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4.1 Introduction to Area and 4.2 The Definite Integral

(1,0)

(0,1)

y = 1−x2

R

x

y The idea of the definite integral arose from the
problems of calculating lengths, areas, and vol-
umes of curvilinear geometric figures, i.e. ob-
jects with a curved boundary. Consider the graph
of the function f (x) = 1− x2 between x = 0 and
x = 1. There is no formula for finding the exact
area underneath the graph of f and above the x-
axis, from x = 0 to x = 1. Let us denote this region
by R. We actually discussed about how to ap-
proach this problem the first day in class: cover
the region R with familiar shapes whose areas
can be found easily. Well, I think it is unanimous
that rectangles are the easiest one among all.

Let us demonstrate how to do these approximations with 4 rectangles of equal width. To this
end, we first divide the interval [0,1] into 4 equally sized subintervals:[

0,
1

4

]⋃[
1

4
,

1

2

]⋃[
1

2
,

3

4

]⋃[
3

4
,1

]
.

We can clearly tell that each rectangle has width 1/4. There are certainly many choices in terms of
how to arrange these rectangles to cover the region R, but let us look at two particular choices.

1. We inscribe rectangles in the region R. In this case, the height of each inscribed rectangle is
given by the value of f at the right-endpoint of the subinterval.

x

y
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4 The Definite Integral

2. We circumscribe the region R by rectangles. In this case, the height of each circumscribed
rectangle is given by the value of f at the left-endpoint of the subinterval.

x

y

The figures below are the analogous approximations with 16 rectangles.

x

y

x

y

We would expect our approximations to get better and better as the number of rectangles in-
crease. This suggests a reasonable method to compute the area between the graph of f (x), the
x-axis and the lines x = a and x = b:

1.

2.

3.
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4 The Definite Integral

Sigma notation

The Greek letter sigma Σ (which is the Greek “S”) is used with an index to represent a sum of a
given list of numbers. More precisely, given a list of numbers a1, a2, . . . , an , its sum is denoted by

n∑
i=1

ai = a1 +a2 +·· ·+an−1 +an , where i = indexing variable (dummy),

1 = lower index,

n = upper index.

Example 4.1. Compute the following sums by writing out all of the terms.

(a)
5∑

i=1
(2i +3) =

(b)
5∑

k=1
(k2 −1) =

Special Sum Formulas
Let n be a positive integer and c be any constant. Then

1.
n∑

i=1
c =

2.
n∑

i=1
i =

3.
n∑

i=1
i 2 =

4.
n∑

i=1
i 3 =

3



4 The Definite Integral

Example 4.2. Use the Special Sum Formulas to re-evaluate the sums in Example 4.1.

(a)
5∑

i=1
(2i +3) =

(b)
5∑

k=1
(k2 −1) =

Example 4.3. Find the area of the region underneath the graph of f (x) = 1− x2 and above the
x-axis between x = 0 and x = 1 by approximating it with inscribed rectangles and then taking a
limit.

x

y

1. Divide the interval [0,1] into n subintervals of equal length.

• Label the endpoints of successive subintervals as x0, x1, . . . , xn . These points are given
by the formula:

• Label the inscribed rectangles as R1,R2, . . . ,Rn .

• Compute ∆x, the length of each of these subintervals.
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4 The Definite Integral

2. Now listen to me: Look only at a particular rectangle Ri . The height of Ri is given by the
value of f (x) at the right-endpoint of the corresponding subinterval.

• This right endpoint is:

• Consequently, the height of the rectangle Ri is

• Finally, the area of the rectangle Ri is

3. Write an expression using the sigma notation for the total area of the n inscribed rectangles
and then evaluate this sum. The answer should be a function of n only.

4. Take the limit of your answer from part (c) as n −→∞ to find the actual area.

5
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Example 4.4. Repeat Example 4.3, but with circumscribed rectangles instead.

x

y
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4 The Definite Integral

Riemann sum

The type of sums that arises using rectangles approximation are called Riemann sums. The usual
procedure is as follows:

1. Break the interval [a,b] into n equally-spaced subintervals, each of length ∆x =
2. Pick a sample point xi from the i th subinterval and set f (xi ) to be the height of the rectangle

Ri on that subinterval.

3. The area of all n rectangles, which we call a Riemann sum, is

The sample point can be any point in the subinterval, including endpoints as well. Below we
list three common choices. Suppose f (x) is a continuous function defined on the interval [a,b].

Let n be any positive integer and set ∆x = b −a

n
.

1. The left-endpoint approximation to the area under the graph of f (x) between x = a and
x = b is given by

Ln :=
n∑

i=1
f (a + (i −1)∆x)∆x

2. The right-endpoint approximation to the area under the graph of f (x) between x = a and
x = b is given by

Rn :=
n∑

i=1
f (a + i∆x)∆x

3. The midpoint approximation to the area under the graph of f (x) between x = a and x = b
is given by

Mn :=
n∑

i=1
f

(
a +

(
i − 1

2

)
∆x

)
∆x

Example 4.5. Compute the left-endpoint, right-endpoint, and midpoint approximations to the
area under the graph of f (x) = x2 between x = 0 and x = 3 with n = 3.
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4 The Definite Integral

Definite Integral
Suppose f is a function defined on the interval [a,b]. The definite integral of f from x = a to
x = b is given as ∫ b

a
f (x)d x = lim

n→∞

n∑
i=1

f (xi )∆x,

provided this limit exists. If it does exist, then f (x) is said to be integrable.

Remark 4.6. If f (x) is integrable, then the limit of the Riemann sum will be the same regardless of
the sample points xi chosen on each subinterval.

For f (x) ≥ 0, a Riemann sum approximates the area under the graph of f (x) and above the
x-axis. However, it is possible that the terms f (xi )∆x in a Riemann sum is negative, which occurs
when f (xi ) < 0. WAITTTTTTT, we know damn well that area cannot be negative, so does this mean
we just break math..........??? The precise geometric meaning is that,

The definite integral gives the signed area of
the region between the graph of f (x) and the x-axis.∫ b

a
f (x)d x =

Example 4.7. This geometrical interpretation of the integral as a signed area allows us to compute

certain definite integrals geometrically. Evaluate both
∫ 1

−1

√
1−x2 d x and

∫ 1

−2
x +1d x.
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Example 4.8. Find
∫ 4

0
(5x +3)d x by taking the limit of the left-endpoint approximations.

9
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Example 4.9. Find
∫ 4

1
(x2 −x)d x by taking the limit of the right-endpoint approximations.

Solution: The width is ∆x = 4−1

n
= 3

n
, and the points xi has the formula

xi = 1+ i∆x = 1+ 3i

n
, i = 0,1, . . . ,n.

Note that x0 = 1+ 0

n
= 0 and xn = 1+ 3n

n
= 1+3 = 4. The right-endpoint approximation is

Rn =
n∑

i=1
f (xi )∆x

=
n∑

i=1
f

(
1+ 3i

n

)(
3

n

)
=

n∑
i=1

[(
1+ 3i

n

)2

−
(
1+ 3i

n

)](
3

n

) [
Since f (x) = x2 −x.

]
=

n∑
i=1

[(
1+ 3i

n

)(
1+ 3i

n
−1

)](
3

n

) [
Factor out

(
1+ 3i

n

)
.

]
=

n∑
i=1

(
1+ 3i

n

)(
3i

n

)(
3

n

)
=

n∑
i=1

(
1+ 3i

n

)(
9i

n2

)
=

n∑
i=1

[
9i

n2
+ 27i 2

n3

] [
Multiply

9i

n2
into the first parenthesis.

]

= 9

n2

(
n∑

i=1
i

)
+ 27

n3

(
n∑

i=1
i 2

) [
Factor out the constants

9

n2
and

27

n3
.

]
= 9

n2

(
n(n +1)

2

)
+ 27

n3

(
n(n +1)(2n +1)

6

) [
Use the Special Sum Formulas.

]
= 9(n +1)

2n
+ 27(n +1)(2n +1)

6n2
.

Thus ∫ 4

1
(x2 −x)d x = lim

n→∞Rn = lim
n→∞

[
9(n +1)

2n
+ 27(n +1)(2n +1)

6n2

]
=

(
lim

n→∞
9n +9

2n

)
+

(
lim

n→∞
27(2n2 +3n +1)

6n2

)
=

(
lim

n→∞
9n

2n

)
+

(
lim

n→∞
54n2

6n2

)
= 9

2
+ 54

6
= 27

2
.
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Terminology and properties of definite integrals

Below we list some properties of definite integrals.

1.
∫ a

a
f (x)d x = 0

2.
∫ b

a
f (x)d x =−

∫ a

b
f (x)d x

3. If f is integrable on an interval containing the points a,b,c, then∫ b

a
f (x)d x =

∫ c

a
f (x)d x +

∫ b

c
f (x)d x

no matter what the order of a,b,c is.

4. If f is continuous on [a,b], then f is integrable on [a,b].

Example 4.10. Not all functions are integrable! Consider the following function on the interval
[0,1], defined by

f (x) =


1

x
if 0 < x ≤ 1,

0 if x = 0.

11



4 The Definite Integral

4.3 The First Fundamental Theorem of Calculus

Similar to finding derivatives, we want to develop rules that will allow us to compute definite in-
tegrals without having to take limits of Riemann sums every single time. In the next two sections,
we will see that definite integrals can be easily evaluated once we have found an antiderivative
of the integrand. This fundamental connection is captured in a theorem called the Fundamental
Theorem of Calculus (FTC). We will have two different but equivalent versions of the FTC.

Theorem 4.11 (Comparison and Linearity Properties of the Definite Integral). Suppose f and g
are integrable on [a,b].

1. If f (x) ≥ 0 on [a,b], then
∫ b

a
f (x)d x ≥ 0.

2. If f (x) ≥ g (x) on [a,b], then
∫ b

a
f (x)d x ≥

∫ b

a
g (x)d x.

3. If m ≤ f (x) ≤ M on [a,b], then m(b −a) ≤
∫ b

a
f (x)d x ≤ M(b −a).

4. If c and k are constants, then∫ b

a
c f (x)+kg (x)d x = c

∫ b

a
f (x)d x +k

∫ b

a
g (x)d x.

First Fundamental Theorem of Calculus (FTC1)
Suppose f is continuous on [a,b]. Then the accumulation function

g (x) =
∫ x

a
f (t )d t

is continuous on [a,b], differentiable on (a,b), and g ′(x) = f (x) for all x in (a,b). That is,

d

d x

(∫ x

a
f (t )d t

)
= f (x).

12
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Example 4.12. Find the following derivatives.

(a)
d

d x

(∫ x

0
t 2 d t

)

(b)
d

d x

(∫ x

1

sin t

1+ t
d t

)

(c)
d

d x

(∫ 4

x

p
u du

)

(d)
d

d x

(∫ x3

2

t

t 4 +1
d t

)

13
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(e)
d

d x

(∫ 3

cos x
t 5 d t

)

Example 4.13. Find a formula for

g (x) =
∫ x

1
t 4 d t .

Hint: Note that FTC1 gives us g ′(x). What is g (1)?

Solution: Applying FTC1 to g (x) gives

g ′(x) = d

d x

(∫ x

1
t 4 d t

)
= x4.

This says that g (x) is the general antiderivative of x4, i.e.

g (x) =
∫

g ′(x)d x =
∫

x4 d x = x5

5
+C .

For x = 1,

g (1) =
∫ 1

1
t 4 d t = 0.

This means that

0 = g (1) = 1

5
+C =⇒ C =−1

5
.

Hence

g (x) = x5

5
− 1

5
.

We just demonstrated that it is possible to compute definite integrals using antiderivatives.
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4 The Definite Integral

4.4 The Second Fundamental Theorem of Calculus and the Method of Substi-
tution

The following is convincingly the most important and powerful theorem in terms of evaluating
definite integrals!

Second Fundamental Theorem of Calculus (FTC2)
Suppose f (x) is continuous on [a,b]. Then∫ b

a
f (x)d x = F (b)−F (a),

where F (x) is any antiderivative of f .

Example 4.14. Evaluate the following definite integrals using FTC2.

(a)
∫ 1

0
1−x2 d x

(b)
∫ 4

0
5x +3d x

(c)
∫ 2

−1
x3 − 1

3
x5 +1d x

15
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(d)
∫ π/4

0
2cos(2x)d x

The following is merely a restatement of the FTC2. It has the benefit of being phrased in a way
that is useful in applications in the physical and natural sciences.

Net Change Theorem
The integral of a rate of change is the net change:∫ b

a
F ′(t )d t = F (b)−F (a).

Example 4.15. If an object moves along a straight line with position function s(t ) and velocity
v(t ) = s′(t ), then the integral of the velocity is the change in position, i.e.∫ b

a
v(t )d t =

∫ b

a
s′(t )d t = s(b)− s(a).

Suppose a particle moves along a straight line with velocity given by v(t ) = t 3−5t 2+6t . If s(0) = 2,
where is the particle at t = 3?

16
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The substitution rule

Essentially, FTC2 tells us that the key to evaluating definite integrals is finding an antiderivative of
the integrand. So far we have only looked at fairly simple functions, what about scary, complicated
functions? The integration technique of substitution is “undoing” the Chain Rule in disguise.

Substitution Rule
Suppose g (x) is a differentiable function whose range is an interval I and f (x) is continuous
on I . If F is an antiderivative of f , then∫

f (g (x))g ′(x)d x =
∫

f (u)du = F (u)+C = F (g (x))+C .

Example 4.16. Find the following indefinite integrals.

(a)
∫ p

3x +1d x

(b)
∫

cosθ

sin3θ
dθ

17
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Example 4.17. Find the following indefinite integrals.

(a)
∫ z cos

(
3p

z2 +3
)

(
3p

z2 +3
)2 d z

(b)
∫

x6 sin(3x7 +9)
3
√

cos(3x7 +9)d x

Solution: Let u(x) = cos(3x7 +9). Then

du = [−sin(3x7 +9)
][

21x6]d x =−21x6 sin(3x7 +9)d x,

or

− 1

21
du = x6 sin(3x7 +9)d x.

Thus∫
x6 sin(3x7 +9)

3
√

cos(3x7 +9)d x =
∫

− 1

21
3
p

u du =− 1

21

∫
u1/3 du

=− 1

21

(
u4/3

4
3

)
+C

=− 1

21

(
3

4

)[
cos(3x7 +9)

]4/3 +C

=− 1

28

[
cos(3x7 +9)

]4/3 +C .

18
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When using the Substitution Rule to evaluate a definite integral, we can

1. either use substitution to find the indefinite integral, i.e. the antiderivative, then evaluate
this antiderivative at the given endpoints, or

2. we can use the substitution u = g (x) to change the limits of integration, i.e.∫ b

a
f (g (x))g ′(x)d =

∫ g (b)

g (a)
f (u)du.

Example 4.18. Evaluate the following definite integrals.

(a)
∫ 1

0
x2(2+x3)5 d x
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(b)
∫ p

π

0
θ sin(θ2)dθ

(c)
∫ 3

1

x2 +1p
x3 +3x

d x

20
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4.5 The Mean Value Theorem for Integrals and the Use of Symmetry

Definition 4.19. If f is an integrable function on the interval [a,b], then the average value of f on
[a,b] is given by

favg = 1

b −a

∫ b

a
f (x)d x

This actually arises from the idea of Riemann sum. Divide the interval [a,b] into n equally-
spaced subintervals, each of width∆x = (b−a)/n. Pick a sample point xi from the i th subinterval,
i = 1,2, . . . ,n. This gives the set of points { f (x1), f (x2), . . . , f (xn)} and the average value of this n
numbers is

f (x1)+ f (x2)+·· ·+ f (xn)

n
= 1

n

n∑
i=1

f (xi ) = 1

b −a

n∑
i=1

f (xi )∆x.

Taking the limit as n −→∞, we obtain

favg = lim
n→∞

(
1

b −a

n∑
i=1

f (xi )∆x

)
= 1

b −a

(
lim

n→∞

n∑
i=1

f (xi )∆x

)

= 1

b −a

∫ b

a
f (x)d x.

There is a nice geometric interpretation of what the average value is for functions f (x) ≥ 0 on
[a,b]. We can rewrite the above as

favg(b −a) =
∫ b

a
f (x)d x.
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Example 4.20. Find the average values of the function on the given interval.

(a) f (x) = sin x on [0,π]

(b) f (x) = sin2 x cos x on [0,π/2]

Mean Value Theorem for Integrals
Suppose f is continuous on [a,b]. Then there is a number c in [a,b] such that

f (c) = favg = 1

b −a

∫ b

a
f (x)d x

or ∫ b

a
f (x)d x = f (c)(b −a).

22
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Example 4.21. Find the value(s) of c guaranteed by the Mean Value Theorem for Integrals for the
function on the given interval.

(a) f (x) = 3x2 −2 on [1,3]

(b) f (x) = 1

(3x +2)2
on [0,5]

23
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Symmetry Theorem
Suppose f is continuous on [−a, a]. If f is odd, then∫ a

−a
f (x)d x = 0.

If f is even, then ∫ a

−a
f (x)d x = 2

∫ a

0
f (x)d x.

Example 4.22. Evaluate the following definite integrals.

(a)
∫ 2

−2
|x|d x

(b)
∫ p

2

−p2

tan x

1+cos x +x6
d x
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Periodicity Theorem
Suppose f (x) is periodic with period p. Then for any a,b,∫ b

a
f (x)d x =

∫ b+p

a+p
f (x)d x.

Example 4.23. Evaluate
∫ 2π

0
|sin x|d x.
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4.6 Numerical Integration

Recall that if a function f is continuous on [a,b], then it is integrable on [a,b], i.e. the definite

integral
∫ b

a
f (x)d x exists. Consider the following two integrals

∫ π

0
sin(x2)d x and

∫ 1

0

√
1−x4 d x.

These integrals exist because the integrands are continuous over respective intervals, yet our lim-
ited integration machineries don’t really tell us how to evaluate them. In fact, there are functions
which simply do not have an antiderivative. Therefore we will numerically integrate these func-
tions, i.e. we will approximate the definite integral using “simple geometry”.

We know one technique for approximating integrals already: Riemann sums. Specifically, for
any fixed n, especially n large, ∫ b

a
f (x)d x ≈

n∑
i=1

f (xi )∆x,

where

∆x = b −a

n
= the width of rectangles

xi = a + i∆x, i = 0,1, . . . ,n

xi = any sample point in the i th subinterval [xi−1, xi ].

We generally choose xi to be left-endpoints, right-endpoints or midpoints.

1. The left-endpoint approximation to the area under the graph of f (x) between x = a and
x = b is given by

Ln :=
n∑

i=1
f (xi−1)∆x

2. The right-endpoint approximation to the area under the graph of f (x) between x = a and
x = b is given by

Rn :=
n∑

i=1
f (xi )∆x

3. The midpoint approximation to the area under the graph of f (x) between x = a and x = b
is given by

Mn :=
n∑

i=1
f
(
xi− 1

2

)
∆x

It turns out that there are other, sometimes better, methods for approximating integrals than
Riemann sums. With a Riemann sum, we are approximating the (signed) area under the graph
by rectangles. If we use different shapes that fit “tighter” to the curve, then we should get more
accurate approximation. We are only going to try trapezoids but one could also try parabolas; see
textbook for more details.
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x

y

Trapezoidal Rule

Let ∆x = b −a

n
and xi = a + i∆x, i = 0,1, . . . ,n. The trapezoidal rule is

∫ b

a
f (x)d x ≈ Tn = ∆x

2

[
f (a)+2

n−1∑
i=1

f (xi )+ f (b)

]
.

Example 4.24. Find the Trapezoidal Rule with n = 4 to approximate
∫ 5

1

1

x
d x.
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