Exercise Sheet 8

Hand in solutions not later than Monday, December 14.

Exercise 1. Let $M_{m, n}$ be the vector space of $m \times n$-matrices. Let \mathbb{P} be the associated projective space. Let $k \in\{1, \ldots, \min \{m, n\}-1\}$. Denote with $V_{k} \subset \mathbb{P}$ the subvariety consisting of points $[M] \in \mathbb{P}$ such that $\operatorname{rank} M \leq k$. Let $\Psi \subset V_{k} \times G(n-k, n)$ be defined as

$$
\Psi:=\{(A, \Lambda) \mid A \Lambda=0\}
$$

Let $\pi_{1}: \mathbb{P} \times G(n-k, n) \rightarrow \mathbb{P}$ and $\pi_{2}: \mathbb{P} \times G(n-k, n) \rightarrow G(n-k, n)$ be the natural projections.
i) Show that for every $[\Lambda] \in G(n-k, n)$ we have that $\left\{A \in M_{m, n} \mid A \Lambda=\right.$ $0\}=\operatorname{Hom}\left(K^{n} / \Lambda, K^{m}\right)$. Using this, calculate $\operatorname{dim} \pi_{2}^{-1}(P) \cap \Psi$ for every $P \in G(n-k, n)$. Determine also $\operatorname{dim} \Psi$.
ii) Determine $\operatorname{dim} \pi_{1}^{-1}(Q) \cap \Psi$. Deduce from this that the codimension of V_{k} in \mathbb{P} equals $(m-k)(n-k)$.

Exercise 2. (Blow-up of A_{k}-singularities) Let $C_{k}=V\left(x^{2}+y^{k+1}\right) \subset \mathbb{A}^{2}$ be an A_{k}-singularity. Let $\varphi: Y \rightarrow \mathbb{A}^{2}$ be the blow-up of \mathbb{A}^{2} in $(0,0)$. Let $\overline{C_{k}}$ be the strict transform of C_{k}.
i) Show that $\overline{C_{1}}$ is isomorphic to two disjoint copies of \mathbb{A}^{1}. Determine $\varphi^{-1}\{(0,0)\} \cap \overline{C_{1}}$.
ii) Show that $\overline{C_{2}}$ is isomorphic to \mathbb{A}^{1}. Determine $\varphi^{-1}\{(0,0)\} \cap \overline{C_{2}}$.
iii) For $k>2$, show that $\overline{C_{k}}$ is isomorphic to C_{k-2}. Determine $\varphi^{-1}\{(0,0)\} \cap$ $\overline{C_{k}}$.

Exercise 3. Let $C_{k}=V\left(x^{2}+y^{k+1}\right) \subset \mathbb{A}^{2}$.
i) How many blows-up are needed, in order to have that the strict transform of C_{k} is smooth?
ii) Sketch how the exceptional divisor looks like after such a sequence of blow-ups.
Exercise 4. (Plane Cremona transformations) Let $\chi: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$ be the rational map defined by $\left[a_{0}: a_{1}: a_{2}\right] \mapsto\left[a_{1} a_{2}: a_{0} a_{2}: a_{0} a_{1}\right]$, whenever this makes sense.
i) Show that χ is birational and that $\chi^{-1}=\chi$, i.e., $\chi^{2}=i d$.
ii) Find open sets $U, V \subset \mathbb{P}^{2}$ where the restriction of χ is an isomorphism.

