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Nothing prevents you from eliciting, or as men say learning,

out of a single recollection all the rest.
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Abstract

The aim of this thesis is the explicit computation of certain geometric cycles
in moduli spaces of curves. In recent years, divisors of Mg,n have been extensively
studied. Computing classes in codimension one has yielded important results on
the birational geometry of the spaces Mg,n. We give an overview of the subject
in Chapter 1.

On the contrary, classes in codimension two are basically unexplored. In
Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined
by curves with a pencil of degree k. Since the Brill-Noether number is equal to
−2, such a locus has codimension two. Using the method of test surfaces, we
compute the class of its closure in the moduli space of stable curves.

The aim of Chapter 3 is to compute the class of the closure of the effective
divisor in M6,1 given by pointed curves [C, p] with a sextic plane model mapping p
to a double point. Such a divisor generates an extremal ray in the pseudoeffective
cone of M6,1 as shown by Jensen. A general result on some families of linear
series with adjusted Brill-Noether number 0 or −1 is introduced to complete the
computation.
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Zusammenfassung

Ziel dieser Arbeit ist die explizite Berechnung gewisser geometrischer Zykel
in Modulräumen von Kurven. In den letzten Jahren wurden Divisoren auf Mg,n

ausgiebig untersucht. Durch die Berechnung von Klassen in Kodimension 1 kon-
nten wichtige Ergebnisse in der birationalen Geometrie der Räume Mg,n erzielt

werden. In Kapitel 1 geben wir einen Überblick über dieses Thema.
Im Gegensatz dazu sind Klassen in Kodimension 2 im Großen und Ganzen

unerforscht. In Kapitel 2 betrachten wir den Ort, der im Modulraum der Kurven
vom Geschlecht 2k durch die Kurven mit einem Büschel vom Grad k definiert
wird. Da die Brill-Noether-Zahl hier −2 ist, hat ein solcher Ort die Kodimen-
sion 2. Mittels der Methode der Testflächen berechnen wir die Klasse seines
Abschlusses im Modulraum der stabilen Kurven.

Das Ziel von Kapitel 3 ist es, die Klasse des Abschlusses des effektiven Divi-
sors in M6,1 zu berechnen, der durch punktierte Kurven [C, p] gegeben ist, für die
ein ebenes Modell vom Grad 6 existiert, bei dem p auf einen Doppelpunkt abge-
bildet wird. Wie Jensen gezeigt hat, erzeugt dieser Divisor einen extremalen
Strahl im pseudoeffektiven Kegel von M6,1. Ein allgemeines Ergebnis über
gewisse Familien von Linearsystemen mit angepasster Brill-Noether-Zahl 0 oder
−1 wird eingeführt, um die Berechnung zu vervollständigen.
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1

Introduction

Moduli spaces of curves play a central role in classical algebraic geometry.
One of their great advantages is a wealth of explicitly described subvarieties.
The aim of this thesis is the computation of classes of several interesting loci in
codimension one or two. In this chapter we will review some of the main loci
known so far and the geometry involved.

For g ≥ 2, the moduli space Mg parametrizes smooth complex curves of
genus g and has the structure of a Deligne-Mumford stack of dimension 3g − 3.
It is compactified by the space Mg of stable curves of genus g and the boundary

Mg\Mg is a divisor with normal crossings. Similarly, for 2g−2+n > 0, the space

Mg,n (respectively Mg,n) parametrizes smooth (respectively stable) n-pointed
curves of genus g and is a Deligne-Mumford stack of dimension 3g − 3 + n.

A natural problem is the study of the properties of Mg,n which are bira-
tionally invariant. For instance, one would like to compute the Kodaira dimen-
sion of the spaces Mg,n. For a smooth variety X , the Kodaira dimension κ(X)
is defined as the projective dimension of the ring

⊕

n≥0

H0 (X,nKX)

where KX is the canonical divisor of X . Equivalently, κ(X) is defined as the
largest dimension of the n-canonical mapping ϕnKX

: X 99K PH0(X,nKX) for
n ≥ 1. In case of H0(X,nKX) = ∅ for every n ≥ 1, one sets κ(X) = −∞. For a
singular variety, one defines the Kodaira dimension to be the Kodaira dimension
of any smooth model. The possible values for κ(X) are −∞, 0, 1, . . . ,dimX and
X is said to be of general type when κ(X) = dimX . For example, for smooth
projective varieties in characteristic zero, uniruledness (a property weaker than
unirationality or rationally connectedness) implies Kodaira dimension −∞ (see
for instance [Deb01, Ch. 4 Cor. 4.12]).

A classical result of Severi says that Mg is unirational for g ≤ 10, that is,
κ(Mg) = −∞ for g ≤ 10 (see [AC81a]). This means that one can describe
almost all curves of genus g ≤ 10 by equations depending on free parameters.
Severi conjectured the unirationality of Mg for all g. Disproving this conjecture,
Harris, Mumford and Eisenbud showed in [HM82], [Har84] and [EH87] that
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2 1. INTRODUCTION

Mg is of general type for g ≥ 24, that is, κ(Mg) = dimMg = 3g − 3. This is
equivalent to say that the canonical class is big, that is, lies in the interior of the
pseudoeffective cone.

This result has many important consequences. For instance, when κ(Mg)
is non-negative, the general curve C of genus g does not admit a polynomial
presentation, and if C occurs in a non-trivial linear system on a surface S, then
S is birational to C × P1 ([HM82, pg. 26]).

For an effective divisor D in Mg, one defines the slope of D to be

s(D) := inf




a

b
for a, b > 0 : aλ− bδ −D ≡

⌊g/2⌋∑

i=0

ciδi, where ci ≥ 0 ∀i





(see [HM90]). When D is the closure of an effective divisor in Mg, one has that

s(D) <∞. In this case, if D has class aλ−
∑⌊g/2⌋

i=0 biδi ∈ PicQ(Mg), then

s(D) =
a

min
⌊g/2⌋
i=0 bi

.

Harris and Mumford first computed the canonical class of Mg

KMg
= 13λ− 2

⌊g/2⌋∑

i=0

δi

using Kodaira-Spencer theory and the Grothendieck-Riemann-Roch formula.
They showed that pluri-canonical forms defined on the open set of curves

without automorphisms extend to any desingularization of Mg, hence exhibiting
enough global sections of a positive multiple of KMg

gives a lower bound for

κ(Mg). If there exists an effective divisor D with slope less than 13/2, the slope
of the canonical class, then one has that

KMg
∈ (13 − 2s(D))λ+

2

min
⌊g/2⌋
i=0 bi

D + Q≥0

〈
δ0, . . . , δ⌊g/2⌋

〉

where the coefficient of λ is positive. It follows that the global sections of |nKMg
|

are at least as many as the global sections of |n(13− 2s(D))λ|. Since the class λ
is big in Mg (see for instance [Mum77, Thm. 5.20]), the linear system |n(13 −
2s(D))λ| defines a birational morphism to a projective space for sufficiently large
n, hence KMg

is big as well.

To exhibit a divisor with small slope for odd values of g = 2k − 1 ≥ 25,
Harris and Mumford considered the closure of the Brill-Noether locus of curves
admitting a regular map onto P1 of degree k.
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1.1. Brill-Noether loci in Mg

A linear series gr
d on a smooth projective curve C is a pair (L , V ), where

L ∈ Picd(C) and V ⊂ H0(C,L ) is a subvectorspace of dimension r + 1. Brill-
Noether theory studies what gr

d a general curve [C] ∈ Mg has. Let us define the
Brill-Noether number

ρ(g, r, d) := g − (r + 1)(g − d+ r).

The following result was introduced by Brill and Noether in [BN74]. A rigorous
modern proof is due to Griffiths and Harris ([GH80]).

Theorem 1.1.1 (Griffiths-Harris). A general curve [C] ∈ Mg has a linear

series gr
d if and only if ρ(g, r, d) ≥ 0. When so, the variety of linear series Gr

d(C)
is pure of dimension ρ(g, r, d).

It follows that loci of curves carrying a linear series gr
d with negative Brill-

Noether number form a subvariety of codimension at least one in Mg. Let Mr
g,d

denote the locus in Mg of curves admitting a gr
d. If ρ(g, r, d) < 0, then one has

that the codimension of Mr
g,d is less than or equal to −ρ(g, r, d) (see [Ste98]).

Let us sketch the proof of this result. For a smooth curve C of genus g, let
W r

d (C) be the variety parametrizing complete linear series of degree d and dimen-
sion at least r. The classical description of W r

d (C) as a determinantal subscheme
of Picn(C) for some big enough n (see [ACGH85, Ch. VII §2]) extends to the
relative situation of smooth families. For a proper smooth family π : C → S of
curves of genus g, let Picd(C/S) be the relative Picard variety, that is, the variety

parametrizing couples (Cs,Ls), with Cs being a fiber of π, Ls ∈ Picd(Cs) and
s ∈ S. Similarly, let Wr

d(C/S) be the variety parametrizing couples (Cs,L
′
s),

with Cs being a fiber of π and L ′
s ∈ W r

d (Cs). Then Wr
d(C/S) can be realized

as a degeneracy locus in Picn(C/S) for n ≥ 2g. This is carried out in [Ste98].
There exists a map of vector bundles ϕ : E → F over Picn(C/S) with E and F

respectively of rank n− g+1 and n− d, such that Wr
d(C/S) is the locus where ϕ

has rank less than or equal to n− g − r. Being locally defined by the vanishing
of all the minors of order n− g− r+1 of a (n− g+1)× (n−d) matrix, Wr

d(C/S)
has codimension at most

[n− g + 1 − (n− g − r)] · [n− d− (n− g − r)] = (r + 1)(g − d+ r)

in Picn(C/S). Finally, using that E and F can be chosen such that E ∨ ⊗ F is
ample relative f : Picn(C/S) → S, Steffen shows that the codimension in S of
f(Wr

d(C/S)), that is, the pull-back of Mr
g,d to S via the moduli map, is at most

(r + 1)(g − d+ r) + dimS − dimPicn(C/S) = −ρ(g, r, d).

It follows that, when ρ(g, r, d) is negative, the locus Mr
g,d has codimension less

than or equal to −ρ(g, r, d) in Mg.
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When ρ(g, r, d) ∈ {−1,−2,−3}, one knows that the opposite inequality also
holds (see [EH89] and [Edi93]), hence the locus Mr

g,d is actually pure of codi-

mension −ρ(g, r, d). Moreover, when r = 1, this is true in any case. Indeed, let

G1
d

π
→ Mg be the variety over Mg parametrizing couples (C, l) where C is a curve

of genus g and l ∈ G1
d(C). One has that G1

d is smooth of dimension 2g+2d−5 (see
for instance [AC81b, pg. 35]) and clearly π(G1

d) = M1
g,d. B. Segre constructed a

smooth curve C of genus g together with a base-point free pencil l ∈ G1
d(C) such

that the differential of π at the point [(C, l)] ∈ G1
d is injective (see for instance

[AC81a, pg. 346]). Since M1
g,d is irreducible (see [Ful69]), it follows that the

dimension of M1
g,d is 2g+2d−5, that is, M1

g,d has codimension exactly −ρ(g, 1, d)
for every ρ(g, 1, d) < 0.

In [HM82] Harris and Mumford considered the locus of curves M1
2k−1,k in

M2k−1 admitting a g1
k. Since the Brill-Noether number ρ(2k−1, 1, k) = −1, this

locus is indeed a divisor. Using the method of test curves coupled with admissible
covers, they computed the class of its closure in M2k−1

[
M

1

2k−1,k

]
=

3(2k − 4)!

k!(k − 2)!


(g + 3)λ−

g + 1

6
δ0 −

⌊g/2⌋∑

i=1

i(g − i)δi


(1.1.1)

where g = 2k − 1. This result was later improved in [EH87] by Eisenbud and
Harris, who computed the class of any Brill-Noether divisor by means of their
theory of limit linear series. They showed that the class of M

r

g,d with ρ(g, r, d) =
−1 (hence necessarily g + 1 composite) is

[
M

r

g,d

]
= cg,d,r · BN

for some cg,d,r > 0, where

BN := (g + 3)λ−
g + 1

6
δ0 −

⌊g/2⌋∑

i=1

i(g − i)δi.(1.1.2)

That is, fixing the genus g and varying r and d, the classes of all Brill-Noether
divisors surprisingly lie in the same ray of the effective cone of Mg. In particular,

such a ray has slope < 13/2, hence Mg is of general type for g ≥ 24 and g + 1
composite. The same result for the remaining values of g ≥ 24 was obtained
by Eisenbud and Harris by considering a divisor of different nature, namely the
Gieseker-Petri divisor, see §1.5.

The theory of limit linear series has also been used by Eisenbud and Harris to
obtain further results on the subject. For instance, they prove that Brill-Noether
divisors are irreducible (see [EH89]).
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See [Far09a] for an account on the state of the art of the Kodaira dimension
of Mg.

1.2. The method of test curves and admissible covers

Harris and Mumford proved that Brill-Noether loci are tautological in Mg.
That is, without knowing at the time that the Picard group of Mg is generated
by λ, they proved that the class of the compactification of a Brill-Noether divisor
is equal to an expression of the form

[
M

r

g,d

]
= aλ− b0δ0 − b1δ1 · · · − b⌊g/2⌋δ⌊g/2⌋.(1.2.1)

Later Harer, Arbarello and Cornalba proved that PicQ(Mg) is freely generated by
λ and δi’s for g ≥ 3, hence every divisor is expressible as in (1.2.1) (see [AC87]).

The method of test curves consists in intersecting both sides of (1.2.1) with
several curves in Mg. On one hand, one has to compute the degree of the
restrictions of the classes λ and δi’s to one test curve. On the other hand, one
considers the degree of the restriction of the Brill-Noether divisor. For each curve,
one thus obtains a linear relation in the coefficients a and bi’s, and varying the
curve one can produce enough independent relations to solve the linear system
and compute the coefficients.

It is easy to produce curves which are contained in the boundary of Mg,
hence a good theory of degeneration of linear series is needed. When r = 1, this
is done by the theory of admissible covers.

The Hurwitz scheme Hk,b parametrizes k-sheeted coverings C → P1 with b
ordinary branch points lying over distinct points of P1, andC a smooth irreducible
curve of genus g. By the Hurwitz formula, one has 2 − 2g = 2k − b. The locus
M1

2k−1,k is the image of the map ϕ : Hk,b → M2k−1 obtained by forgetting the

covering, that is, ϕ([C → P1]) := [C]. Harris and Mumford compactified Hk,b by
the space of admissible covers of degree k.

Given a semi-stable curve C of genus g and a stable b-pointed curve (R, p1, p2,
. . . , pb) of genus 0, an admissible cover is a regular map π : C → B such that the
followings hold: π−1(Bsmooth) = Csmooth, π|Csmooth

is simply branched over the
points pi and unramified elsewhere, π−1(Bsingular) = Csingular and if C1 and C2

are two branches of C meeting at a point p, then π|C1 and π|C2 have same
ramification index at p. Note that one may attach rational tails at C to cook up
the degree of π.

The above conditions allow to smooth the covering. Thus [C] in M2k−1 is
in the closure of M1

2k−1,k if and only if there exists an admissible cover C′ → R

of degree k with C′ stably equivalent to C (that is, C is obtained from C′ by
contracting rational components meeting the rest of the curve in at most two
points).
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(P1)1

(P1)2

(P1)3

C1

C2

C3

Figure 1.2.1. An admissible cover

1.3. Enumerative geometry on the general curve

Counting admissible covers (and in general limit linear series) on test curves
boils down to solving enumerative problem on the general curve. The first ques-
tion in this direction is the following. Fix g, r and d such that ρ(g, r, d) = 0. By
Thm. 1.1.1, the general curve of genus g has only finitely many linear series gr

d.
How many of them are there?

This problem was elegantly solved by Castelnuovo in [Cas89]. His idea was to
consider a general singular curve C of arithmetic genus g consisting of a rational
curve with g nodes, and count the linear series on this singular curve.

One can realize the normalization C̃ of C as the rational normal curve P1 →
Pd of degree d. If r1, . . . , rg are the nodes of C, let pi, qi be the points in C̃ that are

mapped to the node ri, for i = 1, . . . , g. The pull-back to C̃ of a linear series gr
d

on C can then be realized as a linear series on C̃ swept out by an r-dimensional
system of hyperplanes with the following property: if one of the hyperplanes
contains one of the points pi, qi, then necessarily contains the other point as well.
The intersection of the hyperplanes in one of such systems is a (d− r − 1)-plane
meeting the lines through pi, qi. One then counts the (d− r− 1)-planes with this
property.

This is a problem in Schubert calculus. Let α be a Schubert index of type
r, d, that is, a sequence of integers

α : 0 ≤ α0 ≤ · · · ≤ αr ≤ d− r.

One defines

σα ⊂ Grass(r + 1, d+ 1)

to be the variety of (r + 1)-planes meeting the (d + 1 − αi − i)-plane of a fixed
flag in dimension at least r + 1 − i, for i = 0, . . . , r. Then the answer to the
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Castelnuovo’s problem is

σg
(0,...,0,r) ∈ H∗(Grass(d− r, d+ 1),Z),

that is,

Ng,r,d := g!

r∏

i=0

i!

(g − d+ r + i)!
.

The next problem is to see what happens when one counts linear series with
assigned ramification at a fixed point. Let C be a smooth curve of genus g, let p
be a point in C and l a gr

d on C. To relate l with the point p, one considers the
vanishing sequence of l at p

al(p) : 0 ≤ a0 < · · · < ar ≤ d

defined as the sequence of distinct orders of vanishing of sections in V at p, and
the ramification sequence of l at p

αl(p) : 0 ≤ α0 ≤ · · · ≤ αr ≤ d− r

defined by αi := ai − i. Let us fix a Schubert index α of type r, d.

Theorem 1.3.1 (Eisenbud-Harris). A general pointed curve (C, p) of genus

g admits l a gr
d with αl(p) = α if and only if

r∑

i=0

(αi + g − d+ r)+ ≤ g.

For the proof we refer to [EH87]. Note that the condition in the theorem is
stronger than requiring the adjusted Brill-Noether number

ρ(g, r, d, α) := ρ(g, r, d) −
r∑

i=0

αi

be non-negative. For instance, while ρ(1, 2, 4, (0, 2, 2)) = 0, if l is a g2
4 on an

elliptic curve E with ramification sequence α = (0, 2, 2) at a point p ∈ E, then
h0(E, l(−3p)) = 2, hence l(−3p) produces a g1

1 on E, a contradiction.
For a general pointed curve (C, p), the variety Gr

d(C, (p, α)) of gr
d’s with

ramification sequence α at the point p is pure of dimension ρ(g, r, d, α). As above,
we can study the zero-dimensional case. Suppose g > 0 and let α = (α0, . . . , αr)
be a Schubert index of type r, d such that ρ(g, r, d, α) = 0. Then by Thm. 1.3.1,
the curve C admits a gr

d with ramification sequence α at the point p if and only
if α0 + g − d + r ≥ 0. When such linear series exist, there is a finite number of
them counted by the adjusted Castelnuovo number

Ng,r,d,α := g!

∏
i<j(αj − αi + j − i)

∏r
i=0(g − d+ r + αi + i)!

.(1.3.1)
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The idea of the proof is again to specialize to a generic curve of arithmetic genus
g. One could use a rational spine R with attached g elliptic tails.

p

p

C R

y1

y2

yg

E1

E2

Eg

Figure 1.3.1. Degeneration of a general pointed curve

Since p is a general point, one can assume that p specializes to R. Consid-
ering the limit linear series on the singular curve, one sees that the aspects on
the elliptic tails are uniquely determined, while the aspect on the rational spine
has ramification sequence α at the point p and has ordinary cusps (that is, ram-
ification sequence (0, 1, . . . , 1)) at the points where the elliptic tails are attached.
The variety of such linear series on R is reduced, 0-dimensional, and consists of

σα · σg
(0,1,...,1) ∈ H∗(Grass(r + 1, d− r),Z)

points (see [EH83a]), whence we obtain (1.3.1) (see [GH80, pg. 269]). Note
that by duality, the cycle σ(0,1,...,1) ∈ Grass(r+ 1, d− r) corresponds to the cycle
σ(0,...,0,r) ∈ Grass(d− r, d+ 1), and when α = (0, . . . , 0), we recover the numbers
Ng,r,d.

Instead of considering a fixed general point, one is also interested in the
case when the point p is arbitrary. From Thm. 1.3.1, the adjusted Brill-Noether
number for a linear series at a general point is necessarily non-negative. On the
other hand, the locus of pointed curves admitting a linear series with adjusted
Brill-Noether number equal to −1 at the marked point is a divisor in Mg,1, and
when ρ(g, r, d, α) ≤ −2 then we are in a locus of codimension at least 2 in Mg,1

(see [EH89]). We deduce that all linear series on a general curve have at any
point adjusted Brill-Noether number greater than or equal to −1, and imposing
the condition ρ(g, r, d, α) = −1 singles out a finite number of points.

This problem has been solved by Harris and Mumford for the case r = 1. Let
C be a general curve of genus g > 1 and let d be such that ρ(g, 1, d) ≥ 0. Since
ρ(g, 1, d, (0, 2d− g − 1)) = −1, there is a finite number of (x, lC) ∈ C ×W 1

d (C)
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such that αlC (x) = (0, 2d− g − 1), that is,

ng,d,(0,2d−g−1) := (2d− g − 1)(2d− g)(2d− g + 1)
g!

d!(g − d)!
.

In order to count such points, one can again use degeneration techniques.
Let us sketch the proof. If we consider a rational spine R with attached g elliptic
tails E1, . . . , Eg respectively at the points y1, . . . , yg, then the point x necessarily
specializes to one of the elliptic tails. Indeed, let π : R ∪ E1 ∪ · · · ∪ Eg → P be
an admissible cover of degree d. If π|Ei

is unramified at yi, since Ei and R meet
only at yi, it follows that π|Ei

maps Ei with degree one onto a rational curve, a
contradiction. Hence π has a ramification of order at least two at the points yi

and we require that x be a ramification point of order 2d− g. If x specializes to
R, we contradict the Hurwitz formula. Thus x is a smooth point on one of the
elliptic tails. There are g possibilities. We can assume that x ∈ E1. Since E1 and
R meet only at y1, necessarily π|E1 has the same ramification index at the points
x and y1, and up to isomorphism is uniquely determined by the linear series

(|(2d− g)x| ∩ |(2d− g)y1|) + (g − d)y1.

By the Hurwitz formula, it follows that π is ramified with order exactly 2 at yi,
for i ≥ 2. Thus up to isomorphism, π|Ei

is uniquely determined by |2yi|+(d−2)yi

for i ≥ 2, and there are

σ(0,2d−g−1) · σ
g−1
(0,1)

possibilities for π|R. Moreover x − y1 is a non-trivial (2d − g)-torsion point in
Pic0(E1) and there are (2d− g)2 − 1 such points on E1. Finally there are

g[(2d− g)2 − 1]

points with this property on all the elliptic tails and each point counts with
multiplicity

σ(0,2d−g−1) · σ
g−1
(0,1) = (g − 1)!

2d− g

(g − d)!d!
.

Similarly when r > 1, the problem can be solved using limit linear series.

1.4. An example: the closure of the trigonal locus in M5

As an example, we explain how to compute the class of the closure of the
trigonal locus in M5. That is, we find the coefficients a, b0, b1 and b2 such that

[
M

1

5,3

]
= aλ− b0δ0 − b1δ1 − b2δ2 ∈ PicQ(M5).

This is a special case of the formula (1.1.1) and we work it out to clarify the
techniques.



10 1. INTRODUCTION

1.4.1. The coefficient b1. Let C4 be a general curve of genus 4 and let us
consider the family of curves C4 obtained attaching an elliptic tail E at a moving
point x of C4.

The base of this family is then C4. To construct the family, one considers
the union of C4 ×C4 and C4 ×E and glues together the diagonal ∆C4 ⊂ C4 ×C4

and the constant section C4 × 0E ⊂ C4 × E.
This family is entirely contained in the boundary component ∆1 of M5. All

fibers have a unique node of type ∆1. It follows that on C4

deg δ1 = deg ∆2
C4

+ deg(C4 × 0E)2 = (2 − 2 · 4) + 0 = −6

while the restrictions to C4 of all the other generating classes are zero.

On the other hand, let us study the restriction of M
1

5,3 to C4. Let C4∪x∼0E
E

be the fiber of the family over a point x ∈ C4 and let us suppose that there exists
a degree-3 admissible cover π : C4 ∪0E∼x E → R. Since C4 is general, C4 is
not hyperelliptic while it admits N4,1,3 = 2 distinct g1

3’s, each with 12 points of
simple ramification and no other ramification. Then C4 and E are mapped onto
two different components of R and the point x is one of the points of simple
ramification for a g1

3 on C4. Indeed, suppose that π|C4 is unramified at x. This
implies that π|E is also unramified, and since C4 and E meet only in one point,
one has that π|E maps the elliptic curve E to a rational curve with degree one,
a contradiction. It follows that π|E has degree two and up to isomorphism is
uniquely determined by |2 · 0E| + 0E.

It follows that there are 24 fibers of the family with an admissible cover of
degree 3. Since C4 is in the interior of ∆1, such fibers contribute with multiplicity
one (see [HM82, Thm. 6(b)]). The relation

24 = 6b1

follows, whence b1 = 4.

1.4.2. The coefficient b2. The procedure to find the coefficient b2 is sim-
ilar. Let C3 be a general curve of genus 3 and let us consider the family C3

obtained identifying a moving point x in C3 with a general point p on a general
curve B of genus 2. The base of the family is thus the curve C3. All fibers have
a unique node of type ∆2 and one has that on C3

deg δ2 = −4

while all the other generating classes are zero on this family.
To have an admissible cover on a fiber of the family, one necessarily has that

x is a ramification point of order three for some g1
3 on C3. Indeed, since p is

not a Weiestrass point in B, one has that π|B is not of degree 2, and since B
and C3 meet only at one point, it follows that π|B is a degree-3 covering with
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ramification of order three at p. Note that up to isomorphism, π|B is uniquely
determined by |3 · p|.

There are n3,3,(0,2) = 24 possibilities for the point x ∈ C3, hence we obtain
the relation

24 = 4b2

and we deduce b2 = 6.

1.4.3. The coefficient b0. Let (C4, p) be a general pointed curve of genus
4 and consider the family obtained identifying the point p with a moving point
x in C4.

To construct the family, one blows up the surface C4 ×C4 at the point (p, p)

and glue together the proper transform ∆̃C4 of the diagonal ∆C4 with the proper

transform C̃4 × p of the constant section C4 × p.
All fibers have a node of type ∆0. The fiber over x = p has in addition a

node of type ∆1 and the family is smooth at this point. We have that

deg δ0 = deg ∆̃2
C4

+ deg(C̃4 × p)2

= deg ∆2
C4

− 1 + deg(C4 × p)2 − 1

= −8

deg δ1 = 1

while the other classes restrict to zero.
Let us consider the intersection with M

1

5,3. A fiber of the family represents a

point in M
1

5,3 if and only if it has an admissible cover of degree 3 with the points

p and x in the same fiber. As in §1.4.1, the curve C4 has two g1
3’s, and since the

point p is general, we can suppose that p is not a ramification point for any g1
3.

This automatically excludes the possibility of constructing a desired admissible
cover for the fiber over x = p. Moreover, we can suppose that in the same fiber
of p there are 2 other distinct points for each g1

3.
We have found that 4 fibers of the family admit an admissible cover of degree

3, and [HM82, Thm. 6(a)] tells us that since such fibers are in the interior of
∆0, these coverings contribute with multiplicity one.

The relation we get is that

4 = 8b0 − b1

and we recover b0 = 1.

1.4.4. The coefficient a. The last family is obtained attaching at a general
point p on a general curve C4 of genus 4 an elliptic tail varying in a family of
elliptic curves π : S → P1 on which the j-invariant has degree 12. To construct
S, one blows up the nine points of intersection of two general plane cubic curves.
To construct the desired family of genus 5 curves, identify one of the exceptional
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divisors E0 with the constant section P1 × p ⊂ P1 × C4. We have the following
restrictions

degλ = deg π∗(ωS/P1) = 1

deg δ1 = degE2
0 + deg(P1 × p)2 = −1.

Since the j-invariant vanishes at 12 points in P1, there are 12 nodal rational
curves in the family of elliptic curves, and since the family is smooth, we have

deg δ0 = 12,

while deg δ2 = 0.

This family is disjoint from M
1

5,3. Indeed, reasoning as in 1.4.1, if there exists
an admissible cover of degree 3 for a fiber of this family, the point p is necessarily
a point of ramification for such a covering, a contradiction since p is general in
C4.

We deduce the relation

0 = a− 12b0 + b1

whence we compute the last coefficient a = 8.

To summarize we have proved that the class of M
1

5,3 is
[
M

1

5,3

]
= 8λ− δ0 − 4δ1 − 6δ2 ∈ PicQ(M5).

1.5. The Gieseker-Petri divisor GP1
(g+2)/2

The Gieseker-Petri theorem asserts that for any l = (L , V ) a gr
d on a general

curve C of genus g, the map

µ0(l) : V ⊗H0(C,KC ⊗ L
−1) → H0(C,KC)(1.5.1)

is injective (see [EH83b] or [Laz86]). The injectivity of the map µ0(l) for a
linear series l on an arbitrary curve C of genus g is equivalent to the variety of
linear series Gr

d(C) being smooth at the point l and of dimension ρ(g, r, d).
Loci of curves with a linear series failing the Gieseker-Petri condition (1.5.1)

then form proper subvarieties of Mg. In particular, for g = 2(d−1) ≥ 4, the locus

GP1
d of curves admitting a g1

d failing the Gieseker-Petri condition is a divisor in
Mg. It corresponds to the branch locus of the map from the Hurwitz scheme
Hd,b → Mg obtained forgetting the covering and remembering only the source
curve. Its class has been computed in [EH87]

[
GP

1

d

]
= 2

(2d− 4)!

d!(d− 2)!

(
(6d2 + d− 6)λ− d(d− 1)δ0 −

g/2∑

i=1

biδi

)
(1.5.2)
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where

b1 = (2d− 3)(3d− 2)

b2 = 3(d− 2)(4d− 3)

while for 3 ≤ i ≤ d− 1, one has

bi = −(i− 2)ib1 +
(i− 1)i

2
b2 + (i− 2)(i− 1)

(g − 2)!

(d− 1)!(d− 2)!

−

⌊(i−2)/2⌋∑

l=1

2(i− 1 − 2l)
(2l)!(g − 2 − 2l)!

(l+ 1)!l!(d− l − 1)!(d− l)!

and in particular bi > bi−1. It follows that for even g ≥ 28, the divisor GP1
d has

slope less than 13/2 and this completes Eisenbud and Harris’ proof that Mg is
of general type for g ≥ 24.

It is known that for g = 4 and g = 6, the divisor GP
1

d is extremal in the
effective cone of Mg (see [Far10]). See [Far09b] and [Far10] for classes of other
Gieseker-Petri divisors.

1.6. Pointed Brill-Noether divisors in Mg,1

As suggested in §1.3, Brill-Noether theory can also produce interesting divi-
sors in the moduli space of pointed curves Mg,1. Indeed one can consider the
locus Mr

g,d(α) of pointed curves admitting a linear series gr
d with ramification

sequence α at the marked point, such that ρ(g, r, d, α) = −1. As an example,
consider the locus M1

g,g(0, g − 1) of Weierstrass points. Such loci turn out to be
useful in the study of the Kodaira dimension of moduli spaces of pointed curves.

Eisenbud and Harris proved that classes of pointed Brill-Noether divisors lie
in the two-dimensional cone in the Picard group of Mg,1 spanned by the pull-back

of the class BN in (1.1.2) of Brill-Noether divisors in Mg, that is

BN = (g + 3)λ−
g + 1

6
δ0 −

g−1∑

i=1

i(g − i)δi

and the class of the closure of the locus of Weierstrass points

W := −λ+

(
g + 1

2

)
ψ −

g−1∑

i=1

(
g − i+ 1

2

)
δi(1.6.1)

computed in [Cuk89]. It follows that classes of pointed Brill-Noether divisors
are expressible as [

M
r

g,d(α)
]

= µBN + νW

and µ and ν can be computed using test curves. For instance, when r = 1, this
has been carried out in [Log03], where Logan studies the birational geometry
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of moduli spaces of pointed curves. In general pointed Brill-Noether divisors do
not have slope less than the slope of the canonical divisor in Mg,1. Rather, for
non-negative integers c1, . . . , cn with

∑
i ci = g > 1, Logan considers the divisor

Dg;c1,...,cn
of pointed curves (C, p1, . . . , pn) in Mg,n such that

∑

i

cipi

moves in a pencil of degree g. Letting all the marked points come together,
Dg;c1,...,cn

reduces to the Weierstrass divisor in Mg,1. Logan deduces the class of

the divisors of type Dg;c1,...,cn
and applies this to find certain ng such that Mg,n

is of general type for n ≥ ng.

1.7. Divisors in Mg,n from exceptional secant conditions

Another way of getting effective divisors in Mg,n is to impose exceptional
secant conditions at the marked points. For a given linear series l on an arbi-
trary curve C, one can consider the variety of divisors of C that fail to impose
independent conditions on l.

More precisely, if l is a gr
d, we denote by V f

e (l) the cycle of all divisors D of
degree e that impose at most e−f conditions on l, that is, dim l(−D) ≥ r−e+f
(see [ACGH85, Ch. VIII]). The dimension of V f

e (l) for a general curve C has
been computed by Farkas in [Far08]. Namely, for a general l in an irreducible
component of Gr

d(C), if V f
e (l) is non-empty, then

dimV f
e (l) = e− f(r + 1 − e+ f).

For example, the variety V 1
r+1(l) parametrizes linearly dependent points. If

g, r, d ≥ 1 are such that the Brill-Noether number ρ(g, r, d) = 0, then the general
curve C of genus g admits a finite number of linear series l of type gr

d, and for
each of them, the variety V 1

r+1(l) of linearly dependent points has dimension r.
It follows that the following

Linr
d := {[C, x1, . . . , xr+1] | ∃ l a gr

d with x1 + · · · + xr+1 ∈ V 1
r+1(l)}

is an effective divisor in Mg,r+1.
As another example, fix r = 1 and choose g, d ≥ 1. One can consider the

variety V n−1
n (l) parametrizing n-fold points for l a g1

d on a curve of genus g. For
a general curve, the variety of g1

d’s has dimension ρ(g, 1, d), and for each g1
d, the

variety of n-fold points has dimension 1. When n = ρ(g, 1, d) + 2, one has the
following divisor in Mg,n

Nfoldg,d := {[C, x1, . . . , xn] | ∃ l a g1
d with x1 + · · · + xn ∈ V n−1

n (l)}.

The above divisors play an interesting role in the study of the birational
geometry of Mg,n. Farkas computed the classes of their closures in Mg,n and
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used them to improve the result of Logan, showing that more spaces Mg,n are
of general type (see [Far09b]).

Also note that when d = g, the divisor Nfoldg,g coincide with the Logan’s

divisor Dg;1,...,1. In this case, Farkas and Verra proved that Nfoldg,g is extremal

and rigid in the effective cone of Mg,g for g ≤ 11 (see [FV09]).

1.8. Outline of the results

While there have been so many works on classes in codimension one, very
little is known in higher codimension. The first natural loci in codimension two
are Brill-Noether loci. As mentioned in §1.1, when the Brill-Noether number
ρ(g, r, d) = −2, the locus Mr

g,d has codimension two in Mg. The only class

known so far is the class of the closure of the hyperelliptic locus in M4

2
[
M

1

4,2

]
Q

= 27κ2 − 339λ2 + 64λδ0 + 90λδ1 + 6λδ2 − δ20 − 8δ0δ1

+ 15δ21 + 6δ1δ2 + 9δ22 − 4δ00 − 6γ1 + 3δ01a − 36δ1,1(1.8.1)

computed by Faber and Pandharipande in [FP05].
In Chapter 2 we compute the class of the closure of the locus M1

2k,k of curves

of genus 2k admitting a g1
k. For instance when k = 3, we obtain the class of the

closure of the trigonal locus in M6.

Theorem 1.8.1. The class of the closure of the trigonal locus in M6 is
[
M

1

6,3

]
Q

=
41

144
κ2

1 − 4κ2 +
329

144
ω(2) −

2551

144
ω(3) −

1975

144
ω(4) +

77

6
λ(3)

−
13

6
λδ0 −

115

6
λδ1 −

103

6
λδ2 −

41

144
δ20 −

617

144
δ21 + 18δ1,1

+
823

72
δ1,2 +

391

72
δ1,3 +

3251

360
δ1,4 +

1255

72
δ2,2 +

1255

72
δ2,3

+ δ0,0 +
175

72
δ0,1 +

175

72
δ0,2 −

41

72
δ0,3 +

803

360
δ0,4 +

67

72
δ0,5

+ 2θ1 − 2θ2.

We propose a closed formula for the class of M
1

2k,k for k ≥ 3. Moreover, our
computation gives also a new proof of (1.8.1).

In §1.2 we explained how the method of test curves works for divisors’ com-
putations. In codimension two one has to use test surfaces. When g ≥ 12, a basis
for the codimension-two rational homology of Mg has been found by Edidin (see
[Edi92]). Such a basis is composed by tautological classes that are independent
for g ≥ 6. While one does not know a basis for the codimension-two homology
of Mg in the range 6 ≤ g < 12, Brill-Noether loci are tautological in Mg. It
follows that in any case one has a collection of tautological classes which generate
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Brill-Noether classes in codimension two. Intersecting with several test surfaces,
we are able to compute the coefficients.

In §1.7 we discussed how to obtain effective divisors in Mg,n by exceptional
secant condition. Similarly, one could obtain a codimension two locus in Mg,2

and then, pushing it forward to Mg,1 by the map that forgets one of the marked
points, one obtains a divisor in Mg,1. For instance, the general curve of genus 6
admits N6,2,6 = 5 linear series g2

6, and by the Plücker formula, each of them has
4 double points. Hence one has the divisor D2

6 of pointed curves (C, p) in M6,1

admitting a sextic plane model mapping p to a double point. In Chapter 3 we
compute its class.

Theorem 1.8.2. The class of the divisor D
2

6 ⊂ M6,1 is

[
D

2

6

]
= 62λ+ 4ψ − 8δ0 − 30δ1 − 52δ2 − 60δ3 − 54δ4 − 34δ5 ∈ PicQ(M6,1).

Describing the effective cone of moduli spaces of curves is a notoriously hard
problem. Equivalently, one would like to understand all rational contractions of
Mg,n.

Recently Jensen has proven that D
2

6 spans an extremal ray of the effective
cone of M6,1 (see [Jen10]). The idea is to construct a rational map ϕ : M6,1 99K

M̃0,5 as a composition of a birational contraction and a proper morphism using
the fact that the canonical model of a general curve of genus 6 is a quadric
section of a smooth quintic del Pezzo surface (see also [SB89]). Both the divisor

D
2

6 and the pull-back from M6 of the Gieseker-Petri divisor GP
1

4 map via ϕ to

the boundary of M̃0,5. Finally Jensen shows how this implies the extremality of

GP
1

4 and D
2

6 in the effective cone of M6,1 by a general property of such a rational
map ϕ.

The class of the divisor GP
1

4

[
GP

1

4

]
= 94λ− 12δ0 − 50δ1 − 78δ2 − 88δ3 ∈ PicQ(M6)

follows from (1.5.2). Moreover, let us note that in the effective cone of M6,1 there
is also the Brill-Noether cone spanned by the class of the Weierstrass divisor W

(see (1.6.1)) and the class of the divisor M
1

6,4(0, 1)

[
M

1

6,4(0, 1)
]

= 15λ+ 9ψ − 2δ0 − 15δ1 − 18δ2 − 18δ3 − 15δ4 − 9δ5

from [Log03] (note that it is not known whether the Brill-Noether class BN (see

(1.1.2)) is effective or not in M6). The classes of D
2

6, GP
1

4, W and M
1

6,4(0, 1)

span a 4-dimensional cone. The complete effective cone of M6,1 is unknown.
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The following two chapters are based respectively on the following papers:

⋄ N. Tarasca, Brill-Noether loci in codimension two,

⋄ N. Tarasca, Double points of plane models in M6,1, Jour. Pure and
App. Alg. 216 (2012), pp. 766–774.





2

Brill-Noether loci in codimension two

The classical Brill-Noether theory is of crucial importance for the geome-
try of moduli of curves. While a general curve admits only linear series with
non-negative Brill-Noether number, the locus Mr

g,d in Mg of curves of genus g

admitting a gr
d with Brill-Noether number ρ(g, r, d) = −1 is a codimension-one

subvariety. Eisenbud, Harris and Mumford have extensively studied such a locus.
They computed its class and found that it has slope 6 + 12/(g + 1). Since for
g ≥ 24 this is less than 13/2 the slope of the canonical bundle, it follows that
Mg is of general type for g composite and greater than or equal to 24.

While in recent years classes of divisors in Mg have been extensively in-
vestigated, codimension-two subvarieties are basically unexplored. A natural
candidate is offered from Brill-Noether theory. Since ρ(2k, 1, k) = −2, the locus
M1

2k,k ⊂ M2k of curves of genus 2k admitting a pencil of degree k has codimen-

sion two (see [Ste98]). As an example, consider the hyperelliptic locus M1
4,2 in

M4.
Our main result is the explicit computation of the classes of the closures of

such loci. When g ≥ 12, a basis for the codimension-two rational homology of
the moduli space Mg of stable curves has been found by Edidin ([Edi92]). It
consists of the tautological classes κ2

1 and κ2 together with boundary classes.
While such classes are still linearly independent for g ≥ 6, there might be further
generating classes coming from the interior of Mg for 6 ≤ g < 12. This problem
can be overcome since one knows that Brill-Noether loci lie in the tautological
ring of Mg.

Indeed in a similar situation, Harris and Mumford computed classes of Brill-
Noether divisors in Mg before knowing that Pic(Mg) is generated solely by the
class λ, by showing that such classes lie in the tautological ring of Mg (see
[HM82, Thm. 3]). Their argument works in arbitrary codimension. In our case,
since r = 1, one could alternatively use a result of Faber and Pandharipande

which says that the loci of type M
1

g,d are tautological in Mg ([FP05]).
Having then a basis for the classes of Brill-Noether codimension-two loci, in

order to determine the coefficients we use the method of test surfaces. That is,
we produce several surfaces in Mg and, after evaluating the intersections on one

19
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hand with the classes in the basis and on the other hand with the Brill-Noether
loci, we obtain enough independent relations in order to compute the coefficients
of the sought-for classes.

The surfaces used are bases of families of curves with several nodes, hence
a good theory of degeneration of linear series is required. For this, the com-
pactification of the Hurwitz scheme by the space of admissible covers introduced
by Harris and Mumford comes into play. The intersection problems thus boil
down first to counting pencils on the general curve, and then to evaluating the
respective multiplicities via a local study of the compactified Hurwitz scheme.

For instance when k = 3, we obtain the class of the closure of the trigonal
locus in M6.

Theorem 2.0.3. The class of the closure of the trigonal locus in M6 is

[
M

1

6,3

]
Q

=
41

144
κ2

1 − 4κ2 +
329

144
ω(2) −

2551

144
ω(3) −

1975

144
ω(4) +

77

6
λ(3)

−
13

6
λδ0 −

115

6
λδ1 −

103

6
λδ2 −

41

144
δ20 −

617

144
δ21 + 18δ1,1

+
823

72
δ1,2 +

391

72
δ1,3 +

3251

360
δ1,4 +

1255

72
δ2,2 +

1255

72
δ2,3

+ δ0,0 +
175

72
δ0,1 +

175

72
δ0,2 −

41

72
δ0,3 +

803

360
δ0,4 +

67

72
δ0,5

+ 2θ1 − 2θ2.

We produce a closed formula for the class of M
1

2k,k verified for 3 ≤ k ≤ 100
and we conjecture its validity for every k ≥ 3.

Theorem 2.0.4. For 3 ≤ k ≤ 100 the class of the locus M
1

2k,k in M2k is

[
M

1

2k,k

]
Q

=
2k−6(2k − 7)!!

3(k!)

[
(3k2 + 3k + 5)κ2

1 − 24k(k + 5)κ2

+

2k−2∑

i=2

(
− 180i4 + 120i3(6k + 1) − 36i2

(
20k2 + 24k − 5

)

+ 24i
(
52k2 − 16k − 5

)
+ 27k2 + 123k + 5

)
ω(i) + · · ·

]
.

The complete formula is shown in §2.7. We also test our result in several
ways, for example by pulling-back to M2,1. The computations include the case

g = 4 which was previously known: the hyperelliptic locus in M4 has been
computed in [FP05, Prop. 5].
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2.1. A basis for H2(3g−3)−4(Mg,Q)

In [Edi92] Edidin gives a basis for the codimension-two rational homology
of Mg for g ≥ 12. Let us quickly recall the notation. There are the tauto-
logical classes κ2

1 and κ2 coming from the interior Mg; the following products

of classes from Pic(Mg): λδ0, λδ1, λδ2, δ
2
0 and δ21 ; the following push-forwards

λ(i), λ(g−i), ω(i) and ω(g−i) of the classes λ and ω respectively from Mi,1 and

Mg−i,1 to ∆i: λ
(3), . . . , λ(g−3) and ω(2), . . . , ω(g−2); for 1 ≤ i ≤ ⌊(g − 1)/2⌋ the

Q-class θi of the closure of the locus Θi whose general element is a union of a
curve of genus i and a curve of genus g − i − 1 attached at two points; finally
the classes δij defined as follows. The class δ00 is the Q-class of the closure of
the locus ∆00 whose general element is an irreducible curve with two nodes. For
1 ≤ j ≤ g − 1 the class δ0j is the Q-class of the closure of the locus ∆0j whose
general element is an irreducible nodal curve of geometric genus g−j−1 together
with a tail of genus j. At last for 1 ≤ i ≤ j ≤ g − 2 and i+ j ≤ g − 1, the class
δij is defined as δij := [∆ij ]Q, where ∆ij has as general element a chain of three
irreducible curves with the external ones having genus i and j.

i

i

j j

g − i− 1

g − i− j

∆00

∆ij

∆0j

Θi

Figure 2.1.1. Loci in Mg

Finally the codimension-two rational homology of Mg for g ≥ 12 has rank

⌊(g2 − 1)/4⌋+ 3g − 1.

Moreover Edidin’s proof shows that the above classes are linearly independent
also for 6 ≤ g < 12. While in this range there might be other generators coming
from the interior of Mg, using an argument similar to [HM82, Thm. 3] one
knows that the class of M1

2k,k lies in the tautological ring. Hence in any case, for
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g = 2k ≥ 6 we can write
[
M

1

2k,k

]
Q

= Aκ2
1
κ2

1 +Aκ2κ2 +Aδ2
0
δ20 +Aλδ0λδ0 +Aδ2

1
δ21 +Aλδ1λδ1

+Aλδ2λδ2 +

g−2∑

i=2

Aω(i)ω(i) +

g−3∑

i=3

Aλ(i)λ(i) +
∑

i,j

Aδij
δij(2.1.1)

+

⌊(g−1)/2⌋∑

i=1

Aθi
θi

in H2(3g−3)−4(Mg,Q).

2.2. On the method of test surfaces

The method of test surfaces has been developed in [Edi92]. See [Edi92,
§3.1.2, §3.4 and Lemma 4.3] for computing the restriction of the generating classes
to cycles parametrizing curves with nodes. In this section we note how to compute
the restriction of the class κ2 and the classes ω(i) and λ(i) to the test surfaces
(S1) - (S14) in the next section.

Proposition 2.2.1. Let π1 : X1 → B1 be a one-dimensional family of stable

curves of genus i with section σ1 : B1 → X1 and similarly let π2 : X2 → B2 be a

one-dimensional family of stable curves of genus g− i with section σ2 : B2 → X2.

Obtain a two-dimensional family of stable curves π : X → B1 × B2 as the union

of X1 × B2 and B1 ×X2 modulo glueing σ1(B1) × B2 with B1 × σ2(B2). Then

the class κ2 and the classes ω(i) and λ(i) restrict to B1 ×B2 as follows

κ2 = 0
ω(i) = ω(g−i) = −π1∗(σ

2
1(B1))π2∗(σ

2
2(B2)) if 2 ≤ i < g/2

ω(g/2) = −2π1∗(σ
2
1(B1))π2∗(σ

2
2(B2)) if g is even

ω(j) = 0 for j 6∈ {i, g − i}
λ(i) = λB1π2∗(σ

2
2(B2)) if 3 ≤ i < g/2

λ(g−i) = λB2π1∗(σ
2
1(B1)) idem

λ(g/2) = λB1π2∗(σ
2
2(B2)) + λB2π1∗(σ

2
1(B1)) if g is even

λ(j) = λB1δj−i,1|B2 + λB2δj−g+i,1|B1 for j 6∈ {i, g − i}

where δh,1|B1 ∈ Pic(Mi,1) and similarly δh,1|B2 ∈ Pic(Mg−i,1).

Proof. Let ν : X̃ → X be the normalization, where X̃ := X1×B2∪B1×X2.
Let KX/B1×B2

= c1(ωX/B1×B2
). We have

κ2 = π∗

(
K3

X/B1×B2

)

= π∗ν∗
(
(ν∗KX/B1×B2

)3
)
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where we have used that ν is a proper morphism, hence the push-forward is
well-defined. One has

K eX/B1×B2
=
(
KX1/B1

×B2

)
⊕
(
B1 ×KX2/B2

)

hence

ν∗KX/B1×B2
=
(
(KX1/B1

+ σ1(B1)) ×B2

)
⊕
(
B1 × (KX2/B2

+ σ2(B2))
)
.

Finally
(
(KX1/B1

+ σ1(B1)) ×B2

)3
= (KX1/B1

+ σ1(B1))
3 ×B2 = 0

since KX1/B1
+ σ1(B1) is a class on the surface X1, and similarly for B1 ×

(KX2/B2
+ σ2(B2)), hence κ2 is zero.

The statement about the classes ω(i) and λ(i) follows almost by definition.
For instance, since the divisor δi is

δi = π∗(σ
2
1(B1) ×B2) + π∗(B1 × σ2

2(B2))

we have

ω(i) = −π1∗(σ
2
1(B1)) · π2∗(σ

2
2(B2)).

The other equalities follow in a similar way. �

Moreover Mumford’s formula for κ1 will be constantly used: if g > 1 then

κ1 = 12λ− δ

in Pic(Mg) (see [Mum77]).

2.3. Enumerative geometry on the general curve

Let C be a complex smooth projective curve of genus g and l = (L , V ) a

linear series of type gr
d on C, that is L ∈ Picd(C) and V ⊂ H0(C,L ) is a

subspace of vector-space dimension r + 1. The vanishing sequence al(p) : 0 ≤
a0 < · · · < ar ≤ d of l at a point p ∈ C is defined as the sequence of distinct
order of vanishing of sections in V at p, and the ramification sequence αl(p) : 0 ≤
α0 ≤ · · · ≤ αr ≤ d− r as αi := ai − i, for i = 0, . . . , r. The weight wl(p) will be
the sum of the αi’s.

Given an n-pointed curve (C, p1, . . . , pn) of genus g and l a gr
d on C, the

adjusted Brill-Noether number is

ρ(C, p1, . . . pn) = ρ(g, r, d, αl(p1), . . . , α
l(pn))

:= g − (r + 1)(g − d+ r) −
∑

i,j

αl
j(pi).
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2.3.1. Fixing two general points. Let (C, p, q) be a general 2-pointed
curve of genus g ≥ 1 and let α = (α0, . . . , αr) and β = (β0, . . . , βr) be Schubert
indices of type r, d (that is 0 ≤ α0 ≤ · · · ≤ αr ≤ d−r and similarly for β) such that
ρ(g, r, d, α, β) = 0. The number of linear series gr

d having ramification sequence
α at the point p and β at the point q is counted by the adjusted Castelnuovo

number

g! det

(
1

[αi + i+ βr−j + r − j + g − d]!

)

0≤i,j≤r

where 1/[αi + i+ βr−j + r− j + g− d]! is taken to be 0 when the denominator is
negative (see §1.3 and [Ful98, Ex. 14.7.11 (v)]). Note that the above expression
may be zero, that is the set of sought linear series may be empty.

When r = 1 let us denote by Ng,d,α,β the above expression. If α0 = β0 = 0
then

Ng,d,α,β = g!

(
1

(β1 + 1 + g − d)!(α1 + 1 + g − d)!

−
1

(g − d)!(α1 + β1 + 2 + g − d)!

)
.

Subtracting the base locus α0p + β0q, one can reduce the count to the case
α0 = β0 = 0, hence Ng,d,α,β = Ng,d−α0−β0,(0,α1−α0),(0,β1−β0).

In the following we will also use the abbreviation Ng,d,α when β is zero, that
is Ng,d,α counts the linear series with the only condition of ramification sequence
α at a single general point.

2.3.2. A moving point. Let C be a general curve of genus g > 1 and
α = (α0, α1) be a Schubert index of type 1, d (that is 0 ≤ α0 ≤ α1 ≤ d − 1).
When ρ(g, 1, d, α) = −1, there is a finite number ng,d,α of (x, lC) ∈ C ×W 1

d (C)
such that αlC (x) = α. (Necessarily ρ(g, 1, d) ≥ 0 since the curve is general.)
Assuming α0 = 0, one has α1 = 2d− g − 1 and

ng,d,α = (2d− g − 1)(2d− g)(2d− g + 1)
g!

d!(g − d)!
.

If α0 > 0 then ng,d,α = ng,d−α0,(0,α1−α0). Each l̃C := lC(−α0x) satisfies h0(l̃C) =

2, is generated by global sections, and H0(C, l̃C) gives a covering of P1 with
ordinary brach points except for a (α1 − α0)-fold branch point, all lying over
distinct points of P1. Moreover, since for general C the above points x are
distinct, one can suppose that fixing one of them, the lC is unique. See [HM82,
Thm. B and pg. 78]. Clearly α in the lower indexes of the numbers n is redundant
in our notation, but for our purposes it is useful to keep track of it.
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2.3.3. Two moving points. Let C be a general curve of genus g > 1 and
α = (α0, α1) be a Schubert index of type 1, d (that is 0 ≤ α0 ≤ α1 ≤ d−1). When
ρ(g, 1, d, α, (0, 1)) = −2 (and ρ(g, 1, d) ≥ 0), there is a finite number mg,d,α of
(x, y, lC) ∈ C×C×G1

d(C) such that αlC (x) = α and αlC (y) = (0, 1). Subtracting
the base locus as usual, one can always reduce to the case α0 = 0.

Lemma 2.3.1. Assuming α0 = 0, one has that

mg,d,α = ng,d,α · (3g − 1) .

Proof. Since ρ(g, 1, d, α) = −1, one can compute first the number of points
of type x, and then fixing one of these, use the Riemann-Hurwitz formula to find
the number of points of type y. �

2.4. Compactified Hurwitz scheme

Let Hk,b be the Hurwitz scheme parametrizing coverings π : C → P1 of degree
k with b ordinary branch points and C a smooth irreducible curve of genus g. By
considering only the source curve C, Hk,b admits a map to Mg

σ : Hk,b → Mg.

In the following, we will use the compactification Hk,b of Hk,b by the space of
admissible covers, introduced by Harris and Mumford in [HM82]. The map σ
extends to

σ : Hk,b → Mg.

In our case g = 2k, the image of this map is M
1

2k,k. It is classically known that

the Hurwitz scheme is connected and its image in Mg (that is M1
2k,k in our case)

is irreducible (see for instance [Ful69]).
Similarly for a Schubert index α = (α0, α1) of type 1, k such that ρ(g, 1, k, α) =

−1 (and ρ(g, 1, k) ≥ 0), the Hurwitz scheme Hk,b(α) (respectively Hk,b(α)) pa-
rameterizes k-sheeted (admissible) coverings π : C → P1 with b ordinary branch
points p1, . . . , pb and one point p with ramification profile described by α (see
[Dia85, §5]). By forgetting the covering and keeping only the pointed source
curve (C, p), we obtain a map Hk,b(α) → Mg,1 with image the pointed Brill-

Noether divisor M
1

g,k(α).

Let us see these notions at work. Let (C, p, q) be a two-pointed general curve
of genus g − 1 ≥ 1. In the following, we consider the curve C in Mg,1 obtained
identifying the point q with a moving point x in C. In order to construct this
family of curves, one blows up C×C at (p, p) and (q, q) and identifies the proper
transforms S1 and S2 of the diagonal ∆C and q×C. This is a family π : X → C
with a section corresponding to the proper transform of p×C, hence there exists
a map C → Mg,1. We denote by C the image of C in Mg,1.
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(P1)1 (P1)0

p

q

x

RE

(a) The case 2p ≡ q + x

(P1)1(P1)0

p

q

x

R E

(b) The case x = p

Figure 2.4.1. The admissible covers for the two fibers of the
family C when g = 2

Lemma 2.4.1. Let g = 2 and let W be the closure of the Weierstrass divisor

in M2,1. We have that

ℓ2,2 := deg
(
C · W

)
= 2.

Proof. There are two points in C with an admissible cover of degree 2 with
simple ramification at the marked point, and such admissible covers contribute
with multiplicity one. Note that here C is an elliptic curve. One admissible cover
is for the fiber over x such that 2p ≡ q + x, and the other one for the fiber over
x = p. In both cases the covering is determined by |q+ x| and there is a rational
curve R meeting C in q and x.

When 2p ≡ q+ x, the situation is as in [HM82, Thm. 6(a)]. Let C′ → P be
the corresponding admissible covering. If

C −→ P

ց ւ

B

is a general deformation of [C′ → P ] in H2,b(0, 1), blowing down the curve R

we obtain a family of curves C̃ → B with one ordinary double point. That
is, B meets ∆0 with multiplicity 2. Considering the involution of [C′ → P ]
obtained interchanging the two ramification points of R, we see that the map
H2,b(0, 1) → M2,1 is ramified at [C′ → P ]. Hence [C′] is a transverse point of

intersection of W with ∆0 and it follows that C and W meet transversally at
[C′].
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When x = p, the situation is similar. In a general deformation in H2,b(0, 1)

C −→ P

ց ւ

B

of the corresponding admissible covering [C′ → P ], one sees that C′ is the only
fiber of C → B inside ∆00, and at each of the two nodes of C′, the space C has
local equation x · y = t. It follows that C′ is a transverse point of intersection of
W with ∆00. Hence C′ is a transverse point of intersection of C with W . See
also [Har84, §3]. �

Lemma 2.4.2. Let g = 2k − 2 > 2. The intersection of C with the pointed

Brill-Noether divisor M
1

2k−2,k(0, 1) has degree

ℓg,k := deg
(
C · M

1

2k−2,k(0, 1)
)

= 2
(2k − 3)!

(k − 2)!(k − 1)!

and is reduced.

Proof. Let us write the class of M
1

g,k(0, 1) as aλ+cψ−
∑
biδi ∈ Pic(Mg,1).

First we study the intersection of the curve C with the classes generating the
Picard group. Let π : Mg,1 → Mg the map forgetting the marked point and

σ : Mg → Mg,1 the section given by the marked point. Note that on C we
have degψ = − deg π∗(σ

2) = 1, since the marked point is generically fixed and
is blown-up in one fiber. Moreover deg δg−1 = 1, since only one fiber contains
a disconnecting node and the family is smooth at this point. The intersection
with δ0 deserves more care. The family indeed is inside ∆0: the generic fiber
has one non-disconnecting node and moreover the fiber over x = p has two non-
disconnecting nodes. We have to use [HM98, Lemma 3.94]. Then

deg δ0 = degS2
1 + degS2

2 + 1 = −2(g − 1) − 1 + 1 = 2 − 2g.(2.4.1)

All other generating classes restrict to zero. Then

deg
(
C ·
[
M

1

g,k(0, 1)
])

= c+ (2g − 2)b0 − bg−1.

On the other hand, one has an explicit expression for the class of M
1

g,k(0, 1)

(2k − 4)!

(k − 2)!k!

(
6(k + 1)λ+ 6(k − 1)ψ − kδ0 +

g−1∑

i=1

3(i+ 1)(2 + i− 2k)δi

)

(see [Log03, Thm. 4.5]), whence the first part of the statement.
Finally the intersection is reduced. Indeed, since the curve C is general, an

admissible cover with the desired property for a fiber of the family over C is
determined by a unique linear series (see [HM82, pg. 75]). Moreover, reasoning
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as in the proof of the previous Lemma, one sees that C and M
1

g,k(0, 1) meet
always transversally. �

2.5. Limit linear series

The theory of limit linear series will be used. Let us quickly recall some
notation and results. On a tree-like curve, a linear series or a limit linear series
is called generalized if the line bundles involved are torsion-free (see [EH87, §1]).
For a tree-like curve C = Y1 ∪ · · · ∪ Ys of arithmetic genus g with disconnecting
nodes at the points {pij}ij , let {lY1 , . . . lYs

} be a generalized limit linear series
gr

d on C. Let {qik}k be smooth points on Yi, i = 1, . . . , s. In [EH86] a moduli
space of such limit series is constructed as a disjoint union of schemes on which
the vanishing sequences of the aspects lYi

’s at the nodes are specified. A key
property is the additivity of the adjusted Brill-Noether number, that is

ρ(g, r, d, {αlYi (qik)}ik) ≥
∑

i

ρ(Yi, {pij}j , {qik}k).

The smoothing result [EH86, Cor. 3.7] assures the smoothability of dimen-
sionally proper limit series. The following facts will ease the computations. The
adjusted Brill-Noether number for any gr

d on one-pointed elliptic curves or on n-
pointed rational curves is non-negative. For a general curve C of arbitrary genus
g, the adjusted Brill-Noether number for any gr

d with respect to n general points
is non-negative. Moreover, ρ(C, y) ≥ −1 for any y ∈ C and any gr

d (see [EH89]).
We will use the fact that if a curve of compact type has no limit linear series

of type gr
d, then it is not in the closure of the locus Mr

g,d ⊂ Mg of smooth curves
admitting a gr

d.

2.6. Test surfaces

We are going to intersect both sides of (2.1.1) with several test surfaces. This
will produce linear relations in the coefficients A.

The surfaces will be defined for arbitrary g ≥ 6 (also odd values). Note
that while the intersections of the surfaces with the generating classes (that is
the left-hand sides of the relations we get) clearly depend solely on g, only the
right-hand sides are specific to our problem of intersecting the test surfaces with

M
1

2k,k.
When the base of a family is the product of two curves C1 × C2, we will

denote by π1 and π2 the obvious projections.

(S1) For 2 ≤ i ≤ ⌊g/2⌋ consider the family of curves whose fibers are obtained identi-
fying a moving point on a general curve C1 of genus i with a moving point on a
general curve C2 of genus g − i.
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C1
C2

Figure 2.6.1. How the general fiber of a family in (S1) moves

The base of the family is the surface C1 × C2. In order to construct this
family, consider C1 × C1 × C2 and C1 × C2 × C2 and identify ∆C1 × C2 with
C1 × ∆C2 . Let us denote this family by X → C1 × C2.

One has

δi = c1

(
N(∆C1×C2)/X ⊗N(C1×∆C2)/X

)

= −π∗
1(KC1) − π∗

2(KC2).

Such surfaces are in the interior of the boundary of Mg. The only nonzero classes
in codimension two are the ones considered in §2.2.

We claim that the intersection of these test surfaces with M
1

2k,k has degree

Ti :=
∑

α=(α0,α1)

ρ(i,1,k,α)=−1

ni,k,α · ng−i,k,(k−1−α1,k−1−α0)

(in the sum, α is a Schubert index of type 1, k). Indeed by the remarks in §2.5, if
{lC1, lC2} is a limit linear series of type g1

k on the fiber over some (x, y) ∈ C1×C2,
then the only possibility is ρ(C1, x) = ρ(C2, y) = −1. By §2.3.2, there are
exactly Ti points (x, y) with this property, the linear series lC1 , lC2 are uniquely
determined and give an admissible cover of degree k. Thus to prove the claim we
have to show that such points contribute with multiplicity one.

Let us first assume that i > 2. Let π : C′ → P be one of these admissible
covers of degree k, that is, C′ is stably equivalent to a certain fiber C1∪x∼yC2 of
the family over C1 ×C2. Let us describe more precisely the admissible covering.
Note that P is the union of two rational curves P = (P1)1 ∪ (P1)2. Moreover
π|C1 : C1 → (P1)1 is the admissible covering of degree k−α0 defined by lC1(−α0x),
π|C2 : C2 → (P1)2 is the admissible covering of degree k − (k − 1 − α1) = α1 + 1
defined by lC2(−(k − 1 − α1)y), and π has ℓ-fold branching at p := x ≡ y with
ℓ := α1+1−α0. Finally there are α0 copies of P1 over (P1)1 and further k−1−α1

copies over (P1)2.
Such a cover has no automorphisms, hence the corresponding point [π : C′ →

P ] in the Hurwitz scheme Hk,b is smooth, and moreover such a point is not
fixed by any σ ∈ Σb. Let us embed π : C′ → P in a one-dimensional family of
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admissible coverings

C −→ P

ց ւ

B

where locally near the point p

C is r · s = t,

P is u · v = tℓ,

π is u = rℓ, v = sℓ

and B := Spec C[[t]]. Now C is a smooth surface and after contracting the extra
curves P1, we obtain a family C → B in Mg transverse to ∆i at the point

[C′]. Hence (x, y) appears with multiplicity one in the intersection of M
1

2k,k with
C1 × C2.

Finally if i = 2, then one has to take into account the automorphisms of the
covers. To solve this, one has to work with the universal deformation space of
the corresponding curve. The argument is similar (see [HM82, pg 80]).

For each i we deduce the following relation

(2i− 2)(2(g − i) − 2)
[
2Aκ2

1
−Aω(i) −Aω(g−i)

]
= Ti.

Note that, if i = g/2, then Aω(i) and Aω(g−i) sum up.

(S2) Choose i, j such that 2 ≤ i ≤ j ≤ g − 3 and i + j ≤ g − 1. Take a general
two-pointed curve (F, p, q) of genus g − i− j and attach at p a moving point on
a general curve C1 of genus i and at q a moving point on a general curve C2 of
genus j.

C1
C2

F

Figure 2.6.2. How the general fiber of a family in (S2) moves

The base of the family is C1 × C2. To construct the family, consider C1 ×
C1 ×C2 and C1 ×C2 ×C2 and identify ∆C1 ×C2 and C1 ×∆C2 with the general
constant sections p×C1×C2 and q×C1×C2 of F ×C1×C2 → C1×C2. Denote
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this family by X → C1 × C2. Then

δi = c1

(
N(∆C1×C2)/X ⊗N(p×C1×C2)/X

)

= −π∗
1(KC1)

δj = c1

(
N(C1×∆C2)/X ⊗N(q×C1×C2)/X

)

= −π∗
2(KC2)

and

δij = c1

(
N(∆C1×C2)/X ⊗N(p×C1×C2)/X

)

·c1
(
N(C1×∆C2)/X ⊗N(q×C1×C2)/X

)

= π∗
1(KC1)π

∗
2(KC2).

We claim that the intersection of these test surfaces with M
1

2k,k has degree

Dij :=
∑

α=(α0,α1)

β=(β0,β1)

ρ(i,1,k,α)=−1

ρ(j,1,k,β)=−1

ni,k,α nj,k,β Ng−i−j,k,(k−1−α1,k−1−α0),(k−1−β1,k−1−β0)

(in the sum, α and β are Schubert indices of type 1, k.) Indeed by §2.5, if
{lC1, lF , lC2} is a limit linear series of type g1

k on the fiber over some (x, y) ∈
C1×C2, then the only possibility is ρ(C1, x) = ρ(C2, y) = −1 while ρ(F, p, q) = 0.
By §2.3.1 and §2.3.2, there are

∑

α=(α0,α1)

β=(β0,β1)

ρ(i,1,k,α)=−1

ρ(j,1,k,β)=−1

ni,k,α nj,k,β

points (x, y) in C1 × C2 with this property, the lC1 , lC2 are uniquely determined
and there are

N := Ng−i−j,k,(k−1−α1,k−1−α0),(k−1−β1,k−1−β0)

choices for lF . That is, there are N points of Hk,b/Σb over [C1∪x∼pF ∪y∼qC2] ∈

M
1

2k,k and M
1

2k,k has N branches at [C1 ∪x∼p F ∪y∼q C2]. The claim is thus
equivalent to say that each branch meets ∆ij transversely at [C1∪x∼pF ∪y∼qC2].

The argument is similar to the previous case. Let π : C′ → D be an admissible
cover of degree k with C′ stably equivalent to a certain fiber of the family over
C1×C2. The image of a general deformation of [C′ → D] in Hk,b to the universal
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deformation space of C′ meets ∆ij only at [C′] and locally at the two nodes,
the deformation space has equation xy = t. Hence [C′] is a transverse point

of intersection of M
1

2k,k with ∆ij and the surface C1 × C2 and M
1

2k,k meet
transversally.

For i, j we obtain the following relation

(2i− 2)(2j − 2)
[
2Aκ2

1
+Aδij

]
= Dij .

(S3) Let (E, p, q) be a general two-pointed elliptic curve. Identify the point q with a
moving point x on E and identify the point p with a moving point on a general
curve C of genus g − 2.

C
E

Figure 2.6.3. How the general fiber of a family in (S3) moves

The base of the family is E × C. To construct the family, let us start from

the blow-up Ẽ × E of E ×E at the points (p, p) and (q, q). Denote by σp, σq, σ∆

the proper transforms respectively of p× E, q × E,∆E . The family is the union

of Ẽ × E × C and E × C × C with σq × C identified with σ∆ × C and σp × C
identified with E × ∆C . We denote the family by π : X → E × C.

The study of the restriction of the generating classes in codimension one is
similar to the case in the proof of Lemma 2.4.2. Namely

δ0 = −π∗
1(2q)

δ1 = π∗
1(q)

δg−2 = −π∗
1(p) − π∗

2(KC).

Indeed the family is entirely contained inside ∆0: each fiber has a unique non-
disconnecting node with the exception of the fibers over p×C which have two non-
disconnecting nodes. Looking at the normalization of the family, fibers become
smooth with the exception of the fibers over p × C which have now one non-
disconnecting node, and the family is smooth at these points. It follows that
δ0 = π∗(σq × C)2 + π∗(σ∆ × C)2 + p× C. Only the fibers over q × C contain a
node of type ∆1, and the family is smooth at these points. Finally the family
is entirely inside ∆g−2 and δg−2 = π∗(σp × C)2 + π∗(E × ∆C)2. We note the
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following

δ1,g−2 = [π∗
1(q)][−π∗

2(KC)]

δ0,g−2 = [−π∗
1(2q)][−π∗

2(KC)].

Let us study the intersection of this test surface with M
1

2k,k. Let C′ → D be
an admissible cover of degree k with C′ stably equivalent to a certain fiber of the
family. Clearly the only possibility is to map E and C to two different rational
components of D with q and x in the same fiber, and have a 2-fold ramification
at p. From Lemma 2.4.1 there are two possibilities for the point x ∈ E, and there
are ng−2,k,(0,1) points in C where a degree k covering has a 2-fold ramification.
In each case the covering is unique up to isomorphism. The combination of the
two makes

2ng−2,k,(0,1)

admissible coverings. We claim that they count with multiplicity one.
The situation is similar to Lemma 2.4.1. The image of a general deformation

of [C′ → D] in Hk,b to the universal deformation space of C′ meets ∆00∩∆2 only
at [C′]. Locally at the three nodes, the deformation space has equation xy = t.

Hence [C′] is a transverse point of intersection of M
1

2k,k with ∆00∩∆2 and counts

with multiplicity one in the intersection of the surface E × C with M
1

2k,k.
We deduce the following relation

(2(g − 2) − 2)
[
4Aκ2

1
−Aω(2) −Aω(g−2) −Aδ1,g−2 + 2Aδ0,g−2

]
= 2ng−2,k,(0,1).

(S4) For 2 ≤ i ≤ g − 3, let (F, r, s) be a general two-pointed curve of genus g − i− 2.
Let (E, p, q) be a general two-pointed elliptic curve and as above identify the
point q with a moving point x on E. Finally identify the point p ∈ E with r ∈ F
and identify the point s ∈ F with a moving point on a general curve C of genus
i.

C
EF

Figure 2.6.4. How the general fiber of a family in (S4) moves

The base of the family is E × C. Let Ẽ × E, σp, σq, σ∆ be as above. Then

the family is the union of Ẽ × E×C,E×C×C and F ×E×C with the following
identifications. First σq ×C is identified with σ∆×C. Finally σp×E is identified
with r × E × C ⊂ F × E × C, and s× E × C ⊂ F × E × C with E × ∆C .



34 2. BRILL-NOETHER LOCI IN CODIMENSION TWO

The restriction of the generating classes in codimension one is

δ0 = −π∗
1(2q)

δ1 = π∗
1(q)

δ2 = −π∗
1(p)

δi = −π∗
2(KC)

and one has the following restrictions

δ1,i = [π∗
1(q)][−π∗

2(KC)]

δ0,i = [−π∗
1(2q)][−π∗

2(KC)]

δ2,i = [−π∗
1(p)][−π∗

2(KC)].

Suppose C′ → D is an admissible covering of degree k with C′ stably equiv-
alent to a certain fiber of this family. The only possibility is to map E,F,C
to three different rational components of D, with a 2-fold ramification at r and
ramification prescribed by α = (α0, α1) at s, such that ρ(i, 1, k, α) = −1. The
condition on α is equivalent to

ρ(g − i− 2, 1, k, (0, 1), (k− 1 − α1, k − 1 − α0)) = 0.

Moreover, q and x have to be in the same fiber of such a covering. There are
∑

α=(α0,α1)

ρ(i,1,k,α)=−1

2ni,k,α

fibers which admit an admissible covering with such properties (in the sum, α is
a Schubert index of type 1, k). While the restriction of the covering to E and C
is uniquely determined up to isomorphism, there are

N := Ng−i−2,k,(0,1),(k−1−α1,k−1−α0)

choices for the restriction to F up to isomorphism. As in (S2), this is equiva-

lent to say that M
1

2k,k has N branches at [C′]. Moreover, each branch meets
the boundary transversally at [C′] (similarly to (S3)), hence [C′] counts with

multiplicity one in the intersection of E × C with M
1

2k,k.
Finally, for each i we deduce the following relation

(2i− 2)
[
4Aκ2

1
−Aδ1,i

+ 2Aδ0,i
+Aδ2,i

]

=
∑

α=(α0,α1)

ρ(i,1,k,α)=−1

2Ng−i−2,k,(0,1),(k−1−α1,k−1−α0) · ni,k,α.
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(S5) Identify a base point of a generic pencil of plane cubic curves with a moving point
on a general curve C of genus g − 1.

C

Figure 2.6.5. How the general fiber of a family in (S5) moves

The base of the family is P1 × C. Let us construct this family. We start
from an elliptic pencil Y → P1 of degree 12 with zero section σ. To construct Y ,
blow up P2 in the nine points of intersection of two general cubics. Then consider
Y ×C and P1 ×C ×C and identify σ×C with P1 ×∆C . Let x be the class of a
point in P1. Then

λ = π∗
1(x)

δ0 = 12λ

δ1 = −π∗
1(x) − π∗

2(KC).

Note that

δ0,g−1 = [12π∗
1(x)][−π

∗
2(KC)].

This surface is disjoint from M
1

2k,k. Indeed C has no linear series with
adjusted Brill-Noether number less than −1 at some point, and an elliptic curve
or a rational nodal curve has no (generalized) linear series with adjusted Brill-
Noether number less than 0 at some point. Adding, we see that no fiber of the
family has a linear series with Brill-Noether number less than −1, hence

(2(g − 1) − 2)
[
2Aκ2

1
− 12Aδ0,g−1 + 2Aδ2

1
−Aλδ1

]
= 0.

(S6) For 3 ≤ i ≤ g − 3 take a general curve F of genus i− 1 and attach at a general
point p an elliptic tail varying in a pencil of degree 12 and at another general
point a moving point on a general curve C of genus g − i.

The base of the family is P1 ×C. In order to construct the family, start from
Y ×C and P1×C×C and identify σ×C and P1×∆C with two general constant
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C
F

Figure 2.6.6. How the general fiber of a family in (S6) moves

sections of F × P1 × C → P1 × C. Here Y, σ are as above. Then

λ = π∗
1(x)

δ0 = 12λ

δ1 = −π∗
1(x)

δg−i = −π∗
2(KC).

Note that

δ1,g−i = [−π∗
1(x)][−π∗

2 (KC)]

δ0,g−i = [12π∗
1(x)][−π∗

2(KC)].

Again C has no linear series with adjusted Brill-Noether number less than
−1 at some point, an elliptic curve or a rational nodal curve has no (generalized)
linear series with adjusted Brill-Noether number less than 0 at some point and
F has no linear series with adjusted Brill-Noether number less than 0 at some
general points. Adding, we see that no fiber of the family has a linear series with
Brill-Noether number less than −1, hence

(2(g − i) − 2)
[
2Aκ2

1
−Aλ(i) + Aδ1,g−i

− 12Aδ0,g−i

]
= 0.

In case i = g − 2 we have

2
[
2Aκ2

1
−Aλδ2 +Aδ1,2 − 12Aδ0,2

]
= 0.

(S7) Let (E1, p1, q1) and (E2, p2, q2) be two general pointed elliptic curves. Identify
the point qi with a moving point xi in Ei, for i = 1, 2. Finally identify p1 and p2

with two general points r1, r2 on a general curve F of genus g − 4.

The base of the family is E1 × E2. For i = 1, 2, let Ẽi × Ei be the blow-up
of Ei ×Ei at (pi, pi) and (qi, qi). Denote by σpi

, σqi
, σ∆Ei

the proper transforms

respectively of pi × Ei, qi × Ei,∆Ei
. The family is the union of Ẽ1 × E1 × E2,

E1 × ˜E2 × E2 and F ×E1 ×E2 with the following identifications. First, σq1 ×E2

and E1 × σq2 are identified respectively with σ∆E1
× E2 and E1 × σ∆E2

. Then
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F
E1

E2

Figure 2.6.7. How the general fiber of a family in (S7) moves

σp1×E2 and E1×σp2 are identified respectively with r1×E1×E2 and r2×E1×E2.
We deduce

δ0 = −π∗
1(2q1) − π∗

2(2q2)

δ1 = π∗
1(q1) + π∗

2(q2)

δ2 = −π∗
1(p1) − π∗

2(p2)

and we note that

δ2,2 = π∗
1(p1)π

∗
2(p2)

δ1,2 = −π∗
1(q1)π

∗
2(p2) − π∗

2(q2)π
∗
1(p1)

δ1,1 = π∗
1(q1)π

∗
2(q2)

δ00 = π∗
1(2q1)π

∗
2(2q2)

δ02 = π∗
1(2q1)π

∗
2(p2) + π∗

2(2q2)π
∗
1(p1)

δ01 = −π∗
1(q1)π

∗
2(2q2) − π∗

2(q2)π
∗
1(2q1).

If a fiber of this family admits an admissible cover of degree k, then r1 and
r2 have to be 2-fold ramification points, and qi and xi have to be in the same
fiber, for i = 1, 2. From Lemma 2.4.1 there are only 4 fibers with this property,
namely the fibers over (p1, p2), (p1, q2), (q1, p2) and (q1, q2), where qi is such that
2pi ≡ qi + qi for i = 1, 2.

In these cases, the restriction of the covers to E1, E2 is uniquely determined
up to isomorphism, while there are Ng−4,k,(0,1),(0,1) choices for the restriction to
F up to isomorphism. As for (S3), such covers contribute with multiplicity one,
hence we have the following relation

8Aκ2
1
+Aδ2,2 − 2Aδ1,2 +Aδ1,1 + 2Aδ2

1
+ 8Aδ2

0
+ 4Aδ00 + 4Aδ02 − 4Aδ01

= 4Ng−4,k,(0,1),(0,1).

(S8) Consider a general curve F of genus g−2 and attach at two general points elliptic
tails varying in pencils of degree 12.

The base of the family is P1 × P1. Let us construct the family. Let Y → P1

and Y ′ → P1 be two elliptic pencils of degree 12, and let σ and σ′ be the respective
zero sections. Consider Y ×P1 and P1 ×Y ′ and identify σ×P1 and P1 × σ′ with
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F

Figure 2.6.8. How the general fiber of a family in (S8) moves

two general constant sections of F × P1 × P1 → P1 × P1. If x is the class of a
point in P1, then

λ = π∗
1(x) + π∗

2(x)

δ0 = 12λ

δ1 = −λ.

Note that

δ00 = [12π∗
1(x)][12π∗

2(x)]

δ1,1 = [−π∗
1(x)][−π∗

2(x)]

δ01 = [12π∗
1(x)][−π∗

2(x)] + [−π∗
1(x)][12π∗

2(x)].

Studying the possibilities for the adjusted Brill-Noether numbers of the as-
pects of limit linear series on some fiber of this family, we see that this surface is

disjoint from M
1

2k,k, hence

2Aκ2
1
+ 288Aδ2

0
+ 24Aλδ0 + 2Aδ2

1
− 2Aλδ1 + 144Aδ00 +Aδ1,1 − 24Aδ01 = 0.

(S9) For 2 ≤ j ≤ g− 3 let R be a smooth rational curve, attach at the point ∞ ∈ R a
general curve F of genus g− j − 2, attach at the points 0, 1 ∈ R two elliptic tails
E1, E2 and identify a moving point in R with a moving point on a general curve
C of genus j.

F

R

C

E1

E2

Figure 2.6.9. How the general fiber of a family in (S9) moves
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The base of the family is R × C. Let us start from a family P → R of
four-pointed rational curves. Construct P by blowing up P1 × P1 at (0, 0), (1, 1)
and (∞,∞), and consider the sections σ0, σ1, σ∞ and σ∆ corresponding to the
proper transforms of 0 × P1, 1 × P1,∞× P1 and ∆P1 .

To construct the family over R×C, consider P ×C and R×C ×C. Identify
σ∆×C with R×∆C . Finally identify σ0×C, σ1×C and σ∞×C respectively with
general constant sections of the families E1 ×R×C,E2 ×R×C and F ×R×C.
Then

δ1 = −π∗
1(0 + 1)

δ2 = π∗
1(∞)

δj = −π∗
1(KP1 + 0 + 1 + ∞) − π∗

2(KC)

δg−j−2 = −π∗
1(∞)

δg−j−1 = π∗
1(0 + 1).

If for some value of j some of the above classes coincide (for instance, if j = g−3
then δ1 ≡ δg−j−2), then one has to sum up the contributions. Note that

δ1j = [−π∗
1(0 + 1)][−π∗

2(KC)]

δj,g−j−2 = [−π∗
1(∞)][−π∗

2(KC)]

δ2,j = [π∗
1(∞)][−π∗

2(KC)]

δj,g−j−1 = [π∗
1(0 + 1)][−π∗

2(KC)].

As for (S8), this surface is disjoint from M
1

2k,k, hence

(2j − 2)
[
2Aκ2

1
+ 2Aδ1j

+Aδj,g−j−2 − Aδ2,j
− 2Aδj,g−j−1

−Aω(j) −Aω(g−j)

]
= 0.

Again, let us remark that for some value of j, some terms add up.

(S10) Let (R1, 0, 1,∞) and (R2, 0, 1,∞) be two three-pointed smooth rational curves,
identify a moving point on R1 with a moving point on R2, attach a general
pointed curve F of genus g−5 to ∞ ∈ R2 and attach elliptic tails to all the other
marked points.

The base of the family is R1×R2. First construct two families of four-pointed
rational curves P1 → R1 and P2 → R2 respectively with sections σ0, σ1, σ∞, σ∆

and τ0, τ1, τ∞, τ∆ as for the previous surface. Consider P1 × R2 and R1 × P2.
Identify σ∆ ×R2 with R1 × τ∆. Finally identify R1 × τ∞ with a general constant
section of F ×R1 ×R2 and identify σ0 ×R2, σ1 ×R2, σ∞ ×R2, R1 × τ0, R1 × τ1
with the respective zero sections of five constant elliptic fibrations over R1 ×R2.
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F

R2
R1

Figure 2.6.10. How the general fiber of a family in (S10) moves

This surface is disjoint from M
1

2k,k. For g > 8

δ1 = −π∗
1(0 + 1 + ∞) − π∗

2(0 + 1)

δ2 = π∗
1(0 + 1 + ∞) + π∗

2(∞)

δ3 = −π∗
1(KR1 + 0 + 1 + ∞) − π∗

2(KR2 + 0 + 1 + ∞)

δg−5 = −π∗
2(∞)

δg−4 = π∗
2(0 + 1)

and note the restriction of the following classes

δ1,1 = [−π∗
1(0 + 1 + ∞)][−π∗

2(0 + 1)]

δ1,g−5 = [−π∗
1(0 + 1 + ∞)][−π∗

2(∞)]

δ1,3 = [−π∗
1(KR1 + 0 + 1 + ∞)][−π∗

2(0 + 1)]

δ3,g−5 = [−π∗
1(KR1 + 0 + 1 + ∞)][−π∗

2(∞)]

δ1,g−3 = [−π∗
1(0 + 1 + ∞)][−π∗

2(KR2 + 0 + 1 + ∞)]

δ2,g−3 = [π∗
1(0 + 1 + ∞)][−π∗

2(KR2 + 0 + 1 + ∞)]

δ2,g−5 = [π∗
1(0 + 1 + ∞)][−π∗

2(∞)]

δ1,2 = [π∗
1(0 + 1 + ∞)][−π∗

2(0 + 1)] + [−π∗
1(0 + 1 + ∞)][π∗

2(∞)]

δ1,g−4 = [−π∗
1(0 + 1 + ∞)][π∗

2(0 + 1)]

δ3,g−4 = [−π∗
1(KR1 + 0 + 1 + ∞)][π∗

2(0 + 1)]

δ2,3 = [−π∗
1(KR1 + 0 + 1 + ∞)][π∗

2(∞)]

δ2,g−4 = [π∗
1(0 + 1 + ∞)][π∗

2(0 + 1)]

δ2,2 = [π∗
1(0 + 1 + ∞)][π∗

2(∞)].
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It follows that

2Aκ2
1
+ 12Aδ2

1
+ 6Aδ1,1 + 3Aδ1,g−5 + 2Aδ1,3 +Aδ3,g−5 + 3Aδ1,g−3

−Aω(3) −Aω(g−3) − 3(Aδ2,g−3 +Aδ2,g−5 + 2Aδ1,2)

− 2(3Aδ1,g−4 +Aδ3,g−4 ) − (3Aδ1,2 +Aδ2,3) + 6Aδ2,g−4 + 3Aδ2,2 = 0.

For g = 6 the coefficient of Aδ2
1

is 18. When g ∈ {6, 7, 8}, note that some terms
add up.

(S11) Consider a general curve F of genus g − 4, attach at a general point an elliptic
tail varying in a pencil of degree 12 and identify a second general point with a
moving point on a rational three-pointed curve (R, 0, 1,∞). Attach elliptic tails
at the marked point on the rational curve.

F
R

Figure 2.6.11. How the general fiber of a family in (S11) moves

The base of the family is P1×R. Consider the elliptic fibration Y over P1 with
zero section σ as in (S5), and the family P over R with sections σ0, σ1, σ∞, σ∆ as
in (S9). Identify σ×R ⊂ Y ×R and P1×σ∆ ⊂ P1×P with two general constant
sections of F × P1 ×R. Finally identify P1 × σ0,P1 × σ1,P1 × σ∞ ⊂ P1 × P with
the respective zero sections of three constant elliptic fibrations over P1×R. Then

λ = π∗
1(x)

δ0 = 12λ

δ1 = −π∗
1(x) − π∗

2(0 + 1 + ∞)

δ2 = π∗
2(0 + 1 + ∞)

δ3 = −π∗
2(KR + 0 + 1 + ∞).
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Note the restriction of the following classes

δ1,1 = [−π∗
1(x)][−π∗

2(0 + 1 + ∞)]

δ1,3 = [−π∗
1(x)][−π∗

2(KR + 0 + 1 + ∞)]

δ01 = [12π∗
1(x)][−π

∗
2 (0 + 1 + ∞)]

δ03 = [12π∗
1(x)][−π

∗
2 (KR + 0 + 1 + ∞)]

δ02 = [12π∗
1(x)][π

∗
2 (0 + 1 + ∞)]

δ1,2 = [−π∗
1(x)][π∗

2 (0 + 1 + ∞)].

This surface is disjoint from M
1

2k,k, hence

2Aκ2
1
−Aλ(g−3) + 6Aδ2

1
+ 3Aδ1,1 − 3Aλδ1 +Aδ1,3 − 36Aδ01 − 12Aδ03

+ 3
[
Aλδ2 + 12Aδ02 −Aδ1,2

]
= 0.

(S12) Let R be a rational curve, attach at the points 0 and 1 two fixed elliptic tails,
attach at the point ∞ an elliptic tail moving in a pencil of degree 12 and identify
a moving point in R with a general point on a general curve F of genus g − 3.

F

R

Figure 2.6.12. How the general fiber of a family in (S12) moves

The base of the family is P1 ×R. Let Y, σ and P, σ0, σ1, σ∞, σ∆ be as above.
Identify σ ×R ⊂ Y ×R with P1 × σ∞ ⊂ P1 × P , and P1 × σ∆ ⊂ P1 × P with a
general constant section of F ×P1 ×R. Finally identify P1 ×σ0,P1 ×σ1 with the
zero sections of two constant elliptic fibrations over P1 ×R. Then

λ = π∗
1(x)

δ0 = 12λ

δ1 = −π∗
1(x) − π∗

2(∞ + 0 + 1)

δ2 = π∗
2(∞ + 0 + 1)

δ3 = −π∗
2(KP1 + 0 + 1 + ∞).
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Let us note the following restrictions

δ01 = [12π∗
1(x)][−π

∗
2 (0 + 1)]

δ0,g−3 = [12π∗
1(x)][−π

∗
2 (KP1 + 0 + 1 + ∞)]

δ0,g−1 = [12π∗
1(x)][−π

∗
2 (∞)]

δ1,1 = [−π∗
1(x)][−π∗

2(0 + 1)]

δ1,g−3 = [−π∗
1(x)][−π∗

2(KP1 + 0 + 1 + ∞)]

δ0,g−2 = [12π∗
1(x)][π

∗
2 (0 + 1)]

δ1,g−2 = [−π∗
1(x)][π∗

2(0 + 1)]

δ02 = [12π∗
1(x)][π

∗
2 (∞)]

δ1,2 = [−π∗
1(x)][π∗

2(∞)].

This surface is disjoint from M
1

2k,k, hence

2Aκ2
1
− 3Aλδ1 − 24Aδ01 − 12Aδ0,g−3 − 12Aδ0,g−1 + 6Aδ2

1
+ 2Aδ1,1 +Aδ1,g−3

−Aλ(3) + 2(Aλδ2 + 12Aδ0,g−2 −Aδ1,g−2 ) + (Aλδ2 + 12Aδ02 −Aδ1,2 ) = 0.

(S13) Let (C, p, q) be a general two-pointed curve of genus g−3 and identify the point q
with a moving point x on C. Let (E, r, s) be a general two-pointed elliptic curve
and identify the point s with a moving point y on E. Finally identify the points
p and r.

C

E

Figure 2.6.13. How the general fiber of a family in (S13) moves

The base of the family is C × E. Let C̃ × C (respectively Ẽ × E) be the
blow-up of C × C at (p, p) and (q, q) (respectively of E × E at (r, r) and (s, s)).
Let τp, τq, τ∆ (respectively σr, σs, σ∆) be the proper transform of p×C, q×C,∆C

(respectively r×E, s×E,∆E) and identify τq with τ∆ (respectively σs with σ∆).
Finally identify τp × E with C × σr. Then from the proof of Lemma 2.4.2, we
have

δ0 = −π∗
1(KC + 2q) − π∗

2(2s)

δ1 = π∗
1(q) + π∗

2(s)

δ2 = −π∗
1(p) − π∗

2(r)
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and note that

δ00 = [−π∗
1(KC + 2q)][−π∗

2(2s)]

δ02 = [−π∗
1(KC + 2q)][−π∗

2(r)]

δ0,g−2 = [−π∗
2(2s)][−π∗

1(p)]

δ01 = [−π∗
1(KC + 2q)][π∗

2(s)] + [−π∗
2(2s)][π∗

1(q)]

δ1,g−2 = [−π∗
1(p)][π∗

2(s)]

δ1,2 = [π∗
1(q)][−π∗

2(r)]

δ1,1 = [π∗
1(q)][π∗

2(s)].

If a fiber of this family admits an admissible covering of degree k, then such
a covering has a 2-fold ramification at the point p ∼ r, q is in the same fiber as
x, and s is in the same fiber as y. By Lemma 2.4.1 and Lemma 2.4.2 there are 2
points in E and ℓg−2,k points in C with such a property, and the cover is unique
up to isomorphism. Reasoning as in (S3), one shows that each cover contributes
with multiplicity one. It follows that

2(g − 3)
[
4Aκ2

1
+ 2Aδ00 + 4Aδ2

0
+Aδ02

]
+ 2Aδ0,g−2 −Aω(2) −Aω(g−2)

−
[
2(g − 3)Aδ01 +Aδ1,g−2

]
−
[
2Aδ01 +Aδ1,2

]
+
[
Aδ1,1 + 2Aδ2

1

]
= 2 · ℓg−2,k.

(S14) Let (C, p, q) be a general two-pointed curve of genus g− 2, attach at p an elliptic
tail moving in a pencil of degree 12 and identify q with a moving point on C.

C

Figure 2.6.14. How the general fiber of a family in (S14) moves

The base of this family is C ×P1. Let C̃ × C be the blow-up of C ×C at the
points (p, p) and (q, q). Let τp, τq, τ∆ be the proper transform of p× C, q × C,∆
and identify τq with τ∆. Then consider Y, σ as in (S5) and identify C × σ with
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τp × P1. Then

λ = π∗
2(x)

δ0 = 12λ− π∗
1(KC + 2q)

δ1 = π∗
1(q) − π∗

1(p) − λ.

Note that

δ00 = [12π∗
2(x)][−π

∗
1(KC + 2q)]

δ01 = [π∗
1(q)][12π∗

2(x)] + [−π∗
1(KC + 2q)][−π∗

2(x)]

δ0,g−1 = [−π∗
1(p)][12π∗

2(x)]

δ1,1 = [π∗
1(q)][−π∗

2(x)].

This surface is disjoint from M
1

2k,k, hence

(2g − 4)
[
2Aκ2

1
−Aλδ0 − 24Aδ2

0
− 12Aδ00 +Aδ01

]

− 12Aδ0,g−1 + (12Aδ01 −Aδ1,1 ) = 0.

(S15) Let C be a general curve of genus g−1 and consider the surface C×C with fiber
C/(p ∼ q) over (p, q).

C

Figure 2.6.15. How the general fiber of a family in (S15) moves

To construct the family, start from p2,3 : C × C × C → C × C, blow up the
diagonal ∆ ⊂ C×C×C and then identify the proper transform of ∆1,2 := p∗1,2(∆)
with the proper transform ∆1,3 := p∗1,3(∆). Then

δ0 = −(π∗
1KC + π∗

2KC + 2∆)

δ1 = ∆.

The class κ2 has been computed in [Fab90a, §2.1 (1)]. The curve C has no
generalized linear series with Brill-Noether number less than 0, hence

(8g2 − 26g + 20)Aκ2
1
+ (2g − 4)Aκ2 + (4 − 2g)Aδ2

1
+ 8(g − 1)(g − 2)Aδ2

0
= 0.
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(S16) For ⌊g/2⌋ ≤ i ≤ g − 2, take a general curve C of genus i and attach an elliptic
curve E and a general pointed curve F of genus g − i− 1 at two varying points
in C.

C

F E

Figure 2.6.16. How the general fiber of a family in (S16) moves

To construct the family, blow up the diagonal ∆ in C × C × C as before,
and then identify the proper transform of ∆1,2 with the zero section of a constant
elliptic fibration over C×C, and identify the proper transform ∆1,3 with a general
constant section of F × C × C. For i < g − 2

δ1 = −π∗
1KC − ∆

δg−i−1 = −π∗
2KC − ∆

δi = ∆

while for i = g − 2 the δ1 is the sum of the above δ1 and δg−i−1.
Note that replacing the tail of genus g − i − 1 with an elliptic tail does not

affect the computation of the class κ2, hence we can use the count from [Fab90b,
§3 (γ)], that is κ2 = 2i− 2. About the ω classes, on these test surfaces one has
ω(i) = −δ2i and ω(i+1) = −δ2i+1 = −δ2g−i−1. Finally note that δ1,g−i−1 is the
product of the c1’s coming from the two nodes, that is, δ1,g−i−1 = δ1δg−i−1.

If a fiber of this family has a g1
k limit linear series {lE, lC , lF }, then necessarily

the adjusted Brill-Noether number has to be zero on F and E, and −2 on C.
Note that in any case lE = |2 · 0E |. From §2.3.3 there are

∑

α=(α0,α1)

ρ(i,1,k,α)=−1

mi,k,α

pairs in C with such a property, lC is also uniquely determined and there are
Ng−i−1,d,(d−1−α1,d−1−α0) choices for lF . With a similar argument to (S2), such
pairs contribute with multiplicity one.

All in all for i < g − 2

(2i− 2)
[
(4i− 1)Aκ2

1
+Aκ2 +Aω(i) −Aω(i+1) +Aδ2

1
+ (2i− 1)Aδ1,g−i−1

]

=
∑

0≤α0≤α1≤k−1
α0+α1=g−i−1

mi,k,(α0,α1) ·Ng−i−1,k,(k−1−α1,k−1−α0)
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while for i = g − 2

(2g − 6)
[
(4g − 9)Aκ2

1
+Aκ2 +Aω(g−2) + (4g − 8)Aδ2

1
+ (2g − 5)Aδ1,1

]

= mg−2,k,(0,1).

(S17) Consider a general element in θ1, vary the elliptic curve in a pencil of degree 12
and vary one point on the elliptic curve.

Figure 2.6.17. How the general fiber of a family in (S17) moves

The base of this family is the blow up of P2 in the nine points of intersection
of two general cubic curves. Let us denote by H the pull-back of an hyperplane
section in P2, by Σ the sum of the nine exceptional divisors and by E0 one of
them. We have

λ = 3H − Σ

δ0 = 30H − 10Σ − 2E0

δ1 = E0

(see also [Fab89, §2 (9)]). Replacing the component of genus g − 2 with a curve
of genus 2, we obtain a surface in M4. The computation of the class κ2 remains
unaltered, that is κ2 = 1 (see [Fab90b, §3 (ι)]). Similarly for δ00 and θ1, while
δ0,g−1 correspond to the value of δ01a on the surface in M4.

Let us study the intersection with M
1

2k,k. An admissible cover for some fiber
of this family would necessarily have the two nodes in the same fiber, which is
impossible, since the two points are general on the component of genus g−2. We
deduce the following relation

3Aκ2
1
+Aκ2 − 2Aλδ0 +Aλδ1 − 44Aδ2

0
−Aδ2

1
+ 12Aδ0,g−1 − 12Aδ00 +Aθ1 = 0.

(S18) For 2 ≤ i ≤ ⌊(g + 1)/2⌋ we consider a general curve of type δi−1,g−i and we vary
the central elliptic curve E in a pencil of degree 12 and one of the points on E.
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Figure 2.6.18. How the general fiber of a family in (S18) moves

The base of this family is the same surface as in (S17). For i ≥ 3 we have

λ = 3H − Σ

δ0 = 12λ

δ1 = E0

δi−1 = −3H + Σ − E0

δg−i = −3H + Σ − E0

while for i = 2 the δ1 is the sum of the above δ1 and δi−1, that is δ1 = −3H + Σ
(see also [Fab90b, §3 (λ)]).

Note that replacing the two tails of genus i− 1 and g − i with tails of genus
1 and 2, we obtain a surface in M4. The computation of the class κ2 remains
unaltered, that is κ2 = 1 (see [Fab90b, §3 (λ)]). Moreover, on these test surfaces
ω(i) = −δ2i = −δ2g−i and for i ≥ 3, ω(g−i+1) = −δ2g−i+1 = −δ2i−1 hold, while

λ(i) = λδi = λδg−i for i ≥ 3 and λ(g−i+1) = λδg−i+1 = λδi−1 for i ≥ 4. All fibers
are in δi−1,g−i, hence δi−1,g−i is the product of the c1’s of the two nodes, that is,
δi−1,g−i = δi−1 · δg−i. Note that on these surfaces, δ0,i−1 = δ0δi−1 and δ0,g−i =
δ0δg−i. There are exactly 12 fibers which contribute to θi−1, namely when the
elliptic curve degenerates into a rational nodal curve and the moving point hits
the non-disconnecting node. Similarly, there are 12 fibers which contribute to
δ0,g−1, namely when the elliptic curve degenerates into a rational nodal curve
and the moving point hits the disconnecting node.

These surfaces are disjoint from M
1

2k,k. Indeed the two tails of genus i − 1
and g− i have no linear series with adjusted Brill-Noether number less than 0 at
general points. Moreover an elliptic curve has no g1

k with adjusted Brill-Noether
number less than −1 at two arbitrary points. Finally a rational nodal curve has
no generalized linear series with adjusted Brill-Noether number less than 0 at
arbitrary points.

It follows that for i ≥ 4 we have

3Aκ2
1
+Aκ2 −Aω(i) −Aω(g−i+1) −Aδ2

1
+Aδi−1,g−i

−Aλ(i) −Aλ(g−i+1)

+Aλδ1 − 12Aδ0,i−1 − 12Aδ0,g−i
+ 12Aδ0,g−1 + 12Aθi−1 = 0,
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when i = 3

3Aκ2
1
+Aκ2 −Aω(3) −Aω(g−2) −Aδ2

1
+Aδ2,g−3 −Aλ(3) −Aλδ2

+Aλδ1 − 12Aδ0,2 − 12Aδ0,g−3 + 12Aδ0,g−1 + 12Aθ2 = 0,

and when i = 2

3Aκ2
1
+Aκ2 −Aω(2) +Aδ1,g−2

−Aλδ2 − 12Aδ0,1 − 12Aδ0,g−2 + 12Aδ0,g−1 + 12Aθ1 = 0.

2.7. The result

In (S1)-(S18) we have constructed

⌊(g2 − 1)/4⌋+ 3g − 1

linear relations in the coefficients A. Let us collect here all the relations. For
2 ≤ i ≤ ⌊g/2⌋ from (S1) we obtain

2Aκ2
1
−Aω(i) −Aω(g−i) =

Ti

(2i− 2)(2(g − i) − 2)
,

from (S2) for 2 ≤ i ≤ j ≤ g − 3 and i+ j ≤ g − 1

2Aκ2
1
+Aδij

=
Dij

(2i− 2)(2j − 2)
,

from (S3)

4Aκ2
1
−Aω(2) −Aω(g−2) −Aδ1,g−2 + 2Aδ0,g−2 =

ng−2,k,(0,1)

g − 3
,

from (S4) for 2 ≤ i ≤ g − 3

4Aκ2
1
−Aδ1,i

+ 2Aδ0,i
+Aδ2,i

=
D2,i

6(i− 1)
,

from (S5)

2Aκ2
1
− 12Aδ0,g−1 + 2Aδ2

1
−Aλδ1 = 0,

from (S6) for 3 ≤ i ≤ g − 3

2Aκ2
1
−Aλ(i) +Aδ1,g−i

− 12Aδ0,g−i
= 0

and

2Aκ2
1
−Aλδ2 +Aδ1,2 − 12Aδ0,2 = 0,

from (S7)

8Aκ2
1
+Aδ2,2 − 2Aδ1,2 +Aδ1,1 + 2Aδ2

1
+ 8Aδ2

0
+ 4Aδ00 + 4Aδ02 − 4Aδ01

= 4Ng−4,k,(0,1),(0,1),
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from (S8)

2Aκ2
1
+ 288Aδ2

0
+ 24Aλδ0 + 2Aδ2

1
− 2Aλδ1 + 144Aδ00 +Aδ1,1 − 24Aδ01 = 0,

from (S9) for 2 ≤ j ≤ g − 3

2Aκ2
1
+ 2Aδ1j

+Aδj,g−j−2 −Aδ2,j
− 2Aδj,g−j−1 −Aω(j) −Aω(g−j) = 0,

from (S10) for g > 6

2Aκ2
1
+ 12Aδ2

1
+ 6Aδ1,1 + 3Aδ1,g−5 + 2Aδ1,3 +Aδ3,g−5 + 3Aδ1,g−3

−Aω(3) −Aω(g−3) − 3(Aδ2,g−3 +Aδ2,g−5 + 2Aδ1,2)

− 2(3Aδ1,g−4 +Aδ3,g−4) − (3Aδ1,2 +Aδ2,3) + 6Aδ2,g−4 + 3Aδ2,2 = 0

while for g = 6

2Aκ2
1
+ 18Aδ2

1
+ 6Aδ1,1 + 3Aδ1,g−5 + 2Aδ1,3 +Aδ3,g−5 + 3Aδ1,g−3

−Aω(3) −Aω(g−3) − 3(Aδ2,g−3 +Aδ2,g−5 + 2Aδ1,2)

− 2(3Aδ1,g−4 +Aδ3,g−4) − (3Aδ1,2 +Aδ2,3) + 6Aδ2,g−4 + 3Aδ2,2 = 0,

from (S11)

2Aκ2
1
−Aλ(g−3) + 6Aδ2

1
+ 3Aδ1,1 − 3Aλδ1 +Aδ1,3 − 36Aδ01 − 12Aδ03

+ 3
[
Aλδ2 + 12Aδ02 −Aδ1,2

]
= 0,

from (S12)

2Aκ2
1
− 3Aλδ1 − 24Aδ01 − 12Aδ0,g−3 − 12Aδ0,g−1 + 6Aδ2

1
+ 2Aδ1,1 +Aδ1,g−3

−Aλ(3) + 2(Aλδ2 + 12Aδ0,g−2 −Aδ1,g−2 ) + (Aλδ2 + 12Aδ02 −Aδ1,2) = 0,

from (S13)

2(g − 3)
[
4Aκ2

1
+ 2Aδ00 + 4Aδ2

0
+Aδ02

]
+ 2Aδ0,g−2 −Aω(2) −Aω(g−2)

−
[
2(g − 3)Aδ01 +Aδ1,g−2

]
−
[
2Aδ01 +Aδ1,2

]
+
[
Aδ1,1 + 2Aδ2

1

]
= 2 · ℓg−2,k,

from (S14)

(2g − 4)
[
2Aκ2

1
−Aλδ0 − 24Aδ2

0
− 12Aδ00 +Aδ01

]

− 12Aδ0,g−1 + (12Aδ01 −Aδ1,1) = 0,

from (S15)

(8g2 − 26g + 20)Aκ2
1
+ (2g − 4)Aκ2 + (4 − 2g)Aδ2

1
+ 8(g − 1)(g − 2)Aδ2

0
= 0,
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from (S16) for ⌊g/2⌋ ≤ i ≤ g − 3

(4i− 1)Aκ2
1
+Aκ2 +Aω(i) −Aω(i+1) +Aδ2

1
+ (2i− 1)Aδ1,g−i−1

=
1

2i− 2

∑

0≤α0≤α1≤k−1
α0+α1=g−i−1

mi,k,(α0,α1) ·Ng−i−1,k,(k−1−α1,k−1−α0)

and

(4g − 9)Aκ2
1
+Aκ2 + Aω(g−2) + (4g − 8)Aδ2

1
+ (2g − 5)Aδ1,1 =

mg−2,k,(0,1)

2g − 6
,

from (S17)

3Aκ2
1
+Aκ2 − 2Aλδ0 +Aλδ1 − 44Aδ2

0
−Aδ2

1
+ 12Aδ0,g−1 − 12Aδ00 +Aθ1 = 0,

from (S18) for 4 ≤ i ≤ ⌊(g + 1)/2⌋

3Aκ2
1
+Aκ2 −Aω(i) −Aω(g−i+1) −Aδ2

1
+Aδi−1,g−i

−Aλ(i) −Aλ(g−i+1)

+Aλδ1 − 12Aδ0,i−1 − 12Aδ0,g−i
+ 12Aδ0,g−1 + 12Aθi−1 = 0,

and

3Aκ2
1
+Aκ2 −Aω(3) −Aω(g−2) −Aδ2

1
+Aδ2,g−3 −Aλ(3) −Aλδ2

+Aλδ1 − 12Aδ0,2 − 12Aδ0,g−3 + 12Aδ0,g−1 + 12Aθ2 = 0,

3Aκ2
1
+Aκ2 −Aω(2) +Aδ1,g−2

−Aλδ2 − 12Aδ0,1 − 12Aδ0,g−2 + 12Aδ0,g−1 + 12Aθ1 = 0.

Let Qg be the square matrix of order ⌊(g2 − 1)/4⌋+ 3g− 1 associated to the
linear system given by the above relations. As we have already noted, since the
test surfaces in (S1)-(S18) are defined also for odd values of g ≥ 6, the matrix Qg

is defined also for g odd, g ≥ 7. One checks that | det(Q6)| 6= 0, | det(Q7)| 6= 0
and for 8 ≤ g ≤ 200, one has

∣∣∣∣
det(Qg)

det(Qg−1)

∣∣∣∣ =
2(g − 1)(g − 2)(g − 4)(13 + 11(−1)g+1)

(g − 3)2(g − 5)
.(2.7.1)

It follows that det(Qg) 6= 0 for all 6 ≤ g ≤ 200. In particular, when g = 2k, we
are able to solve the system and find the coefficients A.
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Theorem 2.7.1. For 3 ≤ k ≤ 100, the class of the locus M
1

2k,k ⊂ M2k is

[
M

1

2k,k

]
Q

= c

[
Aκ2

1
κ2

1 +Aκ2κ2 +Aδ2
0
δ20 +Aλδ0λδ0 +Aδ2

1
δ21 +Aλδ1λδ1

+Aλδ2λδ2 +

g−2∑

i=2

Aω(i)ω(i) +

g−3∑

i=3

Aλ(i)λ(i) +
∑

i,j

Aδij
δij

+

⌊(g−1)/2⌋∑

i=1

Aθi
θi

]

in H2(3g−3)−4(Mg,Q), where

c =
2k−6(2k − 7)!!

3(k!)

Aκ2
1

= −Aδ2
0

= 3k2 + 3k + 5

Aκ2 = −24k(k + 5)

Aδ2
1

= −(3k(9k + 41) + 5)

Aλδ0 = −24(3(k − 1)k − 5)

Aλδ1 = 24
(
−33k2 + 39k + 65

)

Aλδ2 = 24(3(37 − 23k)k + 185)

Aω(i) = −180i4 + 120i3(6k + 1) − 36i2
(
20k2 + 24k − 5

)

+ 24i
(
52k2 − 16k − 5

)
+ 27k2 + 123k+ 5

Aλ(i) = 24[6i2(3k + 5) − 6i
(
6k2 + 23k + 5

)

+ 159k2 + 63k + 5]

Aθ(i) = −12i[5i3 + i2(10 − 20k) + i
(
20k2 − 8k − 5

)

− 24k2 + 32k − 10]

Aδ1,1 = 48
(
19k2 − 49k + 30

)

Aδ1,g−2 =
2

5
(3k(859k− 2453) + 2135)

Aδ00 = 24k(k − 1)

Aδ0,g−2 =
2

5
(3k(187k− 389) − 745)

Aδ0,g−1 = 2(k(31k − 49) − 65)

and for i ≥ 1 and 2 ≤ j ≤ g − 3

Aδij
= 2[3k2(144ij − 1) − 3k(72ij(i+ j + 4) + 1)

+ 180i(i+ 1)j(j + 1) − 5]
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while

Aδ0j
= 2

(
−3
(
12j2 + 36j + 1

)
k + (72j − 3)k2 − 5

)

for 1 ≤ j ≤ g − 3.

As usual, for a positive integer n, the symbol (2n+ 1)!! denotes

(2n+ 1)!

2n · n!
,

while (−1)!! = 1.

We conjecture that the formulae in Thm. 2.7.1 represent the class of M
1

2k,k

also for k > 100 (hence for every k ≥ 3). Since such coefficients A verify all
relations in (S1)-(S18), it is enough to show that detQg 6= 0 for every g ≥ 6. To
do this, for instance one could show that (2.7.1) holds for every g ≥ 8.

2.8. Pull-back to M2,1

As a check, in this section we obtain four more relations for the coefficients

A considering the pull-back of M
1

2k,k to M2,1. Let j : M2,1 → Mg be the map

obtained by attaching at elements (D, p) in M2,1 a fixed general pointed curve

of genus g − 2. This produces a map j∗ : A2(Mg) → A2(M2,1).

In [Fab88, Chapter 3 §1] it is shown that A2(M2,1) has rank 5 and is gen-
erated by the classes of the loci composed by curves of type ∆00, (a), (b), (c) and
(d) as in Fig. 2.8.1.

1

0

1

00

0
1

1
1

0

∆00

(a)

(b)

(c)

(d)

Figure 2.8.1. Loci in M2,1
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We have the following pull-backs

j∗(δ0,1) = [(a)]Q

j∗(δ0,g−1) = [(b)]Q

j∗(θ1) = [(c)]Q

j∗(δ1,1) = [(d)]Q

j∗(δ00) = [∆00]Q

j∗(δ20) =
5

3
[∆00]Q − 2[(a)]Q − 2[(b)]Q

j∗(δ21) = −
1

12
([(a)]Q + [(b)]Q)

j∗(λδ0) =
1

6
[∆00]Q

j∗(λδ1) =
1

12
([(a)]Q + [(b)]Q)

j∗(λδ2) = −λψ

=
1

60
(−[∆00]Q − 7[(a)]Q − 12[(c)]Q − 24[(d)]Q)

j∗(κ2
1) =

(
1

5
δ0 +

7

5
δ1 + ψ

)2

=
1

120
(17[∆00]Q + 127[(a)]Q + 37[(b)]Q + 120[(c)]Q

+ 840[(d)]Q)

j∗(κ2) = λ(λ+ δ1) + ψ2

=
1

120
(3[∆00]Q + 25[(a)]Q + 11[(b)]Q + 24[(c)]Q + 168[(d)]Q)

j∗(δ1,g−2) = −δ1ψ

= −
1

12
[(a)]Q − 2[(d)]Q

j∗(δ0,g−2) = −δ0ψ

= −
1

6
[∆00]Q − [(a)]Q − 2[(c)]Q

j∗(ω(2)) = −ψ2

= −
1

120
([∆00]Q + 13[(a)]Q − [(b)]Q + 24[(c)]Q + 168[(d)]Q).

For this, see relations in [Fab88, Chapter 3 §1] and [Mum83, §8 - §10]. We have
used that on Mg,1 one has

κi = κi|Mg
+ ψi
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(see [AC96, 1.10]).

All the other classes have zero pull-back. Finally, j∗(M
1

2k,k) is supported at
most on the locus (c). Indeed general elements in the loci ∆00, (a), (b) and (d)
does not admit any linear series g1

k with adjusted Brill-Noether number less than

−1 (see also [Edi93, Lemma 5.1]). Since the restriction of M
1

2k,k to j(M2,1)

is supported in codimension two, then j(M2,1 \ (c)) = 0. Hence looking at the

coefficient of [∆00]Q, [(a)]Q, [(b)]Q and [(d)]Q in j∗(M
1

2k,k) we obtain the following
relations

Aδ00 +
5

3
Aδ2

0
+

1

6
Aλδ0 −

1

60
Aλδ2 +

17

120
Aκ2

1
+

1

40
Aκ2 −

1

6
Aδ0,g−2 −

1

120
Aω(2) = 0

Aδ01 − 2Aδ2
0
−

1

12
Aδ2

1
+

1

12
Aλδ1 −

7

60
Aλδ2 +

127

120
Aκ2

1

+
5

24
Aκ2 −

1

12
Aδ1,g−2 −Aδ0,g−2 −

13

120
Aω(2) = 0

Aδ0,g−1 − 2Aδ2
0
−

1

12
Aδ2

1
+

1

12
Aλδ1 +

37

120
Aκ2

1
+

11

120
Aκ2 +

1

120
Aω(2) = 0

Aδ1,1 −
2

5
Aλδ2 + 7Aκ2

1
+

7

5
Aκ2 − 2Aδ1,g−2 −

7

5
Aω(2) = 0.

The coefficients A shown in Thm. 2.7.1 satisfy these relations.

2.9. Further relations

In this section we will show how to get further relations for the coefficients
A that can be used to produce more tests for our result.

2.9.1. The coefficients of κ2
1 and κ2. One can compute the class of M1

2k,k

in the open M2k by the methods described by Faber in [Fab99]. Let Ck
2k be the

k-fold fiber product of the universal curve over M2k and let πi : Ck
2k → C2k be the

map forgetting all but the i-th point, for i = 1, . . . , k. We define the following
tautological classes on Ck

2k: Ki is the class of π∗
i (ω), where ω is the relative

dualizing sheaf of the map C2k → M2k, and ∆i,j is the class of the locus of
curves with k points (C, x1, . . . , xk) such that xi = xj , for 1 ≤ i, j ≤ k.

Let E be the pull-back to Ck
2k of the Hodge bundle of rank 2k and let Fk be

the bundle on Ck
2k of rank k whose fiber over (C, x1, . . . , xk) is

H0(C,KC/KC(−x1 · · · − xk)).

We consider the locus X in Ck
2k where the evaluation map

ϕk : E → Fk

has rank at most k − 1. Equivalently, X parameterizes curves with k points
(C, x1, . . . , xk) such that H0(C,KC(−x1 · · · − xk)) ≥ k + 1 or, in other terms,
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H0(C, x1 + · · · + xk) ≥ 2. By Porteous formula, the class of X is

[X ] =




e1 e2 e3 · · · ek+1

1 e1 e2 · · · ek

0 1 e1
. . .

...
...

. . .
. . .

. . . e2
0 · · · 0 1 e1




where the ei’s are the Chern classes of Fk −E. The total Chern class of Fk −E is

(1+K1)(1+K2−∆1,2) · · · (1+Kk−∆1,k · · ·−∆k−1,k)(1−λ1+λ2−λ3+· · ·+λ2k).

Intersecting the class of X with ∆1,2 we obtain a class that pushes forward via
π := π1π2 · · ·πk to the class of M1

2k,k with multiplicity (k− 2)!(6k− 2). We refer

the reader to [Fab99, §4] for formulae for computing the push-forward π∗.
For instance, when k = 3 one constructs a degeneracy locus X on the 3-fold

fiber product of the universal curve over M6. The class of X is

[X ] = e41 − 3e21e2 + e22 + 2e1e3 − e4

where the ei’s are determined by the following total Chern class

(1 +K1)(1 +K2 − ∆1,2)(1 +K3 − ∆1,3 − ∆2,3)(1 − λ1 + λ2 − λ3 + · · · + λ6).

Upon intersecting the class of X with ∆1,2 and using the following identities

∆1,3∆2,3 = ∆1,2∆1,3

∆2
1,2 = −K1∆1,2 ∆2

1,3 = −K1∆1,3 ∆2
2,3 = −K2∆2,3

K2∆1,2 = K1∆1,2 K3∆1,3 = K1∆1,3 K3∆2,3 = K2∆2,3,

one obtains

[X ] · ∆1,2 = K4
3∆1,2 − 3K3

3∆2
1,2 + 7K2

3∆3
1,2 − 15K3∆

4
1,2 + 31∆5

1,2

+ 72∆1,2∆
4
2,3 + 172∆1,3∆

4
2,3 −K3

3∆1,2λ1 + 3K2
3∆2

1,2λ1

− 7K3∆
3
1,2λ1 + 15∆4

1,2λ1 + 23∆1,2∆
3
2,3λ1 + 41∆1,3∆

3
2,3λ1

+K2
3∆1,2λ

2
1 − 3K3∆

2
1,2λ

2
1 + 7∆3

1,2λ
2
1 + 6∆1,2∆

2
2,3λ

2
1

+ 8∆1,3∆
2
2,3λ

2
1 −K3∆1,2λ

3
1 + 3∆2

1,2λ
3
1 + ∆1,2∆2,3λ

3
1

+ ∆1,3∆2,3λ
3
1 + ∆1,2λ

4
1 −K2

3∆1,2λ2 + 3K3∆
2
1,2λ2 − 7∆3

1,2λ2

− 6∆1,2∆
2
2,3λ2 − 8∆1,3∆

2
2,3λ2 + 2K3∆1,2λ1λ2 − 6∆2

1,2λ1λ2

− 2∆1,2∆2,3λ1λ2 − 2∆1,3∆2,3λ1λ2 − 3∆1,2λ
2
1λ2 + ∆1,2λ

2
2

−K3∆1,2λ3 + 3∆2
1,2λ3 + ∆1,2∆2,3λ3 + ∆1,3∆2,3λ3

+ 2∆1,2λ1λ3 − ∆1,2λ4.
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Computing the push-forward to M6 of the above class, one has

[
M1

6,3

]
Q

=
1

16

(
(18κ0 − 244)κ2 + 7κ2

1 + (64 − 10κ0)κ1λ1

+ (3κ2
0 − 14κ0)λ

2
1 + (14κ0 − 3κ2

0)λ2

)
.

Note that κ0 = 2g − 2 = 10, 12λ1 = κ1 and 2λ2 = λ2
1, hence we recover

[
M1

6,3

]
Q

=
41

144
κ2

1 − 4κ2.

Remark 2.9.1. As a corollary one obtains the class of the Maroni locus
in M6. The trigonal locus in M2k has a divisor known as the Maroni locus
(see [Mar46], [MS86]). While the general trigonal curve of even genus admits
an embedding in P1 × P1 or in P2 blown up in one point, the trigonal curves
admitting an embedding to other kind of ruled surfaces constitute a subvariety
of codimension one inside the trigonal locus.

The class of the Maroni locus in the Picard group of the trigonal locus in
M2k has been studied in [SF00]. For k = 3, one has that the class of the Maroni

locus is 8λ ∈ Pic(M
1

6,3). Knowing the class of the trigonal locus in M6, one has
that the class of the Maroni locus in M6 is

8λ

(
41

144
κ2

1 − 4κ2

)
.

2.9.2. More test surfaces. One could also consider more test surfaces. For
instance one can easily adapt the test surfaces of type (ε) and (κ) from [Fab90b,

§3]. They are all disjoint from the locus M
1

2k,k and produce relations compatible
with the ones we have shown.

2.9.3. The relations for g = 5. As an example, let us consider the case
g = 5. We know that the tautological ring of M5 is generated by λ, that is, there
is a non-trivial relation among κ2

1 and κ2 (see [Fab99]). The square matrix Q5

from §2.7 expressing the restriction of the generating classes in M5 to the test
surfaces (S1)-(S18) (we have to exclude the relation from (S10) which is defined
only for g ≥ 6), has rank 19, hence showing that the class κ2

1 (or the class κ2)
and the 18 boundary classes in codimension two in M5 are independent.

2.10. The hyperelliptic locus in M4

The class of the hyperelliptic locus in M4 has been computed in [FP05,
Prop. 5]. In this section we will recover the formula by the means of the techniques
used so far.

The class will be expressed as a linear combination of the 14 generators for
R2(M4) from [Fab90b]: κ2, λ

2, λδ0, λδ1, λδ2, δ
2
0 , δ0δ1, δ

2
1 , δ1δ2, δ

2
2 , δ00, γ1, δ01a
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and δ1,1. Remember that there exists one unique relation among these classes,
namely

60κ2 − 810λ2 + 156λδ0 + 252λδ1 − 3δ20 − 24δ0δ1

+ 24δ21 − 9δ00 + 7δ01a − 12γ1 − 84δ1,1 = 0,

hence R2(M4) has rank 13. Write [M
1

4,2]Q as

[
M

1

4,2

]
Q

= Aκ2κ2 +Aλ2λ2 +Aλδ0λδ0 +Aλδ1λδ1 +Aλδ2λδ2 +Aδ2
0
δ20

+Aδ0δ1δ0δ1 +Aδ2
1
δ21 +Aδ1δ2δ1δ2 +Aδ2

2
δ22 +Aδ00δ00 +Aγ1γ1

+Aδ01a
δ01a +Aδ1,1δ1,1.

Let us construct 13 independent relations among the coefficients A.
The surfaces (S1), (S3), (S5), (S6), (S8), (S12)-(S18) from §2.6 give respec-

tively the following 12 independent relations

8Aδ2
2

= 36

4Aδ2
2
− 2Aδ1δ2 = 12

−4Aλδ1 − 48Aδ0δ1 + 8Aδ2
1
− 48Aδ01a

= 0

Aλδ2 −Aδ1δ2 = 0

2Aλ2 + 24Aλδ0 − 2Aλδ1 + 288Aδ2
0
− 24Aδ0δ1 + 2Aδ2

1
+ 144Aδ00 +Aδ1,1 = 0

−4Aλδ1 + 3Aλδ2 − 48Aδ0δ1 + 8Aδ2
1
− 3Aδ1δ2 − 12Aδ01a

+ 3Aδ1,1 = 0

8Aδ2
0
− 4Aδ0δ1 + 2Aδ2

1
− 2Aδ1δ2 + 2Aδ2

2
+ 4Aδ0,0 +Aδ1,1 = 4

−4Aλδ0 − 96Aδ2
0

+ 4Aδ0δ1 − 48Aδ00 −Aδ1,1 − 12Aδ01a
= 0

48Aδ2
0
− 4Aδ2

1
+ 4Aκ2 = 0

16Aδ2
1
− 2Aδ2

2
+ 2Aκ2 + 6Aδ1,1 = 30

−2Aλδ0 +Aλδ1 − 44Aδ2
0

+ 12Aδ0δ1 −Aδ2
1

+Aκ2 − 12Aδ00 + 12Aδ01a
+Aγ1 = 0

Aδ1δ2 −Aλδ2 +Aδ2
2

+Aκ2 + 12Aδ01a
+ 12Aγ1 = 0.

Next we look at the pull-back to M2,1. The pull-back of the classes κ2, λδ0,
λδ1, λδ2, δ

2
0 , δ21 , δ00, γ1 = θ1, δ01a = δ0,g−1 and δ1,1 have been computed in §2.8.
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Moreover

j∗(λ2) =
1

60
([∆00]Q + [(a)]Q + [(b)]Q)

j∗(δ0δ1) = [(a)]Q + [(b)]Q

j∗(δ1δ2) = −δ1ψ

= −
1

12
[(a)]Q − 2[(d)]Q

j∗(δ22) = ψ2

=
1

120
([∆00]Q + 13[(a)]Q − [(b)]Q + 24[(c)]Q + 168[(d)]Q).

Considering the coefficient of [∆00]Q yields the following relation

Aδ00 +
5

3
Aδ2

0
+

1

6
Aλδ0 −

1

60
Aλδ2 +

1

40
Aκ2 +

1

60
Aλ2 +

1

120
Aδ2

2
= 0.

All in all we get 13 independent relations, and the class of M
1

4,2 follows

2
[
M

1

4,2

]
Q

= 27κ2 − 339λ2 + 64λδ0 + 90λδ1 + 6λδ2 − δ20 − 8δ0δ1

+ 15δ21 + 6δ1δ2 + 9δ22 − 4δ00 − 6γ1 + 3δ01a − 36δ1,1.





3

Double points of plane models in M6,1

The birational geometry of an algebraic variety is encoded in its cone of
effective divisors. Nowadays a major problem is to determine the effective cone
of moduli spaces of curves.

Let GP1
4 be the Gieseker-Petri divisor in M6 given by curves with a pencil

l = (L , V ) of degree 4 violating the Petri condition, i.e. such that the product
map

V ⊗H0(C,KC ⊗ L
−1) → H0(C,KC)

is not injective. The class
[
GP

1

4

]
= 94λ− 12δ0 − 50δ1 − 78δ2 − 88δ3 ∈ PicQ(M6)

is computed in [EH87] where classes of Brill-Noether divisors and Gieseker-Petri
divisors are determined for arbitrary genera in order to prove that Mg is of
general type for g ≥ 24.

Let D2
d be the divisor in Mg,1 defined as the locus of smooth pointed curves

[C, p] with a net g2
d of Brill-Noether number 0 mapping p to a double point. That

is, for values of g, d such that g = 3(g − d+ 2),

D2
d :=

{
[C, p] ∈ Mg,1 |

∃ l ∈ G2
d(C)with l(−p− x) ∈ G1

d−2(C)wherex ∈ C, x 6= p
}
.

Recently Jensen has shown that D
2

6 and the pull-back of GP
1

4 to M6,1 generate

extremal rays of the pseudoeffective cone of M6,1 (see [Jen10]). It is thus of

interest to determine the class of D
2

6.

Theorem 3.0.1. The class of the divisor D
2

6 ⊂ M6,1 is
[
D

2

6

]
= 62λ+ 4ψ − 8δ0 − 30δ1 − 52δ2 − 60δ3 − 54δ4 − 34δ5 ∈ PicQ(M6,1).

A mix of a Porteous-type argument, the method of test curves and a pull-back
to rational pointed curves will lead to the result. Following a method described

in [Kho07], we realize D
2

d in Mirr
g,1 as the push-forward of a degeneracy locus of

a map of vector bundles over G2
d(Mirr

g,1). This will give us the coefficients of λ, ψ

61
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and δ0 for the class of D
2

d in general. Intersecting D
2

d with carefully chosen one-
dimensional families of curves will produce relations to determine the coefficients
of δ1 and δg−1. Finally in the case g = 6 we will get enough relations to find the
other coefficients by pulling-back to the moduli space of stable pointed rational
curves in the spirit of [EH87, §3].

To complete our computation we obtain a general result on some families of
linear series on pointed curves with adjusted Brill-Noether number ρ = 0 that
essentially excludes further ramifications on such families.

Theorem 3.0.2. Let (C, y) be a general pointed curve of genus g > 1. Let l
be a gr

d on C with r ≥ 2 and adjusted Brill-Noether number ρ(C, y) = 0. Denote

by (a0, a1, . . . , ar) the vanishing sequence of l at y. Then l(−aiy) is base-point

free for i = 0, . . . , r − 1.

For instance if C is a general curve of genus 4 and l ∈ G2
5(C) has vanishing

sequence (0, 1, 3) at a general point p in C, then l(−p) is base-point free.
Using the irreducibility of the families of linear series with adjusted Brill-

Noether number −1 ([EH89]), we get a similar statement for an arbitrary point
on the general curve in such families.

Theorem 3.0.3. Let C be a general curve of genus g > 2. Let l be a gr
d on C

with r ≥ 2 and adjusted Brill-Noether number ρ(C, y) = −1 at an arbitrary point

y. Denote by (a0, a1, . . . , ar) the vanishing sequence of l at y. Then l(−a1y) is

base-point free.

As a verification of Thm. 3.0.1, let us note that the class of D
2

6 is not a linear
combination of the class of the Gieseker-Petri divisor GP1

4 and the class of the
divisor W of Weierstrass points computed in [Cuk89]

[W ] = − λ+ 21ψ − 15δ1 − 10δ2 − 6δ3 − 3δ4 − δ5 ∈ PicQ(M6,1).

We prove Thm. 3.0.2 and Thm. 3.0.3 in §3.1. Finally in §3.2 we prove a gen-
eral version of Thm. 3.0.1. We refer the reader to §1.3 and §2.5 for an introduction
to enumerative geometry on the general curve and limit linear series.

3.1. Ramifications on some families of linear series with ρ = 0 or −1

Here we prove Thm. 3.0.2. The result will be repeatedly used in the next
section.

Proof of Thm. 3.0.2. Clearly it is enough to prove the statement for i =
r − 1. We proceed by contradiction. Suppose that for (C, y) a general pointed
curve of genus g, there exists x ∈ C such that h0(l(−ar−1y − x)) ≥ 2, for some
l a gr

d with ρ(C, y) = 0. Let us degenerate C to a transversal union C1 ∪y1 E1,
where C1 has genus g − 1 and E1 is an elliptic curve. Since y is a general point,
we can assume y ∈ E1 and y − y1 not to be a d!-torsion point in Pic0(E1).
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Let {lC1, lE1} be a limit gr
d on C1 ∪y1 E1 such that alE1 (y) = (a0, a1, . . . , ar).

Denote by (α0, . . . , αr) the corresponding ramification sequence. We have that
ρ(C1, y1) = ρ(E1, y, y1) = 0, hence wlC1 (y1) = r+ ρ, where ρ = ρ(g, r, d). Denote
by (b10, b

1
1, . . . , b

1
r) the vanishing sequence of lC1 at y1 and by (β1

0 , β
1
1 , . . . , β

1
r ) the

corresponding ramification sequence.
Suppose x specializes to E1. Then b1r ≥ ar + 1, b1r−1 ≥ ar−1 + 1 and we

cannot have both equalities, since y − y1 is not in Pic0(E1)[d!] (see for instance
[Far00, Prop. 4.1]). Moreover, as usually b1k ≥ ak for 0 ≤ k ≤ r − 2, and again
among these inequalities there cannot be more than one equality. We deduce

wlC1 (y1) ≥ wlE1 (y) + 3 + r − 2 > wlE1 (y) + r = r + ρ

hence a contradiction. We have supposed that h0(l(−ar−1y− x)) ≥ 2. Then this
pencil degenerates to lE1(−ar−1y) and to a compatible sub-pencil l′C1

of lC1(−x).
We claim that

h0
(
lC1

(
−b1r−1y1 − x

))
≥ 2.

Suppose this is not the case. Then we have alC1 (−x)(y1) ≤ (b10, . . . , b
1
r−2, b

1
r), hence

b1r ≥ ar, b
1
r−2 ≥ ar−1 and b1k ≥ ak, for 0 ≤ k ≤ r−3. Among these, we cannot have

more than one equality, plus β1
r−2 ≥ αr−1 + 1 and β1

r−1 ≥ β1
r−2 > αr−1 ≥ αr−2,

hence

wlC1 (y1) ≥ wlE1 (y) + 1 + r − 1 + β1
r−1 − αr−2 > r + ρ

a contradiction.
From our assumptions, we have deduced that for (C1, y1) a general pointed

curve of genus g− 1, there exist lC1 a gr
d and x ∈ C1 such that ρ(C1, y1) = 0 and

h0(lC1(−b
1
r−1y1 − x)) ≥ 2, where b1r−1 is as before.

Then we apply the following recursive argument. At the step i, we degenerate
the pointed curve (Ci, yi) of genus g − i to a transversal union Ci+1 ∪yi+1 Ei+1,
where Ci+1 is a curve of genus g−i−1 and Ei+1 is an elliptic curve, such that yi ∈
Ei+1. Let {lCi+1, lEi+1} be a limit gr

d on Ci+1 ∪yi+1 Ei+1 such that alEi+1 (yi) =

(bi0, b
i
1, . . . , b

i
r). From ρ(Ci+1, yi+1) = ρ(Ei+1, yi, yi+1) = 0, we compute that

wlCi+1 (yi+1) = (i+1)r+ρ. Denote by (bi+1
0 , bi+1

1 , . . . , bi+1
r ) the vanishing sequence

of lCi+1 at yi+1. As before we arrive to a contradiction if x ∈ Ei+1, and we deduce

h0
(
lCi+1

(
−bi+1

r−1yi+1 − x
))

≥ 2.

At the step g − 2, our degeneration produces two elliptic curves Cg−1 ∪yg−1

Eg−1, with yg−2 ∈ Eg−1. Our assumptions yield the existence of x ∈ Cg−1 such
that

h0(lCg−1(−b
g−1
r−1yg−1 − x)) ≥ 2.

We compute wlCi+1 (yg−1) = (g − 1)r + ρ. By the numerical hypothesis, we see
that (g − 1)r + ρ = (d− r − 1)(r + 1) + 1, hence the vanishing sequence of lCg−1

at yg−1 has to be (d− r − 1, . . . , d− 3, d− 2, d), whence the contradiction. �
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The following proves the similar result for some families of linear series with
Brill-Noether number −1.

Proof of Thm 3.0.3. The statement says that for every y ∈ C such that
ρ(C, y) = −1 for some l a gr

d, and for every x ∈ C, we have that h0(l(−a1y−x)) ≤
r − 1. This is a closed condition and, using the irreducibility of the divisor D of
pointed curves admitting a linear series gr

d with adjusted Brill-Noether number
−1, it is enough to prove it for [C, y] general in D.

We proceed by contradiction. Suppose for [C, y] general in D there exists
x ∈ C such that h0(l(−a1y − x)) ≥ r for some l a gr

d with ρ(C, y) = −1. Let us
degenerate C to a transversal union C1∪y1E1 where C1 is a general curve of genus
g−1 and E1 is an elliptic curve. Since y is a general point, we can assume y ∈ E1.
Let {lC1, lE1} be a limit gr

d on C1∪y1E1 such that alE1 (y) = (a0, a1, . . . , ar). Then
ρ(E1, y, y1) ≤ −1 and ρ(C1, y1) = 0, hence wlC1 (y1) = r + ρ (see also [Far09b,
Proof of Thm. 4.6]). Let (b10, b

1
1, . . . , b

1
r) be the vanishing sequence of lC1 at y1

and (β1
0 , β

1
1 , . . . , β

1
r ) the corresponding ramification sequence.

The point x has to specialize to C1. Indeed suppose x ∈ E1. Then b1k ≥ ak+1
for k ≥ 1. This implies wlC1 (y1) ≥ wlE1 (y) + r > ρ + r, hence a contradiction.
Then x ∈ C1, and l(−a1y − x) degenerates to lE1(−a1y) and to a compatible
system l′C1

:= lC1(−x). We claim that

h0
(
lC1

(
−b1r−1y1 − x

))
≥ 2.

Suppose this is not the case. Then we have al′C1 (y1) ≤ (b10, . . . , b
1
r−2, b

1
r) and so

b1r ≥ ar, and b1k ≥ ak+1 for 0 ≤ k ≤ r− 2. Then β1
k ≥ αk+1 + 1 for k ≤ r− 2, and

summing up we obtain

wlC1 (y1) ≥ wlE1 (y) + r − 1 + β1
r−1 − α0.

Clearly β1
r−1 ≥ β1

r−2 > αr−1 ≥ α0. Hence wlC1 (y1) > ρ+ r, a contradiction.
All in all from our assumptions we have deduced that for a general pointed

curve (C1, y1) of genus g−1, there exist lC1 a gr
d and x ∈ C1 such that ρ(C1, y1) =

0 and h0(lC1(−b
1
r−1y1 − x)) ≥ 2, where b1r−1 is as before. This contradicts

Thm. 3.0.2, hence we obtain the statement. �

3.2. The divisor D2
d

Remember that PicQ(Mg,1) is generated by the Hodge class λ, the cotangent
class ψ corresponding to the marked point, and the boundary classes δ0, . . . δg−1

defined as follows. The class δ0 is the class of the closure of the locus of pointed
irreducible nodal curves, and the class δi is the class of the closure of the locus of
pointed curves [Ci ∪ Cg−i, p] where Ci and Cg−i are smooth curves respectively
of genus i and g − i meeting transversally in one point, and p is a smooth point
in Ci, for i = 1, . . . , g − 1. In this section we prove the following theorem.
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Theorem 3.2.1. Let g = 3s and d = 2s + 2 for s ≥ 1. The class of the

divisor D
2

d in PicQ(Mg,1) is

[
D

2

d

]
= aλ+ cψ −

g−1∑

i=0

biδi

where

a =
48s4 + 80s3 − 16s2 − 64s+ 24

(3s− 1)(3s− 2)(s+ 3)
Ng,2,d

c =
2s(s− 1)

3s− 1
Ng,2,d

b0 =
24s4 + 23s3 − 18s2 − 11s+ 6

3(3s− 1)(3s− 2)(s+ 3)
Ng,2,d

b1 =
14s3 + 6s2 − 8s

(3s− 2)(s+ 3)
Ng,2,d

bg−1 =
48s4 + 12s3 − 56s2 + 20s

(3s− 1)(3s− 2)(s+ 3)
Ng,2,d.

Moreover for g = 6 and for i = 2, 3, 4, we have that

bi = − 7i2 + 43i− 6.

3.2.1. The coefficient c. The coefficient c can be quickly found. Let C
be a general curve of genus g and consider the curve C = {[C, y] : y ∈ C} in
Mg,1 obtained varying the point y on C. Then the only generator class having

non-zero intersection with C is ψ, and C ·ψ = 2g− 2. On the other hand, C ·D
2

d

is equal to the number of triples (x, y, l) ∈ C × C × G2
d(C) such that x and y

are different points and h0(l(−x − y)) ≥ 2. The number of such linear series on
a general C is computed by the Castelnuovo number (remember that ρ = 0),
and for each of them the number of couples (x, y) imposing only one condition is
twice the number of double points, computed by the Plücker formula. Hence we
get the equation

D
2

d · C = 2

(
(d− 1)(d− 2)

2
− g

)
Ng,2,d = c (2g − 2)

and so

c =
2s(s− 1)

3s− 1
Ng,2,d.

3.2.2. The coefficients a and b0. In order to compute a and b0, we use
a Porteous-style argument. Let G2

d be the family parametrizing triples (C, p, l),
where [C, p] ∈ Mirr

g,1 and l is a g2
d on C; denote by η : G2

d → Mirr
g,1 the natural map.

There exists π : Y2
d → G2

d a universal pointed quasi-stable curve, with σ : G2
d → Y2

d
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the marked section. Let L → Y2
d be the universal line bundle of relative degree d

together with the trivialization σ∗(L ) ∼= OG2
d
, and V ⊂ π∗(L ) be the sub-bundle

which over each point (C, p, l = (L, V )) in G2
d restricts to V . (See [Kho07, §2]

for more details.)
Furthermore let us denote by Z2

d the family parametrizing

((C, p), x1, x2, l) ,

where [C, p] ∈ Mirr
g,1, x1, x2 ∈ C and l is a g2

d on C, and let µ, ν : Z2
d → Y2

d be
defined as the maps that send ((C, p), x1, x2, l) respectively to ((C, p), x1, l) and
((C, p), x2, l).

Now given a linear series l = (L, V ), the natural map

ϕ : V → H0(L|p+x)

globalizes to

ϕ̃ : V → µ∗ (ν∗L ⊗ O/IΓσ+∆) =: M

as a map of vector bundles over Y2
d , where ∆ and Γσ are the loci in Z2

d determined

respectively by x1 = x2 and x2 = p. Then D
2

d ∩Mirr
g,1 is the push-forward of the

locus in Y2
d where ϕ̃ has rank ≤ 1. Using Porteous formula, we have

[
D

2

d

] ∣∣∣
Mirr

g,1

= η∗π∗

[
V ∨

M∨

]

2

(3.2.1)

= η∗π∗
(
π∗c2(V

∨) + π∗c1(V
∨) · c1(M )

+ c21(M ) − c2(M )
)
.

Let us find the Chern classes of M . Tensoring the exact sequence

0 → I∆/I∆+Γσ
→ O/I∆+Γσ

→ O∆ → 0

by ν∗L and applying µ∗, we deduce that

ch(M ) = ch(µ∗(OΓσ
(−∆) ⊗ ν∗L )) + ch(µ∗(O∆ ⊗ ν∗L ))

= ch(µ∗(OΓσ
(−∆))) + ch(µ∗(O∆ ⊗ ν∗L ))

= e−σ + ch(L )

hence

c1(M ) = c1(L ) − σ

c2(M ) = −σc1(L ).

The following classes

α = π∗
(
c1(L )2 ∩

[
Y2

d

])

γ = c1(V ) ∩
[
G2

d

]
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have been studied in [Kho07, Thm. 2.11]. In particular

6(g − 1)(g − 2)

dNg,2,d
η∗(α)|Mirr

g,1
= 6(gd− 2g2 + 8d− 8g + 4)λ

+ (2g2 − gd+ 3g − 4d− 2)δ0

− 6d(g − 2)ψ,

2(g − 1)(g − 2)

Ng,2,d
η∗(γ)|Mirr

g,1
= (−(g + 3)ξ + 40)λ

+
1

6
((g + 1)ξ − 24) δ0

− 3d(g − 2)ψ,

where

ξ = 3(g − 1) +
(g + 3)(3g − 2d− 1)

g − d+ 5
.

Plugging into (3.2.1) and using the projection formula, we find
[
D

2

d

] ∣∣∣
Mirr

g,1

= η∗
(
−γ · π∗c1(L ) + γ · π∗σ + α+ π∗σ

2 − π∗(σc1(L ))
)

= (1 − d)η∗(γ) + η∗(α) −Ng,2,d · ψ.

Hence

a =
48s4 + 80s3 − 16s2 − 64s+ 24

(3s− 1)(3s− 2)(s+ 3)
Ng,2,d

b0 =
24s4 + 23s3 − 18s2 − 11s+ 6

3(3s− 1)(3s− 2)(s+ 3)
Ng,2,d

and we recover the previously computed coefficient c.

3.2.3. The coefficient b1. Let C be a general curve of genus g − 1 and
(E, p, q) a two-pointed elliptic curve, with p − q not a torsion point in Pic0(E).
Let C1 := {(C ∪y∼q E, p)}y∈C be the family of curves obtained identifying the
point q ∈ E with a moving point y ∈ C. Computing the intersection of the

divisor D
2

d with C1 is equivalent to answering the following question: how many
triples (x, y, l) are there, with y ∈ C, x ∈ C ∪y∼q E \ {p} and l = {lC , lE} a
limit g2

d on C ∪y∼q E, such that (p, x, l) arises as limit of (pt, xt, lt) on a family
of curves {Ct}t with smooth general element, where pt and xt impose only one
condition on lt a g2

d?
Let alE (q) = (a0, a1, a2) be the vanishing sequence of lE ∈ G2

d(E) at q. Since
C is general, there are no g2

d−1 on C, hence lC is base-point free and a2 = d.
Moreover we know a1 ≤ d − 2. Let us suppose x ∈ E \ {q}. We distinguish
two cases. If ρ(E, q) = ρ(C, y) = 0, then wlE (q) = ρ(1, 2, d) = 3d − 8. Thus
alE (q) = (d− 3, d− 2, d). Removing the base point we have that lE(−(d− 3)q) is
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a g2
3 and lE(−(d− 3)q − p− x) produces a g1

1 on E, hence a contradiction. The
other case is ρ(E, q) = 1 and ρ(C, y) ≤ −1. These force alE (q) = (d− 4, d− 2, d)
and alC (y) ≥ (0, 2, 4). On E we have that lE(−(d− 4)q − p− x) is a g1

2.
The question splits in two: firstly, how many linear series lE ∈ G2

4(E) and
points x ∈ E \{q} are there such that alE (q) = (0, 2, 4) and lE(−p−x) ∈ G1

2(E)?
The first condition restricts our attention to the linear series lE = (O(4q), V )
where V is a tridimensional vector space and H0(O(4q − 2q)) ⊂ V , while the
second condition tells us H0(O(4q − p− x)) ⊂ V . If x = p, then we get p− q is
a torsion point in Pic0(E), a contradiction. On the other hand, if x ∈ E \ {p, q},
then H0(O(4q − 2q)) ∩ H0(O(4q − p − x)) 6= ∅ entails p + x ≡ 2q. Hence the
point x and the space V = H0(O(4q − 2q)) + H0(O(4q − p − x)) are uniquely
determined.

Secondly, how many couples (y, lC) ∈ C × G2
d(C) are there, such that the

vanishing sequence of lC at y is greater than or equal to (0, 2, 4)? This is a
particular case of a problem discussed in [Far09b, Proof of Thm. 4.6]. The
answer is

(g − 1)
(
15Ng−1,2,d,(0,2,2) + 3Ng−1,2,d,(1,1,2) + 3Ng−1,2,d,(0,1,3)

)

=
24(2s2 + 3s− 4)

s+ 3
Ng,2,d.

Now let us suppose x ∈ C\{y}. The condition on x and p can be reformulated
in the following manner. We consider the curve C ∪y E as the special fiber X0

of a family of curves π : X → B with sections x(t) and p(t) such that x(0) = x,
p(0) = p, and with smooth general fiber having l = (L , V ) a g2

d such that l(−x−p)
is a g1

d−2. Let V ′ ⊂ V be the two dimensional linear subspace formed by those
sections σ ∈ V such that div(σ) ≥ x+ p. Then V ′ specializes on X0 to V ′

C ⊂ VC

and V ′
E ⊂ VE two-dimensional subspaces, where {lC = (LC , VC), lE = (LE , VE)}

is a limit g2
d, such that





ordy(σC) + ordy(σE) ≥ d
div(σC) ≥ x
div(σE) ≥ p

for every σC ∈ V ′
C and σE ∈ V ′

E . Let l′C := (LC , V
′
C) and l′E := (LE , V

′
E). Note

that since σE ≥ p, we get ordy(σE) < d, ∀σE ∈ V ′
E . Then ordy(σC) > 0, hence

ordy(σC) ≥ 2, since y is a cuspidal point on C. Removing the base point, l′C is a
g1

d−2 such that l′C(−x) is a g1
d−3. Let us suppose ρ(E, y) = 1 and ρ(C, y) = −1.

Then alE (y) = (d − 4, d − 2, d), al′E (y) = (d − 4, d − 2), alC (y) = (0, 2, 4) and

al′C (y) = (2, 4). Now lC is characterized by the conditions H0(lC(−2y − x)) ≥ 2
and H0(lC(−4y − x)) ≥ 1. By Thm. 3.0.3 this possibility does not occur.

Suppose now ρ(E, y) = ρ(C, y) = 0. Then alE (y) = (d − 3, d − 2, d), i.e.
lE(−(d − 3)y) = |3y| is uniquely determined. On the C aspect we have that
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alC (y) = (0, 2, 3) and h0(lC(−2y − x)) ≥ 2. Hence we are interested on Y , the
locus of triples (x, y, lC) such that the map

ϕ : H0(lC) → H0(lC |2y+x)

has rank ≤ 1. By Thm. 3.0.2 there is only a finite number of such triples, and
clearly the case alC (y) > (0, 2, 3) cannot occur. Moreover, note that x and y will
be necessarily distinct.

Let µ = π1,2,4 : C×C×C×W 2
d (C) → C×C×W 2

d (C) and ν = π3,4 : C×C×
C ×W 2

d (C) → C ×W 2
d (C) be the natural projections respectively on the first,

second and fourth components, and on the third and fourth components. Let
π : C ×C ×W 2

d (C) →W 2
d (C) be the natural projection on the third component.

Now ϕ globalizes to

ϕ̃ : π∗
E → µ∗ (ν∗L ⊗ O/ID) =: M

as a map of rank 3 bundles over C × C ×W 2
d (C), where D is the pullback to

C ×C × C ×W 2
d (C) of the divisor on C × C ×C that on (x, y, C) ∼= C restricts

to x+2y, L is a Poincaré bundle on C ×W 2
d and E is the push-forward of L to

W 2
d (C). Then Y is the degeneracy locus where ϕ̃ has rank ≤ 1. Let ci := ci(E )

be the Chern classes of E . By Porteous formula, we have

[Y ] =

[
e2 e3
e1 e2

]

where the ei’s are the Chern classes of π∗E ∨ − M∨, i.e.

e1 = c1 + c1(M )

e2 = c2 + c1c1(M ) + c21(M ) − c2(M )

e3 = c3 + c2c1(M ) + c1
(
c21(M ) − c2(M )

)

+
(
c31(M ) + c3(M ) − 2c1(M )c2(M )

)
.

Let us find the Chern classes of M . First we develop some notation (see
also [ACGH85, §VIII.2]). Let πi : C × C × C ×W 2

d (C) → C for i = 1, 2, 3 and
π4 : C × C × C × W 2

d (C) → W 2
d (C) be the natural projections. Denote by θ

the pull-back to C × C × C ×W 2
d (C) of the class θ ∈ H2(W 2

d (C)) via π4, and
denote by ηi the cohomology class π∗

i ([point]) ∈ H2(C × C × C ×W 2
d (C)), for

i = 1, 2, 3. Note that η2
i = 0. Furthermore, given a symplectic basis δ1, . . . , δ2(g−1)

for H1(C,Z) ∼= H1(W 2
d (C),Z), denote by δi

α the pull-back to C×C×C×W 2
d (C)

of δα via πi, for i = 1, 2, 3, 4. Let us define

γij := −

g−1∑

α=1

(
δj
αδ

i
g−1+α − δj

g−1+αδ
i
α

)
.
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Note that

γ2
ij = −2(g − 1)ηiηj and ηiγij = γ3

ij = 0 for 1 ≤ i < j ≤ 3,
γ2

k4 = −2ηkθ and ηkγk4 = γ3
k4 = 0 for k = 1, 2, 3.

Moreover

γijγjk = ηjγik,

for 1 ≤ i < j < k ≤ 4. With this notation, we have

ch(ν∗L ⊗ O/ID) = (1 + dη3 + γ34 − η3θ)
(
1 − e−(η1+γ13+η3+2η2+2γ23+2η3)

)
,

hence by Grothendieck-Riemann-Roch

ch(M ) = µ∗ ((1 + (2 − g)η3)ch(ν
∗
L ⊗ O/ID))

= 3 + (d− 2)η1 + (2g + 2d− 6)η2 − 2γ12 + γ14 + 2γ24

− η1θ − 2η2θ + (8 − 2d− 4g)η1η2 − 2η1γ24 − 2η2γ14 + 2η1η2θ.

Using Newton’s identities, we recover the Chern classes of M :

c1(M ) = (d− 2)η1 + (2g + 2d− 6)η2 − 2γ12 + γ14 + 2γ24,

c2(M ) = (2d2 − 8d+ 2gd+ 8 − 4g)η1η2 + (2g + 2d− 8)η2γ14

+ (2d− 4)η1γ24 + 2γ14γ24 − 2η2θ,

c3(M ) = (4 − 2d)η1η2θ − 2η2γ14θ.

We finally find

[Y ] = η1η2(c
2
1(2d

2 − 8d+ 2dg + 4 − 4(g − 1))

+ c1θ(−12d− 4g + 40) + c2(−4d+ 16 − 8g) + 12θ2)

=
(28s+ 48)(s− 2)(s− 1)

(s+ 3)
Ng,2,d · η1η2θ

g−1

where we have used the following identities proved in [Far09b, Lemma 2.6]

c21 =

(
1 +

2s+ 2

s+ 3

)
c2

c1θ = (s+ 1)c2

θ2 =
(s+ 1)(s+ 2)

3
c2

c2 = Ng,2,d · θg−1.

We are going to show that we have already considered all non zero con-
tributions. Indeed let us suppose x = y. Blowing up the point x, we obtain
C ∪y P1 ∪q E with x ∈ P1 \ {y, q} and p ∈ E \ {q}. We reformulate the condition
on x and p viewing our curve as the special fiber of a family of curves π : X → B
as before. Let {lC , lP1 , lE} be a limit g2

d. Now V ′ specializes to V ′
C , V ′

P1 and V ′
E .

There are three possibilities: either ρ(C, y) = ρ(P1, x, y, q) = ρ(E, p, q) = 0, or
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ρ(C, y) = −1, ρ(P1, x, y, q) = 0, ρ(E, p, q) = 1, or ρ(C, y) = −1, ρ(P1, x, y, q) = 1,

ρ(E, p, q) = 0. In all these cases alC (y) = (0, 2, alC
2 (y)) (remember that lC is

base-point free) and alE (q) = (alE
0 (q), d− 2, d). Hence al

P1 (y) = (a
l
P1

0 (y), d− 2, d)

and al
P1 (q) = (0, 2, a

l
P1

2 (q)). Let us restrict now to the sections in V ′
C , V ′

P1 and V ′
E .

For all sections σP1 ∈ V ′
P1 since div(σP1) ≥ x, we have that ordy(σP1) < d and

hence ordy(σP1) ≤ d − 2. On the other side, since for all σE ∈ V ′
E , div(σE) ≥ p,

we have that ordq(σE) < d and hence ordq(σP1) ≥ 2. Let us take one section
τ ∈ V ′

P1 such that ordy(τ) = d−2. Since div(τ) ≥ (d−2)y+x, we get ordq(τ) ≤ 1,
hence a contradiction.

Thus we have that

D
2

d · C1 =
24(2s2 + 3s− 4)

s+ 3
Ng,2,d +

(28s+ 48)(s− 2)(s− 1)

(s+ 3)
Ng,2,d.

while considering the intersection of the test curve C1 with the generating classes
we have

D
2

d · C1 = b1(2g − 4),

whence

b1 =
14s3 + 6s2 − 8s

(3s− 2)(s+ 3)
Ng,2,d.

Remark 3.2.2. The previous class [Y ] being nonzero, it implies together
with Thm. 3.0.2 that the scheme G2

d((0, 2, 3)) over Mg−1,1 is not irreducible.

3.2.4. The coefficient bg−1. We analyze now the following test curve E.
Let (C, p) be a general pointed curve of genus g−1 and (E, q) be a pointed elliptic
curve. Let us identify the points p and q and let y be a movable point in E. We
have

0 = D
2

d · E = c+ b1 − bg−1,

whence

bg−1 =
48s4 + 12s3 − 56s2 + 20s

(3s− 1)(3s− 2)(s+ 3)
Ng,2,d.

3.2.5. A test. Furthermore, as a test we consider the family of curves R.
Let (C, p, q) be a general two-pointed curve of genus g− 1 and let us identify the
point q with the base point of a general pencil of plane cubic curves. We have

0 = D
2

d ·R = a− 12b0 + bg−1.

3.2.6. The remaining coefficients in case g = 6. Denote by Pg the
moduli space of stable g-pointed rational curves. Let (E, p, q) be a general two-
pointed elliptic curve and let j : Pg → Mg,1 be the map obtained identifying the
first marked point on a rational curve with the point q ∈ E and attaching a fixed

elliptic tail at the other marked points. We claim that j∗(D
2

6) = 0.
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Indeed consider a flag curve of genus 6 in the image of j. Clearly the only
possibility for the adjusted Brill-Noether numbers is to be zero on each aspect.
In particular the collection of the aspects on all components but E smooths to a
g2
6 on a general one-pointed curve of genus 5. As discussed in section 3.2.3, the

point x can not be in E. Suppose x is in the rest of the curve. Then smoothing
we get l a g2

6 on a general pointed curve of genus 5 such that l(−2q− x)) is a g1
3,

a contradiction.
Now let us study the pull-back of the generating classes. As in [EH87, §3]

we have that j∗(λ) = j∗(δ0) = 0. Furthermore j∗(ψ) = 0.

For i = 1, . . . , g−3 denote by ε
(1)
i the class of the divisor which is the closure in

Pg of the locus of two-component curves having exactly the first marked point and

other i marked points on one of the two components. Then clearly j∗(δi) = ε
(1)
i−1

for i = 2, . . . , g−2. Moreover adapting the argument in [EH89, pg. 49], we have
that

j∗(δg−1) = −

g−3∑

i=1

i(g − i− 1)

g − 2
ε
(1)
i

while

j∗(δ1) = −

g−3∑

i=1

(g − i− 1)(g − i− 2)

(g − 1)(g − 2)
ε
(1)
i .

Finally since j∗(D
2

6) = 0, checking the coefficient of ε
(1)
i we obtain

bi+1 =
(g − i− 1)(g − i− 2)

(g − 1)(g − 2)
b1 +

i(g − i− 1)

g − 2
bg−1

for i = 1, 2, 3.
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