-6x)}{(4+x)(2x+1)}}$$

Solution. We have

$$\lim_{x \to \infty} \sqrt[3]{\frac{(9x-3)(3-6x)}{(4+x)(2x+1)}} = \sqrt[3]{\lim_{x \to \infty} \frac{(9x-3)(3-6x)}{(4+x)(2x+1)}}$$
$$= \sqrt[3]{\lim_{x \to \infty} \frac{-54x^2}{2x^2}}$$
$$= \sqrt[3]{-27} = -3.$$

ii) (4 points.) Compute the following limit

$$\lim_{x \to \infty} (\sqrt{4x^2 + 3x} - 2x).$$

Solution. We have

$$\lim_{x \to \infty} (\sqrt{4x^2 + 3x} - 2x) = \lim_{x \to \infty} \left((\sqrt{4x^2 + 3x} - 2x) \cdot \frac{\sqrt{4x^2 + 3x} + 2x}{\sqrt{4x^2 + 3x} + 2x} \right)$$
$$= \lim_{x \to \infty} \frac{4x^2 + 3x - 4x^2}{\sqrt{4x^2 + 3x} + 2x}$$
$$= \lim_{x \to \infty} \frac{3x}{\sqrt{4x^2 + 3x} + 2x}$$
$$= \lim_{x \to \infty} \frac{3}{\sqrt{4x^2 + 3x} + 2x} = \frac{3}{\sqrt{4x^2 + 2x}}$$

Problem 4. i) (5 points.) Compute the following limit

$$\lim_{x \to 0} \left(\frac{1 - \cos(3x)}{x} \cdot \sin\left(\frac{3}{x^2}\right) \right).$$

Solution. Note that $\sin\left(\frac{3}{x^2}\right)$ is a bounded function, while

$$\lim_{x \to 0} \frac{1 - \cos(3x)}{x} = 3\lim_{x \to 0} \frac{1 - \cos(3x)}{3x} = 3 \cdot 0 = 0.$$

It follows that the product of the two functions has limit 0 (since "bounded $\cdot 0 = 0$ "). Alternatively, one can use the squeeze theorem.

ii) (5 points.) Compute the following limit

$$\lim_{x \to 0} \quad \frac{\sin(3x) \cdot \cos^2(2x)}{\sin(2x) \cdot e^{\sin(x^2)}}.$$

Solution. We have

$$\lim_{x \to 0} \frac{\sin(3x) \cdot \cos^2(2x)}{\sin(2x) \cdot e^{\sin(x^2)}} = \left(\lim_{x \to 0} \frac{\sin(3x)}{\sin(2x)}\right) \left(\lim_{x \to 0} \frac{\cos^2(2x)}{e^{\sin(x^2)}}\right)$$
$$= \left(\lim_{x \to 0} \frac{\sin(3x)}{\sin(2x)}\right) \cdot 1$$
$$= \left(\lim_{x \to 0} 3 \cdot \frac{\sin(3x)}{3x} \cdot \frac{1}{2} \frac{2x}{\sin(2x)}\right) = \frac{3}{2}.$$

Problem 5. (9 points.) Find the equations of the two lines passing through (0, 13) and tangent to $y = 9 - x^2$.

Solution. On one hand, the slope of the tangent line to $y = 9 - x^2$ at the point (x, y(x)) is y' = -2x. On the other hand, the slope of the line passing through the points (x, y(x)) and (0, 13) is $\frac{y(x)-13}{x-0}$, where $y(x) = 9 - x^2$. Equating the two slopes, we have

$$-2x = \frac{(9-x^2) - 13}{x - 0}$$

Multiplying by x, we have

$$2x^2 = -x^2 - 4.$$

We deduce $x^2 = 4$, hence x = 2, or x = -2. It follows that one of the two desired tangent lines passes through the point (2, y(2)) = (2, 5), and the other through the point (-2, y(-2)) = (-2, 5). The tangent line passing through the point (2, 5) is y = -4x + 13, and the tangent line passing through the point (-2, 5) is y = 4x + 13.

Problem 6. i) (5 points.) Find the points where the curve

$$y = \frac{x^3}{3} + x^2 - 3x$$

has an horizontal tangent line.

Solution. First we compute

$$y' = x^2 + 2x - 3$$

Then we solve

$$x^2 + 2x - 3 = 0.$$

The two solutions are x = -3 or x = 1.

6

ii) (5 points.) Find the derivative of

$$f(x) = e^{\cos(\sqrt[3]{3x})}$$

Solution. We have

$$f' = (e^{\cos(\sqrt[3]{3x})})' = e^{\cos(\sqrt[3]{3x})} \cdot (\cos(\sqrt[3]{3x}))'$$

= $e^{\cos(\sqrt[3]{3x})} \cdot (-\sin(\sqrt[3]{3x})) \cdot (\sqrt[3]{3x})'$
= $e^{\cos(\sqrt[3]{3x})} \cdot (-\sin(\sqrt[3]{3x})) \cdot \left(\frac{1}{3}(3x)^{-\frac{2}{3}}\right) \cdot (3x)'$
= $e^{\cos(\sqrt[3]{3x})} \cdot (-\sin(\sqrt[3]{3x})) \cdot \left(\frac{1}{3}(3x)^{-\frac{2}{3}}\right) \cdot 3.$

С			
L			
L			
L			

Week 9 Quiz

Problem 1. (5 points.) Find the linearization of the function $f(x) = \cos(x)$ at $a = \frac{\pi}{2}$, and use it to give an approximate value for $\cos(1.5)$ and $\cos(1.6)$. Say in each case if the approximation is an overestimate, or an underestimate. (Note: $\frac{\pi}{2} \approx 1.57$.)

Problem 2. (5 points.) Find the critical numbers of the following function

$$f(x) = x^{\frac{1}{3}}(4-x).$$

Find the global maximum and minimum values of f(x) on the interval [-1, 8].

Super Quiz 2

Problem 1. (9 points.) i) Find the critical points of the following function

$$f(x) = 18x^2 + 8x^3 - 3x^4.$$

ii) Use the first derivative test to decide which critical points give a local maximum value and which give a local minimum value.

iii) Use the second derivative test to solve the previous problem.

Problem 2. (5 points.) Find the linearization of the function $f(x) = \sin(x)$ at $a = \pi$, and use it to give an approximate value for $\sin(3.1)$ and $\sin(3.2)$. Say in each case if the approximation is an overestimate, or an underestimate.

Problem 3. (6 points.) Find the following limit

$$\lim_{x \to 0} \frac{3 - 3\cos(2x) - 6x^2 + 2x^4}{x^4}.$$

Week 11 Quiz

Problem 1. (5 points.) Find the following limit

$$\lim_{x \to 0^+} (\sin(x))^x.$$

Problem 2. (5 points.) Find the most general antiderivative of the following function

$$f(x) = \frac{\sqrt{x - x^4 + x^5 \sin(x)}}{x^5}.$$

Midterm 2

Problem 1. i) (5 points.) Evaluate the following limit

$$\lim_{x \to \pi^{-}} \left(\tan\left(\frac{x}{2}\right) \right)^{\cos\left(\frac{x}{2}\right)}$$

Solution. One has

$$\lim_{x \to \pi^{-}} \left(\tan\left(\frac{x}{2}\right) \right)^{\cos\left(\frac{x}{2}\right)} = \lim_{x \to \pi^{-}} e^{\cos\left(\frac{x}{2}\right) \ln\left(\tan\left(\frac{x}{2}\right)\right)} = \lim_{x \to \pi^{-}} e^{\frac{\ln\left(\tan\left(\frac{x}{2}\right)\right)}{\left(\cos\left(\frac{x}{2}\right)\right)^{-1}}}$$
$$= \lim_{x \to \pi^{-}} e^{\frac{\frac{2 \tan\left(\frac{x}{2}\right) \cos^{2}\left(\frac{x}{2}\right)}{\frac{\sin\left(\frac{x}{2}\right)}{2 \cos^{2}\left(\frac{x}{2}\right)}}} = \lim_{x \to \pi^{-}} e^{\frac{\cos^{2}\left(\frac{x}{2}\right)}{\frac{\tan\left(\frac{x}{2}\right) \sin\left(\frac{x}{2}\right) \cos^{2}\left(\frac{x}{2}\right)}{2 \cos^{2}\left(\frac{x}{2}\right)}}$$
$$= \lim_{x \to \pi^{-}} e^{\frac{\cos\left(\frac{x}{2}\right)}{\sin^{2}\left(\frac{x}{2}\right)}} = e^{0} = 1.$$

ii) (5 points.) Find the horizontal asymptotes to the graph of the following function

$$f(x) = \left(\cos\left(\frac{2}{x}\right)\right)^{x^2}.$$

Solution. One computes

$$\lim_{x \to \infty} \left(\cos\left(\frac{2}{x}\right) \right)^{x^2} = \lim_{x \to \infty} e^{x^2 \ln\left(\cos\left(\frac{2}{x}\right)\right)} = \lim_{x \to \infty} e^{\frac{\ln\left(\cos\left(\frac{2}{x}\right)\right)}{x^{-2}}} = \lim_{x \to \infty} e^{\frac{2\sin\left(\frac{2}{x}\right)}{x^2\cos\left(\frac{2}{x}\right)}}$$
$$= \lim_{x \to \infty} e^{-\frac{x\sin\left(\frac{2}{x}\right)}{\cos\left(\frac{2}{x}\right)}} = \lim_{x \to \infty} e^{-\frac{1}{\cos\left(\frac{2}{x}\right)} \cdot 2 \cdot \frac{\sin\left(\frac{2}{x}\right)}{x^2}} = e^{-2}.$$

Moreover, the function f(x) is even, hence $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f(x) = e^{-2}$. We deduce that there is only one horizontal asymptote, namely $y = e^{-2}$.

Problem 2. i) (6 points.) Given

$$f'(x) = \frac{(2-x)(x^2+3)(x+4)}{x^3(x-1)^4}$$

find the critical points of the function f(x). Decide which critical points give a local maximum value, and which give a local minimum value.

Solution. Note that the factors $(x^2 + 3)$ and $(x - 1)^4$ are always non-negative, and hence do not affect the study of the sign of f'(x). The critical values of f(x) are -4, 0, 1, 2. By the first derivative test, x = -4 and x = 2 give a local maximum, x = 0 gives a local minimum, while x = 1 does not give a local extreme.

ii) (6 points.) Given

$$f'(x) = \frac{x^3(3x^2 - 5)}{15}$$

find the intervals of concavity and the inflection points of the function f(x).

Solution. Note that

$$f'(x) = \frac{x^5}{5} - \frac{x^3}{3}.$$

One computes

$$f''(x) = x^4 - x^2 = x^2(x-1)(x+1).$$

From the study of the sign of f''(x), the function f(x) is concave upward on the intervals x < -1 and x > 1, and is concave downward on the interval -1 < x < 1. It follows that the inflection points are at x = -1 and x = 1.

Problem 3. i) (5 points.) Find the local and absolute extreme values of the following function

$$f(x) = 2x^2 - x^4$$

on the interval [-2, 2]. Decide which local extreme values are a local minimum or a local maximum.

 $\langle a \rangle$

Solution. Note that the function f(x) is even, so the graph of f(x) is symmetric with respect to the y-axis. One computes

$$f'(x) = 4x - 4x^3 = 4x(1-x)(1+x).$$

Hence, local or absolute values may occur at $x \in \{-2, -1, 0, 1, 2\}$, that is, at the critical points, or at the endpoints. Since f(0) = 0, f(1) = f(-1) = 1, and f(-2) = f(2) = -8, one has that the absolute maximum is at x = 1 and x = -1, and the absolute minimum is at x = 2 and x = -2. From the first derivative test, one deduces that x = 0 gives a local minimum.

ii) (5 points.) Given

$$f'(x) = \sec(x)(\sec(x) + e^x \cos(x))$$

and $f(\frac{\pi}{4}) = 1$, find f(x).

Solution. One computes

$$f(x) = \int f'(x)dx = \int (\sec^2(x) + e^x)dx = \tan(x) + e^x + C.$$

Since

$$1 = f\left(\frac{\pi}{4}\right) = 1 + e^{\frac{\pi}{4}} + C_{4}$$

we deduce $C = -e^{\frac{\pi}{4}}$. Hence, we have $f(x) = \tan(x) + e^x - e^{\frac{\pi}{4}}$.

Problem 4. i) (6 points.) Find the general antiderivative of the following function

$$f(x) = (2 - x) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right).$$

Solution. We have

$$\int (2-x) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx = \int \left(2\sqrt{x} + \frac{2}{\sqrt{x}} - x\sqrt{x} - \frac{x}{\sqrt{x}}\right) dx$$
$$= \int \left(2x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} - x^{\frac{3}{2}} - x^{\frac{1}{2}}\right) dx$$
$$= \frac{4}{3}x^{\frac{3}{2}} + 4\sqrt{x} - \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} + C.$$

ii) (6 points.) Find the general antiderivative of the following function

$$f(x) = \frac{7\sqrt{x} - \sqrt[3]{x} \cdot 3^x - x^{-\frac{2}{3}}}{\sqrt[3]{x}}$$

10

L			I
L			I
L			I
L.	_		

Solution. We have

$$\int \frac{7\sqrt{x} - \sqrt[3]{x} \cdot 3^x - x^{-\frac{2}{3}}}{\sqrt[3]{x}} dx = 7 \int x^{\frac{1}{6}} dx - \int 3^x dx - \int \frac{1}{x} dx$$
$$= 6x^{\frac{7}{6}} - \frac{3^x}{\ln(3)} - \ln|x| + C.$$

Problem 5. i) (5 points.) Evaluate the following integral

$$\int_{-\frac{3}{2}}^{\frac{7}{2}} \lfloor x \rfloor dx.$$

Hint: sketch the graph of the function $f(x) = \lfloor x \rfloor$.

Solution. We have

$$\int_{-\frac{3}{2}}^{\frac{7}{2}} \lfloor x \rfloor dx = \int_{-1.5}^{-1} (-2) dx + \int_{-1}^{0} (-1) dx + \int_{0}^{1} 0 \cdot dx + \int_{1}^{2} 1 \cdot dx + \int_{2}^{3} 2 \cdot dx + \int_{3}^{3.5} 3 \cdot dx$$
$$= \left(-2 \cdot \frac{1}{2}\right) + (-1) + 0 + 1 + 2 + \left(3 \cdot \frac{1}{2}\right) = \frac{5}{2}.$$

ii) (5 points.) Evaluate the following integral

$$\int_{-\frac{\pi}{6}}^{\frac{5\pi}{4}} |\sin(x)| dx.$$

Solution. We have

$$\int_{-\frac{\pi}{6}}^{\frac{5\pi}{4}} |\sin(x)| dx = \int_{-\frac{\pi}{6}}^{0} (-\sin(x)) dx + \int_{0}^{\pi} \sin(x) dx + \int_{\pi}^{\frac{5\pi}{4}} (-\sin(x)) dx$$

= $[\cos(x)]_{-\frac{\pi}{6}}^{0} + [-\cos(x)]_{0}^{\pi} + [\cos(x)]_{\pi}^{\frac{5\pi}{4}}$
= $\cos(0) - \cos\left(-\frac{\pi}{6}\right) + (-\cos(\pi) - (-\cos(0))) + \cos\left(\frac{5\pi}{4}\right) - \cos(\pi)$
= $1 - \frac{\sqrt{3}}{2} + 2 + \left(-\frac{\sqrt{2}}{2} + 1\right) = 4 - \frac{\sqrt{3} + \sqrt{2}}{2}.$

Problem 6. (6 points.) Given

$$f(x) := \begin{cases} |x| - 1, & \text{for } x \le 1\\ e^x - e, & \text{for } 1 < x < 2\\ -\frac{1}{x^2}, & \text{for } x \ge 2 \end{cases},$$

evaluate the following integral

$$\int_{-1}^{3} f(x) dx.$$

Hint: sketch the graph of the function f(x).

Solution. We have

$$\int_{-1}^{3} f(x)dx = \int_{-1}^{0} (-x-1)dx + \int_{0}^{1} (x-1)dx \int_{1}^{2} (e^{x}-e)dx + \int_{2}^{3} \left(-\frac{1}{x^{2}}\right)dx$$
$$= \left[-\frac{x^{2}}{2} - x\right]_{-1}^{0} + \left[\frac{x^{2}}{2} - x\right]_{0}^{1} + [e^{x} - e \cdot x]_{1}^{2} + \left[\frac{1}{x}\right]_{2}^{3}$$
$$= \frac{1}{2} - 1 + \frac{1}{2} - 1 + e^{2} - 2e - \frac{1}{6} = -\frac{7}{6} + e^{2} - 2e.$$

ii) (2 bonus points.) Evaluate the following limit by first recognizing the sum as a Riemann sum for a function defined on [0, 1]

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1 - \left(\frac{i}{n}\right)^2}}.$$

Solution. We have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1 - \left(\frac{i}{n}\right)^2}} = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx = \arcsin(1) - \arcsin(0) = \frac{\pi}{2}.$$

Week 15 Quiz

Problem. Compute the following integrals

(i)
$$\int e^{3t}(t^2 + t)dt$$
,
(ii) $\int \frac{8 - 5x}{(x - 1)(2 - x)}dx$.

Final Exam

Problem 1. (9 points.) Consider the following function

$$f(x) = \ln(x) - \frac{x^2}{6}.$$

- (1) Find the domain of f(x).
- (2) Find the interval(s) on the real line where f(x) is increasing and decreasing.
- (3) Find the x-value(s), if any, where f(x) has zero slope.
- (4) Find the point(s) of inflection, if any, for f(x) and regions of the real line where the function is concave up and down.
- (5) Based on the results from above, sketch the graph of f(x), and correctly represent increasing and decreasing regions, and concavity. Are there any vertical asymptotes to the graph of f(x)?

Solution. The domain of f(x) is the interval $(0, \infty)$. One has

$$f'(x) = \frac{1}{x} - \frac{x}{3} = \frac{3 - x^2}{3x}$$

One finds that f'(x) is positive on the interval $(0, \sqrt{3})$, and negative on the interval $(\sqrt{3}, \infty)$. It follows that f(x) is increasing on $(0, \sqrt{3})$ and decreasing on $(\sqrt{3}, \infty)$. Moreover, f(x) has zero slope at $x = \sqrt{3}$. One has

$$f''(x) = -\frac{1}{x^2} - \frac{1}{3} = -\frac{3+2x^2}{3x^2}$$

Since f''(x) is always negative, one deduces that f(x) is concave down on its domain. There are no inflection points. Finally, there is a global maximum at $x = \sqrt{3}$, and there is a vertical asymptote at x = 0.

Problem 2. i) (4 points.) Suppose the following function

$$f(t) = t\sin(t^2)$$

represents the velocity of an object for t in the range $\left[0, \sqrt{\frac{\pi}{6}}\right]$.

- (1) Write down the correct expression for the distance traveled starting from time t = 0 to time $t = \sqrt{\frac{\pi}{6}}$.
- (2) Compute the exact value of the expression from (1).

Solution. The distance is

$$\int_0^{\sqrt{\frac{\pi}{6}}} t \sin(t^2) dt = \frac{1}{2} \left[-\cos(t^2) \right]_0^{\sqrt{\frac{\pi}{6}}} = \frac{1}{2} \left(1 - \frac{\sqrt{3}}{2} \right).$$

ii) (5 points.) Find the horizontal asymptotes to the graph of the following function

$$f(x) = \sqrt{\frac{3x^2(1-3x)(1+3x)}{(x^2-1)(4-3x^2)}}.$$

Solution. To compute the horizontal asymptotes, one has to compute the limit of f(x) as $x \to \pm \infty$. We have

$$\lim_{x \to \infty} f(x) = \sqrt{\frac{-27x^4}{-3x^4}} = 3 = \lim_{x \to -\infty} f(x)$$

Hence, there is one horizontal asymptote, namely y = 3.

Problem 3. (15 points.) Find the derivative of the following functions

$$f(x) = \sqrt[3]{x} \sin(\cos(1-x^2)),$$

$$g(x) = \int_0^{\cos(x)} \frac{e^y}{\sqrt[3]{y}+2} dy,$$

$$h(x) = (\ln(3x))^{\sin(x)}.$$

Solution. One has

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}}\sin(\cos(1-x^2)) + \sqrt[3]{x}\cos(\cos(1-x^2)) \cdot (-\sin(1-x^2))(-2x).$$

To compute g'(x), let

$$L(x) := \int_0^x \frac{e^y}{\sqrt[3]{y+2}} dy$$

Note that $L'(x) = \frac{e^x}{\sqrt[3]{x+2}}$. We can rewrite g(x) as $g(x) = L(\cos(x))$. We deduce

$$g'(x) = L'(\cos(x)) \cdot \cos'(x) = \frac{e^{\cos(x)}}{\sqrt[3]{\cos(x)} + 2} \cdot (-\sin(x))$$

Finally, to compute h'(x), we use the method of logarithmic differentiation. We have

$$\ln(h(x)) = \sin(x) \cdot \ln(\ln(3x)).$$

Differentiating, we have

$$\frac{1}{h(x)} \cdot h'(x) = \cos(x) \cdot \ln(\ln(3x)) + \sin(x) \cdot \frac{1}{\ln(3x)} \cdot \frac{1}{3x} 3$$

Finally, solving for h'(x), we have

$$h'(x) = h(x) \cdot \left(\cos(x) \cdot \ln(\ln(3x)) + \frac{\sin(x)}{x\ln(3x)}\right).$$

		1

14

Problem 4. i) (4 points.) Evaluate the following limit

$$\lim_{x \to 0} \frac{\ln(3x+1) - 3x}{e^{-x} - 1 + x}.$$

Solution. Applying l'Hopital twice, one has

$$\lim_{x \to 0} \frac{\ln(3x+1) - 3x}{e^{-x} - 1 + x} = \lim_{x \to 0} \frac{\frac{3}{3x+1} - 3}{-e^{-x} + 1} = \lim_{x \to 0} \frac{-\frac{9}{(3x+1)^2}}{e^{-x}} = -9.$$

ii) (8 points.) Evaluate the following integral

$$\int \frac{x^2 - 1}{x^3 + x^2 + x} dx.$$

Solution. By the method of partial fractions decomposition, one has

$$\int \frac{x^2 - 1}{x^3 + x^2 + x} dx = \int \frac{-1}{x} dx + \int \frac{2x + 1}{x^2 + x + 1} dx = -\ln|x| + \ln(x^2 + x + 1) + C.$$

Problem 5. i) (5 points.) Evaluate the following integral

$$\int_0^{\frac{1}{2}} (1 - t^2) \sin(\pi t) dt.$$

Solution. Integrating by parts twice, one has

$$\int (1-t^2)\sin(\pi t)dt = -\frac{\cos(\pi t)}{\pi}(1-t^2) - \frac{2}{\pi}\int \cos(\pi t)tdt$$
$$= -\frac{\cos(\pi t)}{\pi}(1-t^2) - \frac{2}{\pi^2}\sin(\pi t)t - \frac{2}{\pi^3}\cos(\pi t) + C.$$

Hence, the definite integral is

$$\int_0^{\frac{1}{2}} (1-t^2)\sin(\pi t)dt = \left[-\frac{\cos(\pi t)}{\pi}(1-t^2) - \frac{2}{\pi^2}\sin(\pi t)t - \frac{2}{\pi^3}\cos(\pi t)\right]_0^{\frac{1}{2}} = \frac{1}{\pi} - \frac{1}{\pi^2} + \frac{2}{\pi^3}.$$

ii) (5 points.) Evaluate the following integral or show that it is divergent

$$\int_{2}^{\infty} \frac{x}{\sqrt{x^2 - 1}} dx.$$

Solution. We have

$$\int_{2}^{\infty} \frac{x}{\sqrt{x^2 - 1}} dx = \lim_{b \to \infty} \frac{1}{2} \left[2\sqrt{x^2 - 1} \right]_{2}^{b} = \lim_{b \to \infty} (\sqrt{b^2 - 1} - \sqrt{3}).$$

The limit is ∞ , hence the integral diverges.

Problem 6. i) (5 points.) Find the volume of the solid obtained by rotating about the x-axis the region bounded by the curves x = 2, y = x, and $y^2 = x + 2$.

Solution. The volume is

$$\pi \int_0^2 (x+2-x^2) dx = \pi \left[\frac{x^2}{2} + 2x - \frac{x^3}{3}\right]_0^2 = \frac{10\pi}{3}.$$

ii) (5 bonus points.). Evaluate the following limit by first recognizing the sum as a Riemann sum for a function defined on [0, 1]

$$\lim_{n \to \infty} \frac{\pi}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{i}{n}\right)^2}$$

Describe a solid of revolution whose volume is equal to the above limit.

Solution. One has

$$\lim_{n \to \infty} \frac{\pi}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{i}{n}\right)^2} = \pi \int_0^1 \frac{1}{1 + x^2} dx = \pi [\arctan(x)]_0^1 = \frac{\pi^2}{4}.$$

A possible solid of revolution with volume equal to the above limit is the solid obtained by revolving about the x-axis the region bounded by the curves y = 0, x = 0, x = 1, $y^2 = \frac{1}{1+x^2}$. A simpler solution is the cylinder of height 1 and radius of the base equal to $\sqrt{\pi/2}$.