QUIZZES AND EXAMS FOR MATH 1310 ENGINEERING CALCULUS I

NICOLA TARASCA

Week 1 Quiz

Problem. Let

$$
\begin{aligned}
f(x) & =\sqrt{4-2^{x}}, \\
h(x) & =\sqrt{4-x} .
\end{aligned}
$$

a) (2 points.) Find the domain of $f(x)$.
b) (2 points.) Find the domain of $h(x)$.
c) (4 points.) Find the inverse function of $f(x)$.
d) (2 points.) Find a function g such that $f \circ g=h$.

Week 2 Quiz

Problem 1. (6 points.) Sketch the graph of the following function

$$
f(x):=\left\{\begin{array}{ll}
e^{x} & \text { if } 0 \leq x<1 \\
\lfloor x\rfloor & \text { if } 1 \leq x \leq 3 \\
\cos \left(\frac{\pi}{3} x\right) & \text { if } x>3
\end{array} .\right.
$$

Then find each of the following, or state that does not exist:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x)=\ldots & \lim _{x \rightarrow 1^{+}} f(x)=\ldots & \lim _{x \rightarrow 1} f(x)=\ldots & f(1)=\ldots \\
\lim _{x \rightarrow 2^{-}} f(x)=\ldots & \lim _{x \rightarrow 2^{+}} f(x)=\ldots & \lim _{x \rightarrow 2} f(x)=\ldots & f(2)=\ldots \\
\lim _{x \rightarrow 3^{-}} f(x)=\ldots & \lim _{x \rightarrow 3^{+}} f(x)=\ldots & \lim _{x \rightarrow 3} f(x)=\ldots & f(3)=\ldots
\end{aligned}
$$

Problem 2. (4 points.) Evaluate the following limit

$$
\lim _{t \rightarrow 0} \frac{t^{2}}{2-\sqrt{4+t^{2}}}
$$

Week 3 Quiz

Problem 1. i) (4 points.) Compute the following limits

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} \frac{x}{\cos (x)}, \quad \quad \lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{x}{\cos (x)}
$$

ii) (2 points.) Find the vertical asymptotes to the graph of the function $y=\frac{x}{\cos (x)}$.

Problem 2. (4 points.) Compute the following limit using the squeeze theorem

$$
\lim _{x \rightarrow 0}\left(e^{x}-1\right) \cos \left(\frac{1}{x^{2}}\right) .
$$

Super Quiz 1

Problem 1. (3 points.) Find the horizontal and vertical asymptotes of

$$
y=\frac{1-x^{2}+3 x}{4 x^{2}-8 x-12}
$$

Problem 2. (5 points.) Find the following limit

$$
\lim _{t \rightarrow \infty}\left(t-\sqrt{t^{2}+4 t}\right)
$$

Problem 3. i) (5 points.) Find the derivative of

$$
f(x)=\sqrt{3 x-1}
$$

ii) (2 points.) Find the tangent line to $y=\sqrt{3 x-1}$ at $\left(\frac{5}{3}, 2\right)$.

Problem 4. (5 points.) Find the following limit

$$
\lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}} \sin \left(\frac{1}{x}\right)
$$

Week 5 Quiz

Problem 1. (6 points.) Find the tangent line to $y=\frac{\sqrt{x}}{e^{x}}$ at $\left(4, \frac{2}{e^{4}}\right)$.
Problem 2. (4 points.) Compute the following limit

$$
\lim _{x \rightarrow 0} \frac{1-2015 x-(1-x)^{2015}}{x^{2}}
$$

Midterm 1

Problem 1. Sketch the graph of the following function

$$
f(x):=\left\{\begin{array}{ll}
2^{-x} & \text { if } 0 \leq x \leq 2 \\
\lfloor x\rfloor & \text { if } 2<x \leq 4 \\
\frac{1}{4-x} & \text { if } x>4
\end{array} .\right.
$$

i) (2 points.) Find the vertical and horizontal asymptotes to the graph of f.

Solution. Since

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{1}{4-x}=0
$$

the x-axis is a horizontal asymptote. The function $f(x)$ has only jump discontinuities on the interval $[0,4)$ and is continuous on $(4, \infty)$, hence there is at most one vertical asymptote, namely $x=4$. Since

$$
\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}}=\frac{1}{4-x}=-\infty
$$

the line $x=4$ is indeed a vertical asymptote.
ii) (12 points.) Find each of the following, or state that it does not exist:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\ldots & \lim _{x \rightarrow 2^{+}} f(x)=\ldots & \lim _{x \rightarrow 2} f(x)=\ldots \\
\lim _{x \rightarrow 3^{-}} f(x) & =\ldots & \lim _{x \rightarrow 3^{+}} f(x)=\ldots & \lim _{x \rightarrow 3} f(x)=\ldots \\
\lim _{x \rightarrow 4^{-}} f(x) & =\ldots & \lim _{x \rightarrow 4^{+}} f(x)=\ldots & \lim _{x \rightarrow 4} f(x)=\ldots
\end{aligned}
$$

Solution.

$$
\begin{array}{rlrl}
\lim _{x \rightarrow 2^{-}} f(x)=\frac{1}{4} & \lim _{x \rightarrow 2^{+}} f(x)=2 & \lim _{x \rightarrow 2} f(x)=D N E & f(2)=\frac{1}{4} \\
\lim _{x \rightarrow 3^{-}} f(x)=2 & \lim _{x \rightarrow 3^{+}} f(x)=3 & \lim _{x \rightarrow 3} f(x)=D N E & f(3)=3 \\
\lim _{x \rightarrow 4^{-}} f(x)=3 & \lim _{x \rightarrow 4^{+}} f(x)=-\infty & \lim _{x \rightarrow 4} f(x)=D N E & f(4)=4 .
\end{array}
$$

Problem 2. i) (4 points.) Find the horizontal and vertical asymptotes to the graph of

$$
f(x)=\frac{e}{\sin (2 x)},
$$

if any.
Solution. Note that

$$
\lim _{x \rightarrow \infty} \frac{e}{\sin (2 x)}=\frac{e}{\lim _{x \rightarrow \infty} \sin (2 x)}
$$

The limit in the denominator on the right-hand side does not exist, hence the limit on the left-hand side does not exist. The same holds for the limit for $x \rightarrow-\infty$. Hence there are no horizontal asymptotes. We have a vertical asymptote when

$$
\sin (2 x)=0 \quad \Leftrightarrow \quad 2 x=k \cdot \pi \quad \text { for } k \in \mathbb{Z} \quad \Leftrightarrow \quad x=\frac{k \cdot \pi}{2} \quad \text { for } k \in \mathbb{Z}
$$

ii) (5 points.) Find the domain of the following function

$$
f(x)=\frac{\sqrt{x^{2}-1}}{x \cdot \ln (x)}
$$

Solution. The domain of $\sqrt{x^{2}-1}$ is $(-\infty,-1] \cup[1, \infty)$. The domain of $\ln (x)$ is $(0, \infty)$. Moreover, we require the denominator to be non-zero, that is, $x \neq 0$ and $x \neq 1$. The intersection of all such sets is $(1, \infty)$.

Problem 3. i) (4 points.) Compute the following limit

$$
\lim _{x \rightarrow \infty} \sqrt[3]{\frac{(9 x-3)(3-6 x)}{(4+x)(2 x+1)}}
$$

Solution. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt[3]{\frac{(9 x-3)(3-6 x)}{(4+x)(2 x+1)}} & =\sqrt[3]{\lim _{x \rightarrow \infty} \frac{(9 x-3)(3-6 x)}{(4+x)(2 x+1)}} \\
& =\sqrt[3]{\lim _{x \rightarrow \infty} \frac{-54 x^{2}}{2 x^{2}}} \\
& =\sqrt[3]{-27}=-3
\end{aligned}
$$

ii) (4 points.) Compute the following limit

$$
\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+3 x}-2 x\right) .
$$

Solution. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+3 x}-2 x\right) & =\lim _{x \rightarrow \infty}\left(\left(\sqrt{4 x^{2}+3 x}-2 x\right) \cdot \frac{\sqrt{4 x^{2}+3 x}+2 x}{\sqrt{4 x^{2}+3 x}+2 x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{4 x^{2}+3 x-4 x^{2}}{\sqrt{4 x^{2}+3 x}+2 x} \\
& =\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{4 x^{2}+3 x}+2 x} \\
& =\lim _{x \rightarrow \infty} \frac{3}{\sqrt{4+3 \frac{1}{x}}+2}=\frac{3}{\sqrt{4}+2}=\frac{3}{4} .
\end{aligned}
$$

Problem 4. i) (5 points.) Compute the following limit

$$
\lim _{x \rightarrow 0}\left(\frac{1-\cos (3 x)}{x} \cdot \sin \left(\frac{3}{x^{2}}\right)\right)
$$

Solution. Note that $\sin \left(\frac{3}{x^{2}}\right)$ is a bounded function, while

$$
\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x}=3 \lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{3 x}=3 \cdot 0=0 .
$$

It follows that the product of the two functions has limit 0 (since "bounded $\cdot 0=0$ "). Alternatively, one can use the squeeze theorem.
ii) (5 points.) Compute the following limit

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x) \cdot \cos ^{2}(2 x)}{\sin (2 x) \cdot e^{\sin \left(x^{2}\right)}} .
$$

Solution. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (3 x) \cdot \cos ^{2}(2 x)}{\sin (2 x) \cdot e^{\sin \left(x^{2}\right)}} & =\left(\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (2 x)}\right)\left(\lim _{x \rightarrow 0} \frac{\cos ^{2}(2 x)}{e^{\sin \left(x^{2}\right)}}\right) \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (2 x)}\right) \cdot 1 \\
& =\left(\lim _{x \rightarrow 0} 3 \cdot \frac{\sin (3 x)}{3 x} \cdot \frac{1}{2} \frac{2 x}{\sin (2 x)}\right)=\frac{3}{2}
\end{aligned}
$$

Problem 5. (9 points.) Find the equations of the two lines passing through $(0,13)$ and tangent to $y=9-x^{2}$.

Solution. On one hand, the slope of the tangent line to $y=9-x^{2}$ at the point $(x, y(x))$ is $y^{\prime}=-2 x$. On the other hand, the slope of the line passing through the points $(x, y(x))$ and $(0,13)$ is $\frac{y(x)-13}{x-0}$, where $y(x)=9-x^{2}$. Equating the two slopes, we have

$$
-2 x=\frac{\left(9-x^{2}\right)-13}{x-0}
$$

Multiplying by x, we have

$$
-2 x^{2}=-x^{2}-4 .
$$

We deduce $x^{2}=4$, hence $x=2$, or $x=-2$. It follows that one of the two desired tangent lines passes through the point $(2, y(2))=(2,5)$, and the other through the point $(-2, y(-2))=(-2,5)$. The tangent line passing through the point $(2,5)$ is $y=-4 x+13$, and the tangent line passing through the point $(-2,5)$ is $y=4 x+13$.

Problem 6. i) (5 points.) Find the points where the curve

$$
y=\frac{x^{3}}{3}+x^{2}-3 x
$$

has an horizontal tangent line.
Solution. First we compute

$$
y^{\prime}=x^{2}+2 x-3 .
$$

Then we solve

$$
x^{2}+2 x-3=0 .
$$

The two solutions are $x=-3$ or $x=1$.
ii) (5 points.) Find the derivative of

$$
f(x)=e^{\cos (\sqrt[3]{3 x})}
$$

Solution. We have

$$
\begin{aligned}
f^{\prime} & =\left(e^{\cos (\sqrt[3]{3 x})}\right)^{\prime}=e^{\cos (\sqrt[3]{3 x})} \cdot(\cos (\sqrt[3]{3 x}))^{\prime} \\
& =e^{\cos (\sqrt[3]{3 x})} \cdot(-\sin (\sqrt[3]{3 x})) \cdot(\sqrt[3]{3 x})^{\prime} \\
& =e^{\cos (\sqrt[3]{3 x})} \cdot(-\sin (\sqrt[3]{3 x})) \cdot\left(\frac{1}{3}(3 x)^{-\frac{2}{3}}\right) \cdot(3 x)^{\prime} \\
& =e^{\cos (\sqrt[3]{3 x})} \cdot(-\sin (\sqrt[3]{3 x})) \cdot\left(\frac{1}{3}(3 x)^{-\frac{2}{3}}\right) \cdot 3 .
\end{aligned}
$$

Week 9 Quiz

Problem 1. (5 points.) Find the linearization of the function $f(x)=\cos (x)$ at $a=\frac{\pi}{2}$, and use it to give an approximate value for $\cos (1.5)$ and $\cos (1.6)$. Say in each case if the approximation is an overestimate, or an underestimate. (Note: $\frac{\pi}{2} \approx 1.57$.)

Problem 2. (5 points.) Find the critical numbers of the following function

$$
f(x)=x^{\frac{1}{3}}(4-x) .
$$

Find the global maximum and minimum values of $f(x)$ on the interval $[-1,8]$.

Super Quiz 2

Problem 1. (9 points.) i) Find the critical points of the following function

$$
f(x)=18 x^{2}+8 x^{3}-3 x^{4}
$$

ii) Use the first derivative test to decide which critical points give a local maximum value and which give a local minimum value.
iii) Use the second derivative test to solve the previous problem.

Problem 2. (5 points.) Find the linearization of the function $f(x)=\sin (x)$ at $a=\pi$, and use it to give an approximate value for $\sin (3.1)$ and $\sin (3.2)$. Say in each case if the approximation is an overestimate, or an underestimate.

Problem 3. (6 points.) Find the following limit

$$
\lim _{x \rightarrow 0} \frac{3-3 \cos (2 x)-6 x^{2}+2 x^{4}}{x^{4}}
$$

Week 11 Quiz

Problem 1. (5 points.) Find the following limit

$$
\lim _{x \rightarrow 0^{+}}(\sin (x))^{x}
$$

Problem 2. (5 points.) Find the most general antiderivative of the following function

$$
f(x)=\frac{\sqrt{x}-x^{4}+x^{5} \sin (x)}{x^{5}}
$$

Midterm 2

Problem 1. i) (5 points.) Evaluate the following limit

$$
\lim _{x \rightarrow \pi^{-}}\left(\tan \left(\frac{x}{2}\right)\right)^{\cos \left(\frac{x}{2}\right)}
$$

Solution. One has

$$
\begin{aligned}
\lim _{x \rightarrow \pi^{-}}\left(\tan \left(\frac{x}{2}\right)\right)^{\cos \left(\frac{x}{2}\right)} & =\lim _{x \rightarrow \pi^{-}} e^{\cos \left(\frac{x}{2}\right) \ln \left(\tan \left(\frac{x}{2}\right)\right)}=\lim _{x \rightarrow \pi^{-}} e^{\frac{\ln \left(\tan \left(\frac{x}{2}\right)\right)}{\left(\cos \left(\frac{x}{2}\right)\right)^{-1}}} \\
& =\lim _{x \rightarrow \pi^{-}} e^{\frac{\frac{1}{2 \tan \left(\frac{x}{2}\right) \cos ^{2}\left(\frac{x}{2}\right)}}{\frac{\sin \left(\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{x}{2}\right)}}}=\lim _{x \rightarrow \pi^{-}} e^{\frac{\cos 2}{}\left(\frac{x}{2}\right)}\left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right) \cos ^{2}\left(\frac{x}{2}\right) \\
& =\lim _{x \rightarrow \pi^{-}} e^{\frac{\cos \left(\frac{x}{2}\right)}{\sin \left(\frac{x}{2}\right)}}=e^{0}=1 .
\end{aligned}
$$

ii) (5 points.) Find the horizontal asymptotes to the graph of the following function

$$
f(x)=\left(\cos \left(\frac{2}{x}\right)\right)^{x^{2}}
$$

Solution. One computes

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\cos \left(\frac{2}{x}\right)\right)^{x^{2}} & =\lim _{x \rightarrow \infty} e^{x^{2} \ln \left(\cos \left(\frac{2}{x}\right)\right)}=\lim _{x \rightarrow \infty} e^{\frac{\ln \left(\cos \left(\frac{2}{x}\right)\right)}{x^{-2}}}=\lim _{x \rightarrow \infty} e^{\frac{\frac{2 \sin \left(\frac{2}{x}\right)}{x^{2} \cos \left(\frac{2}{x}\right)}}{\frac{-2}{x^{3}}}} \\
& =\lim _{x \rightarrow \infty} e^{-\frac{x \sin \left(\frac{2}{x}\right)}{\cos \left(\frac{2}{x}\right)}}=\lim _{x \rightarrow \infty} e^{-\frac{1}{\cos \left(\frac{2}{x}\right)} \cdot 2 \cdot \frac{\sin \left(\frac{2}{x}\right)}{\frac{2}{x}}}=e^{-2} .
\end{aligned}
$$

Moreover, the function $f(x)$ is even, hence $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=e^{-2}$. We deduce that there is only one horizontal asymptote, namely $y=e^{-2}$.

Problem 2. i) (6 points.) Given

$$
f^{\prime}(x)=\frac{(2-x)\left(x^{2}+3\right)(x+4)}{x^{3}(x-1)^{4}}
$$

find the critical points of the function $f(x)$. Decide which critical points give a local maximum value, and which give a local minimum value.

Solution. Note that the factors $\left(x^{2}+3\right)$ and $(x-1)^{4}$ are always non-negative, and hence do not affect the study of the sign of $f^{\prime}(x)$. The critical values of $f(x)$ are $-4,0,1,2$. By the first derivative test, $x=-4$ and $x=2$ give a local maximum, $x=0$ gives a local minimum, while $x=1$ does not give a local extreme.
ii) (6 points.) Given

$$
f^{\prime}(x)=\frac{x^{3}\left(3 x^{2}-5\right)}{15}
$$

find the intervals of concavity and the inflection points of the function $f(x)$.
Solution. Note that

$$
f^{\prime}(x)=\frac{x^{5}}{5}-\frac{x^{3}}{3} .
$$

One computes

$$
f^{\prime \prime}(x)=x^{4}-x^{2}=x^{2}(x-1)(x+1)
$$

From the study of the sign of $f^{\prime \prime}(x)$, the function $f(x)$ is concave upward on the intervals $x<-1$ and $x>1$, and is concave downward on the interval $-1<x<1$. It follows that the inflection points are at $x=-1$ and $x=1$.

Problem 3. i) (5 points.) Find the local and absolute extreme values of the following function

$$
f(x)=2 x^{2}-x^{4}
$$

on the interval $[-2,2]$. Decide which local extreme values are a local minimum or a local maximum.

Solution. Note that the function $f(x)$ is even, so the graph of $f(x)$ is symmetric with respect to the y-axis. One computes

$$
f^{\prime}(x)=4 x-4 x^{3}=4 x(1-x)(1+x) .
$$

Hence, local or absolute values may occur at $x \in\{-2,-1,0,1,2\}$, that is, at the critical points, or at the endpoints. Since $f(0)=0, f(1)=f(-1)=1$, and $f(-2)=f(2)=-8$, one has that the absolute maximum is at $x=1$ and $x=-1$, and the absolute minimum is at $x=2$ and $x=-2$. From the first derivative test, one deduces that $x=0$ gives a local minimum.
ii) (5 points.) Given

$$
f^{\prime}(x)=\sec (x)\left(\sec (x)+e^{x} \cos (x)\right)
$$

and $f\left(\frac{\pi}{4}\right)=1$, find $f(x)$.
Solution. One computes

$$
f(x)=\int f^{\prime}(x) d x=\int\left(\sec ^{2}(x)+e^{x}\right) d x=\tan (x)+e^{x}+C .
$$

Since

$$
1=f\left(\frac{\pi}{4}\right)=1+e^{\frac{\pi}{4}}+C
$$

we deduce $C=-e^{\frac{\pi}{4}}$. Hence, we have $f(x)=\tan (x)+e^{x}-e^{\frac{\pi}{4}}$.
Problem 4. i) (6 points.) Find the general antiderivative of the following function

$$
f(x)=(2-x)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) .
$$

Solution. We have

$$
\begin{aligned}
\int(2-x)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x & =\int\left(2 \sqrt{x}+\frac{2}{\sqrt{x}}-x \sqrt{x}-\frac{x}{\sqrt{x}}\right) d x \\
& =\int\left(2 x^{\frac{1}{2}}+2 x^{-\frac{1}{2}}-x^{\frac{3}{2}}-x^{\frac{1}{2}}\right) d x \\
& =\frac{4}{3} x^{\frac{3}{2}}+4 \sqrt{x}-\frac{2}{5} x^{\frac{5}{2}}-\frac{2}{3} x^{\frac{3}{2}}+C
\end{aligned}
$$

ii) (6 points.) Find the general antiderivative of the following function

$$
f(x)=\frac{7 \sqrt{x}-\sqrt[3]{x} \cdot 3^{x}-x^{-\frac{2}{3}}}{\sqrt[3]{x}}
$$

Solution. We have

$$
\begin{aligned}
\int \frac{7 \sqrt{x}-\sqrt[3]{x} \cdot 3^{x}-x^{-\frac{2}{3}}}{\sqrt[3]{x}} d x & =7 \int x^{\frac{1}{6}} d x-\int 3^{x} d x-\int \frac{1}{x} d x \\
& =6 x^{\frac{7}{6}}-\frac{3^{x}}{\ln (3)}-\ln |x|+C
\end{aligned}
$$

Problem 5. i) (5 points.) Evaluate the following integral

$$
\int_{-\frac{3}{2}}^{\frac{7}{2}}\lfloor x\rfloor d x \text {. }
$$

Hint: sketch the graph of the function $f(x)=\lfloor x\rfloor$.
Solution. We have

$$
\begin{aligned}
\int_{-\frac{3}{2}}^{\frac{7}{2}}\lfloor x\rfloor d x & =\int_{-1.5}^{-1}(-2) d x+\int_{-1}^{0}(-1) d x+\int_{0}^{1} 0 \cdot d x+\int_{1}^{2} 1 \cdot d x+\int_{2}^{3} 2 \cdot d x+\int_{3}^{3.5} 3 \cdot d x \\
& =\left(-2 \cdot \frac{1}{2}\right)+(-1)+0+1+2+\left(3 \cdot \frac{1}{2}\right)=\frac{5}{2}
\end{aligned}
$$

ii) (5 points.) Evaluate the following integral

$$
\int_{-\frac{\pi}{6}}^{\frac{5 \pi}{4}}|\sin (x)| d x
$$

Solution. We have

$$
\begin{aligned}
\int_{-\frac{\pi}{6}}^{\frac{5 \pi}{4}}|\sin (x)| d x & =\int_{-\frac{\pi}{6}}^{0}(-\sin (x)) d x+\int_{0}^{\pi} \sin (x) d x+\int_{\pi}^{\frac{5 \pi}{4}}(-\sin (x)) d x \\
& =[\cos (x)]_{-\frac{\pi}{6}}^{0}+[-\cos (x)]_{0}^{\pi}+[\cos (x)]^{\frac{5 \pi}{4}} \\
& =\cos (0)-\cos \left(-\frac{\pi}{6}\right)+(-\cos (\pi)-(-\cos (0)))+\cos \left(\frac{5 \pi}{4}\right)-\cos (\pi) \\
& =1-\frac{\sqrt{3}}{2}+2+\left(-\frac{\sqrt{2}}{2}+1\right)=4-\frac{\sqrt{3}+\sqrt{2}}{2}
\end{aligned}
$$

Problem 6. (6 points.) Given

$$
f(x):= \begin{cases}|x|-1, & \text { for } x \leq 1 \\ e^{x}-e, & \text { for } 1<x<2 \\ -\frac{1}{x^{2}}, & \text { for } x \geq 2\end{cases}
$$

evaluate the following integral

$$
\int_{-1}^{3} f(x) d x
$$

Hint: sketch the graph of the function $f(x)$.
Solution. We have

$$
\begin{aligned}
\int_{-1}^{3} f(x) d x & =\int_{-1}^{0}(-x-1) d x+\int_{0}^{1}(x-1) d x \int_{1}^{2}\left(e^{x}-e\right) d x+\int_{2}^{3}\left(-\frac{1}{x^{2}}\right) d x \\
& =\left[-\frac{x^{2}}{2}-x\right]_{-1}^{0}+\left[\frac{x^{2}}{2}-x\right]_{0}^{1}+\left[e^{x}-e \cdot x\right]_{1}^{2}+\left[\frac{1}{x}\right]_{2}^{3} \\
& =\frac{1}{2}-1+\frac{1}{2}-1+e^{2}-2 e-\frac{1}{6}=-\frac{7}{6}+e^{2}-2 e
\end{aligned}
$$

ii) (2 bonus points.) Evaluate the following limit by first recognizing the sum as a Riemann sum for a function defined on $[0,1]$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1-\left(\frac{i}{n}\right)^{2}}}
$$

Solution. We have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1-\left(\frac{i}{n}\right)^{2}}}=\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (1)-\arcsin (0)=\frac{\pi}{2}
$$

Week 15 Quiz

Problem. Compute the following integrals

> (i) $\int e^{3 t}\left(t^{2}+t\right) d t$
> (ii) $\int \frac{8-5 x}{(x-1)(2-x)} d x$

Final Exam

Problem 1. (9 points.) Consider the following function

$$
f(x)=\ln (x)-\frac{x^{2}}{6}
$$

(1) Find the domain of $f(x)$.
(2) Find the interval(s) on the real line where $f(x)$ is increasing and decreasing.
(3) Find the x-value(s), if any, where $f(x)$ has zero slope.
(4) Find the point(s) of inflection, if any, for $f(x)$ and regions of the real line where the function is concave up and down.
(5) Based on the results from above, sketch the graph of $f(x)$, and correctly represent increasing and decreasing regions, and concavity. Are there any vertical asymptotes to the graph of $f(x)$?

Solution. The domain of $f(x)$ is the interval $(0, \infty)$. One has

$$
f^{\prime}(x)=\frac{1}{x}-\frac{x}{3}=\frac{3-x^{2}}{3 x} .
$$

One finds that $f^{\prime}(x)$ is positive on the interval $(0, \sqrt{3})$, and negative on the interval $(\sqrt{3}, \infty)$. It follows that $f(x)$ is increasing on $(0, \sqrt{3})$ and decreasing on $(\sqrt{3}, \infty)$. Moreover, $f(x)$ has zero slope at $x=\sqrt{3}$. One has

$$
f^{\prime \prime}(x)=-\frac{1}{x^{2}}-\frac{1}{3}=-\frac{3+2 x^{2}}{3 x^{2}}
$$

Since $f^{\prime \prime}(x)$ is always negative, one deduces that $f(x)$ is concave down on its domain. There are no inflection points. Finally, there is a global maximum at $x=\sqrt{3}$, and there is a vertical asymptote at $x=0$.

Problem 2. i) (4 points.) Suppose the following function

$$
f(t)=t \sin \left(t^{2}\right)
$$

represents the velocity of an object for t in the range $\left[0, \sqrt{\frac{\pi}{6}}\right]$.
(1) Write down the correct expression for the distance traveled starting from time $t=0$ to time $t=\sqrt{\frac{\pi}{6}}$.
(2) Compute the exact value of the expression from (1).

Solution. The distance is

$$
\int_{0}^{\sqrt{\frac{\pi}{6}}} t \sin \left(t^{2}\right) d t=\frac{1}{2}\left[-\cos \left(t^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{6}}}=\frac{1}{2}\left(1-\frac{\sqrt{3}}{2}\right)
$$

ii) (5 points.) Find the horizontal asymptotes to the graph of the following function

$$
f(x)=\sqrt{\frac{3 x^{2}(1-3 x)(1+3 x)}{\left(x^{2}-1\right)\left(4-3 x^{2}\right)}}
$$

Solution. To compute the horizontal asymptotes, one has to compute the limit of $f(x)$ as $x \rightarrow \pm \infty$. We have

$$
\lim _{x \rightarrow \infty} f(x)=\sqrt{\frac{-27 x^{4}}{-3 x^{4}}}=3=\lim _{x \rightarrow-\infty} f(x)
$$

Hence, there is one horizontal asymptote, namely $y=3$.
Problem 3. (15 points.) Find the derivative of the following functions

$$
\begin{aligned}
f(x) & =\sqrt[3]{x} \sin \left(\cos \left(1-x^{2}\right)\right) \\
g(x) & =\int_{0}^{\cos (x)} \frac{e^{y}}{\sqrt[3]{y}+2} d y \\
h(x) & =(\ln (3 x))^{\sin (x)}
\end{aligned}
$$

Solution. One has

$$
f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}} \sin \left(\cos \left(1-x^{2}\right)\right)+\sqrt[3]{x} \cos \left(\cos \left(1-x^{2}\right)\right) \cdot\left(-\sin \left(1-x^{2}\right)\right)(-2 x)
$$

To compute $g^{\prime}(x)$, let

$$
L(x):=\int_{0}^{x} \frac{e^{y}}{\sqrt[3]{y}+2} d y
$$

Note that $L^{\prime}(x)=\frac{e^{x}}{\sqrt[3]{x}+2}$. We can rewrite $g(x)$ as $g(x)=L(\cos (x))$. We deduce

$$
g^{\prime}(x)=L^{\prime}(\cos (x)) \cdot \cos ^{\prime}(x)=\frac{e^{\cos (x)}}{\sqrt[3]{\cos (x)}+2} \cdot(-\sin (x))
$$

Finally, to compute $h^{\prime}(x)$, we use the method of logarithmic differentiation. We have

$$
\ln (h(x))=\sin (x) \cdot \ln (\ln (3 x)) .
$$

Differentiating, we have

$$
\frac{1}{h(x)} \cdot h^{\prime}(x)=\cos (x) \cdot \ln (\ln (3 x))+\sin (x) \cdot \frac{1}{\ln (3 x)} \cdot \frac{1}{3 x} 3 .
$$

Finally, solving for $h^{\prime}(x)$, we have

$$
h^{\prime}(x)=h(x) \cdot\left(\cos (x) \cdot \ln (\ln (3 x))+\frac{\sin (x)}{x \ln (3 x)}\right) .
$$

Problem 4. i) (4 points.) Evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{\ln (3 x+1)-3 x}{e^{-x}-1+x}
$$

Solution. Applying l'Hopital twice, one has

$$
\lim _{x \rightarrow 0} \frac{\ln (3 x+1)-3 x}{e^{-x}-1+x}=\lim _{x \rightarrow 0} \frac{\frac{3}{3 x+1}-3}{-e^{-x}+1}=\lim _{x \rightarrow 0} \frac{-\frac{9}{(3 x+1)^{2}}}{e^{-x}}=-9 .
$$

ii) (8 points.) Evaluate the following integral

$$
\int \frac{x^{2}-1}{x^{3}+x^{2}+x} d x
$$

Solution. By the method of partial fractions decomposition, one has

$$
\int \frac{x^{2}-1}{x^{3}+x^{2}+x} d x=\int \frac{-1}{x} d x+\int \frac{2 x+1}{x^{2}+x+1} d x=-\ln |x|+\ln \left(x^{2}+x+1\right)+C .
$$

Problem 5. i) (5 points.) Evaluate the following integral

$$
\int_{0}^{\frac{1}{2}}\left(1-t^{2}\right) \sin (\pi t) d t
$$

Solution. Integrating by parts twice, one has

$$
\begin{aligned}
\int\left(1-t^{2}\right) \sin (\pi t) d t & =-\frac{\cos (\pi t)}{\pi}\left(1-t^{2}\right)-\frac{2}{\pi} \int \cos (\pi t) t d t \\
& =-\frac{\cos (\pi t)}{\pi}\left(1-t^{2}\right)-\frac{2}{\pi^{2}} \sin (\pi t) t-\frac{2}{\pi^{3}} \cos (\pi t)+C
\end{aligned}
$$

Hence, the definite integral is

$$
\int_{0}^{\frac{1}{2}}\left(1-t^{2}\right) \sin (\pi t) d t=\left[-\frac{\cos (\pi t)}{\pi}\left(1-t^{2}\right)-\frac{2}{\pi^{2}} \sin (\pi t) t-\frac{2}{\pi^{3}} \cos (\pi t)\right]_{0}^{\frac{1}{2}}=\frac{1}{\pi}-\frac{1}{\pi^{2}}+\frac{2}{\pi^{3}}
$$

ii) (5 points.) Evaluate the following integral or show that it is divergent

$$
\int_{2}^{\infty} \frac{x}{\sqrt{x^{2}-1}} d x
$$

Solution. We have

$$
\int_{2}^{\infty} \frac{x}{\sqrt{x^{2}-1}} d x=\lim _{b \rightarrow \infty} \frac{1}{2}\left[2 \sqrt{x^{2}-1}\right]_{2}^{b}=\lim _{b \rightarrow \infty}\left(\sqrt{b^{2}-1}-\sqrt{3}\right)
$$

The limit is ∞, hence the integral diverges.
Problem 6. i) (5 points.) Find the volume of the solid obtained by rotating about the x-axis the region bounded by the curves $x=2, y=x$, and $y^{2}=x+2$.

Solution. The volume is

$$
\pi \int_{0}^{2}\left(x+2-x^{2}\right) d x=\pi\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{0}^{2}=\frac{10 \pi}{3} .
$$

ii) (5 bonus points.). Evaluate the following limit by first recognizing the sum as a Riemann sum for a function defined on $[0,1]$

$$
\lim _{n \rightarrow \infty} \frac{\pi}{n} \sum_{i=1}^{n} \frac{1}{1+\left(\frac{i}{n}\right)^{2}}
$$

Describe a solid of revolution whose volume is equal to the above limit.
Solution. One has

$$
\lim _{n \rightarrow \infty} \frac{\pi}{n} \sum_{i=1}^{n} \frac{1}{1+\left(\frac{i}{n}\right)^{2}}=\pi \int_{0}^{1} \frac{1}{1+x^{2}} d x=\pi[\arctan (x)]_{0}^{1}=\frac{\pi^{2}}{4}
$$

A possible solid of revolution with volume equal to the above limit is the solid obtained by revolving about the x-axis the region bounded by the curves $y=0, x=0, x=1$, $y^{2}=\frac{1}{1+x^{2}}$. A simpler solution is the cylinder of height 1 and radius of the base equal to $\sqrt{\pi} / 2$.

