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Now that we learnt how to compute definite integrals, we are ready to harness the vast potential
of definite integrals. Not surprising, we will use the definite integral to compute areas of regions
of complicated shape; but it goes far beyond that: it can be used to find volume of solids, lengths
of plane curves, surface areas of solids, work and fluid force, and many more!

5.1 The Area of a Plane Region

A plane region is simply a bounded region in the x y-plane (Cartesian plane). The goal of this
section is the following:

Compute the area of a plane region bounded
by curves of functions and lines.

Suppose f (x) and g (x) are functions such that f (x) ≥ g (x) for all x in the interval [a,b], and
we want to find the area A of the region R (shaded below, in green) between the curves y = f (x),
y = g (x), and the vertical lines x = a, x = b. Let us examine two specific cases:

x = a x = b

y = f (x)

y = g (x)

R

x

y

x = a

x = b

y = f (x)

y = g (x)

R x

y
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5 Applications of the Integral

Because we are computing area (not signed area) which is a positive quantity, it is crucial to
note that the previous formula is only valid if f (x) ≥ g (x) on the interval [a,b]. However, given
two arbitrary functions f (x) and g (x), what usually happens is that f (x) will greater than g (x) for
some values of x while for others, g (x) will be greater than f (x).

S1

S2

S3

x = a x = b

y = f (x) y = g (x)

x = c x = d

f (x) ≥ g (x)
g (x) ≥ f (x)

f (x) ≥ g (x)

x

y

Similar reasoning as before implies that the area of the region R = S1 ∪S2 ∪S3 between the curves
y = f (x), y = g (x), and the vertical lines x = a and x = b is given by

A(R) = A(S1)+ A(S2)+ A(S3)

=
∫ c

a
f (x)− g (x)d x +

∫ d

c
g (x)− f (x)d x +

∫ b

d
f (x)− g (x)d x

=

�

To actually compute
∫ b

a

∣∣∣ f (x)− g (x)
∣∣∣d x, we need to divide the interval

into subintervals where either f (x) ≥ g (x) or g (x) ≥ f (x). Even if one
function is always greater than the other, we still need to know which
one that is. One way or another, we should always start by sketching
the region to determine the appropriate subintervals. So yeah, the
formula we have above is pretty much useless unless we sketch...........
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5 Applications of the Integral

Example 5.1. Find the areas of the indicated regions.

(a) The region between the line y = x and y = sin x, for 0 ≤ x ≤ π

2
.

x

y

(b) The region enclosed between y = x2 and y = 3x.

x

y
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5 Applications of the Integral

(c) The region between the curves y = x3 and y =p
x, between x = 0 and x = 2.

x

y

(d) The triangle bounded by the lines y = 1−x, y = 1+2x, and y = 5x −5.

x

y
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5 Applications of the Integral

x

y Sometimes it is not convenient to write a plane
region as a bounded region between two func-
tions of x. Instead, it is more convenient to con-
sider the region as bounded between two func-
tions of y . The idea is similar as before, the only
difference is that now the integration variable is
y instead of x.

Proposition 5.2. The area of the region between the curves x = f (y) and x = g (y) and between the
horizontal lines y = c and y = d is given by∫ d

c

∣∣∣ f (y)− g (y)
∣∣∣d y.

Example 5.3. Find the area of the region bounded by the curves x = y2 −4y and x = 2y − y2.

x

y
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5 Applications of the Integral

5.2 Volumes of Solids: Slabs, Disks, Washers

Let’s move on to the next goal: Finding volumes of solids, in particular volumes of solids of rev-
olution. Imagine the solid as a loaf of bread, a very uneven one because Chee Han is a lousy
baker.

Slice the solid into “slices of bread”,
add all the volumes and take the limit
as the slices of bread shrinks in size.

We start with simple solids called right cylinders. These are generated by moving a plane
region (called the base) through a distance h in a direction perpendicular to that region.

♣ A cube is a right cylinder with a square plane
region.

♣ A cylinder is a right cylinder with a circular
plane region.

♣ A triangular prism is a right cylinder with a
triangular plane region.

Now consider an arbitrary solid which we imagine being located between x = a and x = b.

1. For every x in [a,b], we take a slice of our solid perpendicular to the x-axis. This plane
region is called the cross-section, and this cross-section has some cross-sectional area A(x).
Clearly, the shape of each such cross-section varies with x and so does the area A(x).
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5 Applications of the Integral

2. We divide the interval [a,b] into n equally-spaced subintervals, each of length ∆x; this in
effect slices our solid into thin slabs. On each subinterval, choose a sample point x∗

i and
approximate the cross-sectional area on that subinterval by A

(
x∗

i

)
.

Thus the exact volume ∆Vi of the thin slab is approximately A
(
x∗

i

)
∆x, the volume of the

thin right cylinder with base the cross-section of our solid at x∗
i and height (or thickness)

∆x.

3. We may approximate the volume of our solid by summing the volumes of all the thin right
cylinders:

V =
n∑

i=1
∆Vi ≈

n∑
i=1

A
(
x∗

i

)
∆x.

Because the latter expression is a Riemann sum, we take the limit as n −→∞ and obtain a
definite integral, which we define to be the exact volume of our solid:

V = lim
n→∞

(
n∑

i=1
A

(
x∗

i

)
∆x

)
=

This way of finding volumes is called the Method of Slabs.
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5 Applications of the Integral

Example 5.4. Use the method of slabs to find a formula for

(a) the volume of a cylinder with radius r and height h;

x

y

(b) the volume of a cuboid with square base of length ` and height h.

x

y
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5 Applications of the Integral

Example 5.5. Use the method of slabs to find a formula for the volume of pyramid with square
base of length b and height h.

x

y
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5 Applications of the Integral

Solids of revolution

When a plane region, lying entirely on one side of a fixed line (often an axis) in the x y-plane, is
rotated about that line, it generates a solid of revolution. In this setting, the cross-sections taken
perpendicular to the axis of rotation will either be circles or annuli.

1. Circular cross sections: A circle with a small thickness is called a disk. With radius r (x),

This way of finding volumes is called the Method of Disks.

x

y

x

y

2. Annular cross-sections: An annulus with a small thickness is called a washer. Since
we have an inner radius r (x) and an outer radius R(x),

This way of finding volumes is called the Method of Washers.

x

y

x

y

� These integral formulas are only valid when the region is rotated about
a horizontal line. The radius must be a function of y and the integration
variable becomes y if the region is rotated about a vertical line instead.
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Example 5.6. Find the volume of the solid obtained by rotating the region bounded by the curves

y = 1

x
, the x-axis, x = 1, and x = 5 about the x-axis.

x

y

Example 5.7. Find the volume of the solid obtained by rotating the region bounded by the curves
y = 3x −2, the y-axis, and y = 5 about the y-axis.

x

y
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5 Applications of the Integral

Example 5.8. Find the volume of the solid obtained by rotating the region bounded by the curves
y =−x2 +4x +12 and y = 7 about the line y = 7.

x

y

12



5 Applications of the Integral

Example 5.9. The region bounded by the curves y = p
x and y = x

2
is rotated about the x-axis.

Find the volume of the resulting solid.

x

y
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5 Applications of the Integral

Example 5.10. Find the volume of the solid obtained by rotating the region bounded by the curves

y = 1

x2
, y = 0, x = 1, and x = 3 about the line y =−1.

x

y
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5 Applications of the Integral

5.3 Volumes of Solids of Revolution: Shells

In this section, we introduce the Method of Cylindrical Shells as another method for
computing the volume of a solid of revolution. Specifically, we will approximate the volume using
thin cylindrical shells instead of thin slabs. Consider a thin cylindrical shell of thickness ∆r , with
an inner radius r and height h.

h

r

∆r The volume of the inner cylinder is V = πr 2h.
Since ∆r is very small, we can approximate the
volume ∆V of our thin cylindrical shell by the
differential dV . That is,

∆V ≈ dV =

=

Here is a heuristic argument. Imagine cutting
the shell by slitting it down the slide and rolling
it out, we roughly get a thin rectangular box with

Now consider a solid generated by rotating the region bounded by the curve y = f (x), the x-
axis, and the lines x = a and x = b about the y-axis.

1. We approximate our region using rectangles. Divide the interval [a,b] into n equally-spaced
subintervals, each of length∆x; this in effect slices our solid into thin nested shells. On each
subinterval, choose a sample point x∗

i and approximate the height on that subinterval by
f
(
x∗

i

)
.

2. When this rectangle of height f
(
x∗

i

)
and thickness ∆x is rotated about the y-axis, it gener-

ates a thin cylindrical shell of volume 2πx∗
i f (xi )∆x and this should approximately equal to

the exact volume ∆Vi of the thin curved shell.
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5 Applications of the Integral

3. We may approximate the volume of our solid by summing the volumes of all the thin cylin-
drical shells:

V =
n∑

i=1
∆Vi ≈

n∑
i=1

2πx∗
i f

(
x∗

i

)
∆x.

Because the latter expression is a Riemann
sum, we may take the limit as n −→ ∞ and
obtain a definite integral, which we define to
be the exact volume of our solid:

V = lim
n→∞

(
n∑

i=1
2πx∗

i f
(
x∗

i

)
∆x

)

=

Remark 5.11. A good way of remembering this formula is to note that each thin cylindrical shell
has volume

∆V ≈ 2πx f (x)∆x = circumference × height × thickness

�
The integral formula above is only valid when the region is under the
curve y = f (x) between x = a and x = b and is being rotated about
the y-axis. The formula will change slightly when we rotate around a
different axis.

Example 5.12. Find the volume of the indicated solid using the method of cylindrical shells.

(a) The solid obtained by rotating the region bounded by y = 1

x
, y = 0, x = 1, and x = 3 about the

y-axis.

x

y
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5 Applications of the Integral

(b) The solid obtained by rotating the region bounded by y = sin
(
x2

)
, y = 0, x = 0, and x = p

π

about the y-axis.

x

y

(c) The solid obtained by rotating the region bounded by y = 0, y = x3, and x = 1 about the line
x = 2.

x

y
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5 Applications of the Integral

We now have three methods at our disposal for computing volume of a solid of revolution:

♠ Disks - - need to find the .

♠ Washers - - need to find the and the .

♠ Shells - - need to find the and the .

But at the end of the day, we need to decide which method is the most appropriate (or rather, most
convenient) one for a given solid of revolution. For this reason, it is crucial that one understands
the step-by-step process of slicing, approximating and then taking limit to get a definite integral.

How to decide which method to use?
Below we list three simple steps for deciding which method to use:

1. Sketch the region.

2. Take either a horizontal or vertical slice of that region.

3. Rotate that slice about the given axis of rotation and determine if the resulting shape is
a disk, washer or shell.

Example 5.13. For the following solids of revolution, determine which method (disks, washers, or
shells) to use and find the volume of the indicated solid if possible.

(a) The solid obtained by rotating the region bounded by x = 0, y = 1, and y = sin x about the
y-axis.

x

y
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5 Applications of the Integral

(b) The solid obtained by rotating the region bounded by y = 1, y = x, and y = x

3
about the y-axis.

x

y

(c) The solid obtained by rotating the region bounded by y = 1, y = x, and y = x

3
about the x-axis.

x

y
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5.4 Length of a Plane Curve

We learnt how to compute areas of plane regions in Section 5.1 and volumes of solids in Section 5.2
and 5.3. In this section, we are going to see how to compute the length of a (smooth parametric)
plane curve in the x y-plane; a byproduct of this investigation is the area of a surface of revolution.

Parametric equations

Consider a curve C in the x y-plane and suppose for simplicity that this curve C has a starting
point Pstart and an end point Pend. Let us imagine ourselves as a particle situated at the starting
point Pstart and that we move along the curve C until we reach the end point Pend in some amount
of time.

x

y Let a ≤ t ≤ b be the time parameter and sup-
pose f (t ), g (t ) are continuous functions de-
scribing the position of particle at time t , i.e.

x = f (t ), y = g (t ), a ≤ t ≤ b.

• At time t = a, (x, y) = ( f (a), g (a)) = Pstart.

• At time t = b, (x, y) = ( f (b), g (b)) = Pend.

We say that

x = f (t ), y = g (t ), a ≤ t ≤ b,

are parametric equations describing the
plane curve C .

The choice of the parameter t is merely a convention, in general we can replace t with any other
letter. Also, there are infinitely many pairs of parametric equations for a given plane curve C . We
point out that graphs of functions are special cases of plane curves.

Example 5.14. Find a pair of parameter equations describing the circle with centre (5,−3) and
radius 2.
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5 Applications of the Integral

Arc length

Consider a smooth curve C given parametrically by x = f (t ) , y = g (t ), a ≤ t ≤ b, where the word
smooth means that both f ′(t ) and g ′(t ) exist and are continuous on [a,b], plus some other tech-
nical assumptions. Let L denote the length of C .

1. Divide the interval [a,b] into n equally-spaced subintervals, each of length∆t . This cuts the
curve into n arc segments with corresponding end points P0,P1, . . . ,Pn . On each subinterval,
we approximate that arc segment of the curve by the straight line segment connecting the
two end points. Let P0P1,P1P2, . . . ,Pn−1Pn denote all the straight line segments.

x

y

2. We zoom in on the i th arc segment of the curve. From Pythagorean theorem, its actual
length ∆Li is approximately the length of the line segment Pi−1Pi :

∆L2
i ≈

∣∣∣Pi−1Pi

∣∣∣2 = (
changes in x

)2 + (
changes in y

)2

= [
f (ti )− f (ti−1)

]2 + [
g (ti )− g (ti−1)

]2

= [
f ′ (t∗i

)
∆t

]2 + [
g ′ (t̃i

)
∆t

]2

=
{[

f ′ (t∗i
)]2 + [

g ′ (t̃i
)]2

}
(∆t )2

where t∗i and t̃i are two points in the subinterval (ti−1, ti ) arising from the Mean Value The-
orem for Derivatives.

3. We may approximate the length of our curve C by summing the lengths of all the line seg-
ments:

L =
n∑

i=1
∆Li ≈

n∑
i=1

√[
f ′ (t∗i

)]2 + [
g ′ (t̃i

)]2
∆t .

The exact length of our curve C is obtained by taking the limit n −→∞. Because t∗i and t̃i

make no difference in the limit as n −→∞, the sum above is actually a Riemann sum and
the limit becomes a definite integral:

L = lim
n→∞

(
n∑

i=1

√[
f ′ (t∗i

)]2 + [
g ′ (t̃i

)]2
∆t

)
=
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5 Applications of the Integral

Arc Length of a Plane Curve

1. If f ′(t ) and g ′(t ) are continuous on [a,b], then the arc length L of the curve determined by
the parametric equations x = f (t ), y = g (t ), a ≤ t ≤ b is given by

L =
∫ b

a

√[
f ′(t )

]2 + [
g ′(t )

]2 d t =
∫ b

a

√(
d x

d t

)2

+
(

d y

d t

)2

d t

2. Suppose f ′(x) is continuous on [a,b]. If the curve C is the graph of y = f (x), a ≤ x ≤ b, then
we treat x as the parameter and the parametric equations describing C is

and so

Thus the arc length L of the curve y = f (x), a ≤ x ≤ b is

L =
∫ b

a

√
1+

(
d f

d x

)2

d x =
∫ b

a

√
1+ [

f ′(x)
]2 d x

3. Suppose g ′(y) is continuous on [c,d ]. If the curve C is the graph of x = g (y), c ≤ y ≤ d , then
we treat y as the parameter and the parametric equations describing C is

and so

Thus the arc length L of the curve x = g (y), c ≤ y ≤ d is

L =
∫ d

c

√(
d g

d y

)2

+1d y =
∫ d

c

√
1+ [

g ′(y)
]2 d y
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5 Applications of the Integral

Example 5.15. Find the length of the graph y = 1+6x3/2 between x = 0 and x = 1.

Example 5.16. Find the arc length of the curve defined by

x = 3t 2 +1, y = 4−2t 3, 0 ≤ t ≤ 4.
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5 Applications of the Integral

Surface of revolution

When a smooth plane curve is rotated about a given line, it generates a surface of revolution.
Consider the specific case of a smooth curve above the x-axis that is the graph of a function y =
f (x), a ≤ x ≤ b, which we rotate about the x-axis to form a surface.

1. We approximate our curve y = f (x) by straight line segments as before. Divide the interval
[a,b] into n equally-spaced subintervals, each of length∆x; this in effect divides our surface
into narrow bands. Rotating each of these segments around the x-axis generates a frustum
of a cone (a cone with the top chopped off).

a bxi−1 xi

y = f (x) Pi−1

Pi

f (xi−1) f (xi )

x

y

2. We zoom in onto a particular frustum. The slant height of the frustum is∣∣∣Pi−1Pi

∣∣∣2 = [∆x]2 + [
f (xi )− f (xi−1)

]2 ≈
{

1+ [
f ′ (x∗

i

)]2
}
∆x2,

where x∗
i is some point in the subinterval (xi−1, xi ) from the Mean Value Theorem for Deriva-

tives.

∣∣∣Pi−1Pi

∣∣∣

f (xi−1)

f (xi )

Pi−1

Pi Assuming ∆x is small, we may approximate
both f (xi−1) and f (xi ) as f (x∗

i ) since f is
continuous. Thus the actual area ∆Ai of
the narrow band is approximately the sur-
face area of this frustum:

∆Ai ≈ 2π

[
f (xi−1)+ f (xi )

2

]∣∣∣Pi−1Pi

∣∣∣
≈ 2π f (x∗

i )
√

1+ f ′(x∗
i )∆x.

3. We may approximate the area of our surface by summing the areas of all the frustums:

A =
n∑

i=1
∆Ai ≈

n∑
i=1

2π f (x∗
i )

√
1+ f ′(x∗

i )∆x.

Because the latter expression is a Riemann sum, we may take the limit as n −→∞ and obtain
a definite integral, which we define to be the exact surface area of our surface of revolution:

A = lim
n→∞

(
n∑

i=1
2π f (x∗

i )
√

1+ f ′(x∗
i )∆x

)
=
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5 Applications of the Integral

Area of a Surface of Revolution

1. If f ′ is continuous on [a,b], then the surface area of the surface of revolution obtained by
rotating the curve y = f (x) from x = a to x = b about the x-axis is

S =
∫ b

a
2π f (x)

√
1+ [

f ′(x)
]2 d x

2. If f ′ and g ′ are continuous on [a,b], then the surface area of the surface of revolution ob-
tained by rotating the curve determined by the parametric equations x = f (t ), y = g (t ),
a ≤ t ≤ b, is

S =
∫ b

a
2πg (t )

√[
f ′(t )

]2 + [
g ′(t )

]2 d t

Example 5.17. Find the surface area of the surface of revolution obtained by rotating the graph of
y =p

x between x = 0 and x = 1 about the x-axis.
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5 Applications of the Integral

Example 5.18. Find the surface area of the surface of revolution obtained by rotating the curve
defined by

x = r cos t , y = r sin t , 0 ≤ t ≤π,

about the x-axis. What type of surface is this?
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5 Applications of the Integral

5.5 Work

In this final section, we examine a specific physical application of the integral: computing work.
When an object moves a distance d as a result of being acted on by a constant force F acting in the
direction of motion, we define the work done by the force on the object as

W = F d .

It has metric units of newton metres (N·m) called joules (J) and English units of foot-pounds (ft·lb).
Keep in mind that kilograms (kg) are (metric) units of mass, while pounds (lbs) are (English) units
of force.

Example 5.19. If we lift an object, then we must apply a lifting force equal and opposite to that of
gravity in order to overcome gravity’s downward pull. The gravitational acceleration is 9.8 m/s2 in
metric units or 32 ft/s2 in English units. Recall Newton’s second law F = ma.

(a) How much work is done in lifting a 5 kilogram weight up a distance of 1 metre?

(b) How much work does it take to lift a 10 pound weight up a distance of 3 feet?

Variable force

In many applications, a force is applied to move an object over a distance, but that force is not
constant. For instance, if an object is moved from x = a and x = b, then it is likely that the force F
required to move the object varies with x, i.e. the force is now a function of position F (x).

1. Divide the interval [a,b] into n equally-spaced subintervals, each of length ∆x. On each
subinterval, choose a sample point x∗

i and approximate the force on that subinterval as the
constant force F

(
x∗

i

)
.

2. The exact work ∆Wi required to move the object from the left-endpoint xi−1 to the right-
endpoint xi is approximately F

(
x∗

i

)
∆x.

3. We may approximate the work done in moving the object from x = a to x = b by summing
the work done across all the subintervals:

W =
n∑

i=1
∆Wi ≈

n∑
i=1

F
(
x∗

i

)
∆x.

Because the latter expression is a Riemann sum, we may take the limit as n −→∞ and obtain
a definite integral, which we define to be the work done in moving the object from x = a to
x = b:

W = lim
n→∞

(
n∑

i=1
F

(
x∗

i

)
∆x

)
=
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5 Applications of the Integral

Application to springs

A spring is a natural and common example of variable force. According to Hooke’s Law, the force
F (x) required to maintain a spring stretched or compressed at a position x units from its equilib-
rium length is given by

F (x) = kx

where k > 0 is the spring constant depending on the spring’s form and composition.

Example 5.20. How much work does it take to compress a spring with spring constant k = 16 lb/ft
from its natural length of 1 foot to a length of 0.75 feet?

Applications to lifting objects

From the simple examples that we started with, we know that lifting an object is doing work to
overcome gravity. If the object is non-uniform in composition during the interval, an integral is
often required to compute the total work done. The exact form of such integral depends on the
problem, but the underlying concept is familiar.

Divide the object being lifted into small pieces
and calculate the work required to lift each
individual piece, then sum up all the work.

This will give a Riemann sum approximation
to the desired integral.
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5 Applications of the Integral

Example 5.21. Suppose a 20 foot rope with a linear density of 0.8 lb/ft is used to haul a 5 pound
bucket to the top of a building. How much work does it take to lift both the rope and the bucket to
the top of the building? Hint: The weight of the rope changes as we lift the bucket.
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