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3.1 Maxima and Minima

Definition 3.1. Given a function f (x) defined on the set S (could be intervals or R), we say that

1. f (x) has a global (absolute) maximum at x = c on the set S if f (x) ∑ f (c) for every x in S.
The number f (c) is called the maximum value of f (x) on S.

2. f (x) has a global (absolute) minimum at x = c on the set S if f (x) ∏ f (c) for every x in S.
The number f (c) is called the minimum value of f (x) on S.

3. Together, the maximum and minimum values of f (x) on S are referred to as the extreme
values of f (x) on S.

The existence of extreme values depend on the function f (x) and the underlying set S.

Example 3.2. Consider the function f (x) = 1

1+x

2
. Determine, if any, the extreme values of f on

the following sets:

(a) S =R

(b) S = [°2,1]

(c) S = (°2,0)

(d) S = (°3,2]

(e) S = (1,4]

Solution: The given function f (x) = 1

1+x

2
is a rational function and it is relatively easy to

graph it. The graph is symmetric with respect to the y-axis, has no vertical asymptote and
x-intercept, has (0,1) as y-intercept and horizontal asymptote y = 0.

(0,1)

y = 0
x

y

(a) S = R: The maximum value is y = 1 and
there is no minimum value.

(b) S = [°2,1]: The maximum value is y = 1
and the minimum value is y = f (°2) =
1/5.

(c) S = (°2,0): There are no maximum val-
ues and minimum values. The maximum
value seems to be y = 1 again, but the
point where this occurs, x = 0, is not in the
set S = (°2,0).

(d) S = (°3,2]: The maximum value is y = 1
and the is no minimum value.

(e) S = (1,4]: There is no maximum value and
the minimum value is y = f (4) = 1/17.
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3 Applications of the Derivative

The last example provides a way of finding extreme values: graph the function. The (recurring)
fundamental fact of life is that there are functions whose graphs cannot be sketched accurately by
hand, and even if we could, it may very well be onerous. This prompts a practical question:

Is there an algebraic way to find extreme values of
any given functions, i.e. without graphing functions?

Before we explore this problem, we state a beautiful theorem that guarantees the existence of ex-
treme values, though it doesn’t really tell us what the extreme values are.

Extreme Value Theorem (EVT)
Suppose f is continuous on the closed interval [a,b]. Then f attains both a maximum value
and a minimum value at some points in the interval [a,b].

Remarks 3.3. 1. The theorem is false if

(a) f is not continuous; (b) [a,b] is replaced with either (a,b] or
[a,b) or (a,b).

2. If f fails to be continuous and/or is not defined on a closed interval [a,b], then all bets are
off, i.e. we might or might not have extreme values. Below are examples of functions that do
not satisfy the condition of EVT, yet they still have maximum and minimum values.
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3 Applications of the Derivative

Where do extreme values occur than? Let us draw some graphs.

Critical Point Theorem (CPT)
Let f be defined on an interval I containing the point x = c. If f (c) is an extreme value of f on
I , then x = c must be a critical point. That is, x = c is either

1. an endpoint of the interval I ; or

2. a stationary point of f in the interval I , that is, a point where f

0(c) = 0; or

3. a singular point of f in the interval I , that is, a point where f

0(c) DNE.

� The Critical Point Theorem asserts that if a function has an extreme
value, then it must happen at one of the critical points of f . This means
that to find extreme values, we only need to look for critical points and
carefully examine if any of the corresponding y-values are extreme val-
ues.

In view of both EVT and CPT, we can write down a straightforward procedure for finding ex-
treme values of a continuous function on a closed interval I :

1. Find the derivative f

0(x).

2. Find all the critical points of f that belong to I .

3. Evaluate f at each of these critical points. The largest of these values is the maximum value;
the smallest is the minimum value.
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3 Applications of the Derivative

Example 3.4. Identify the critical points and find the extreme values of the function f (x) = x

4 °
2x

2 +3 on the interval [°2,3].
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3 Applications of the Derivative

Example 3.5. Identify the critical points and find the extreme values of the function f (x) = x

2/3(x°
1) on the interval [°1,2].
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3 Applications of the Derivative

3.6 The Mean Value Theorem for Derivatives

Consider some “nice enough” function on a closed interval [a,b], and draw the secant line be-
tween the points (a, f (a)) and (b, f (b)). Geometrically, we can clearly see that we can always find
at least a point x = c in the interval (a,b) such that f

0(c) equals to the slope of the secant line. This
result is known as the Mean Value Theorem.

Mean Value Theorem (MVT)
Suppose f is continuous on a closed interval [a,b] and differentiable on the open interval
(a,b). There there is at least one number x = c in (a,b) such that

f

0(c) = f (b)° f (a)

b °a

.

Remarks 3.6. 1. Similar to EVT, the theorem is false if

(a) f is not continuous on [a,b]; (b) f is not differentiable on (a,b).

2. Similar to EVT, MVT only tells us there is some point x = c satisfying f

0(c) = f (b)° f (a)

b °a

but

it doesn’t give the actual value of that c.

3. MVT is similar in spirit to the Intermediate Value Theorem (see Section 1.6). The main dif-
ference is that MVT deals with the derivative f

0(x) instead of f (x) itself.
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3 Applications of the Derivative

Example 3.7. Find the value(s) of c guaranteed by the Mean Value Theorem for the following
functions on their corresponding intervals.

(a) f (x) = x

3 °x on [°2,2]

(b) f (x) = x

4 °x °5 on [°1,2]
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3 Applications of the Derivative

Example 3.8. Show that the function f (x) = 1°x

2/3 satisfies f (1) = f (°1) and there is no number
c in the interval (°1,1) such that f

0(c) = 0. Why does this not contradict the Mean Value Theorem?

Solution: We see that

f (1) = 1° (1)2/3 = 0

f (°1) = 1° (°1)2/3 = 1°
£
(°1)2§1/3 = 0.

The derivative of f is

f

0(x) =°2

3
x

°1/3 =° 2

3x

1/3
=° 2

3 3
p

x

and clearly f

0(x) 6= 0 for every x in (°1,0)[ (0,1) and f

0(0) DNE. However, this doesn’t contra-
dict the Mean Value Theorem since f is not differentiable at the point x = 0, which is in the
interval (°1,1).

Yes, the Mean Value Theorem is a beautiful geometrical result but why should we care if we
can find a point where its derivative equals to the slope of the secant line? As it turns out, MVT
is often used to gain knowledge of the function itself from information about the derivative of the
function. Essentially, it tells us how f

0 affects f .

Example 3.9. Let f be a differentiable function. Suppose f (0) = 2 and 1 ∑ f

0(x) ∑ 3 for all x in R.
What are the maximum and minimum possible value of f (3) and f (°5)?
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3 Applications of the Derivative

Proposition 3.10. Suppose f and g are differentiable functions such that f (a) = g (a) and f

0(x) ∏
g (x) for all x ∏ a. Then f (x) ∏ g (x) for all x ∏ a.

Proof. Let h(x) = f (x)° g (x). Then h(a) = f (a)° g (a) = 0 by assumption. The derivative of h is

h

0(x) = f

0(x)° g

0(x) ∏ 0 for all x ∏ a.

This says that the instantaneous rate of change of f (x) is always nonnegative for all x ∏ a, and we
deduce that h is a nondecreasing function on [a,1), i.e.

h(x) ∏ h(a) = 0 for all x ∏ a.

It follows that f (x)° g (x) ∏ 0 or f (x) ∏ g (x) for all x ∏ a.

Example 3.11. Use Proposition ?? to show that for all x ∏ 1, the graph of f (x) =
p

x lies below the
tangent line of f (x) at x = 1.

Finally, MVT has important corollaries which are relevant to the concept of antiderivatives; see
Section 3.8 later.

1. Suppose f

0(x) = 0 for all x in the interval (a,b). Then f (x) is constant on (a,b).

2. Suppose f

0(x) = g

0(x) for all x in the interval (a,b). Then f (x) = g (x)+C on (a,b) for some
constant C .
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3 Applications of the Derivative

3.2 Monotonicity and Concavity

Definition 3.12.

Let f be defined on an interval I (could be open, closed, or neither). We say that

1. f is increasing on I if

x < y =) f (x) < f (y) for every x, y in I .

2. f is decreasing on I if

x < y =) f (x) > f (y) for every x, y in I .

3. f is strictly monotonic on I if it is either increasing or decreasing on I but not both.

Given a function f , we can clearly tell where is f increasing or decreasing if the graph of f is
given, but is it possible to find this information without having to graph the function? The answer
is, of course, YES, and the main idea is to track the tangent line as we move to the right.

Monotonicity Theorem
Let f be continuous on an interval [a,b] and differentiable on (a,b).

1. If f

0(x) > 0 for all x in (a,b), then f is increasing on (a,b).

2. If f

0(x) < 0 for all x in (a,b), then f is decreasing on (a,b).

Proof. Take any 2 points, say x and y in an interval (a,b), such that x < y . MVT asserts that there
is some point c between x and y such that

f

0(c) = f (y)° f (x)

y °x

or
f (y)° f (x) = f

0(c)(y °x).

There are two cases to consider.

1. If f

0(c) > 0, then f (y)° f (x) = + + = + which means that f (y)° f (x) > 0.

2. If f

0(c) < 0, then f (y)° f (x) = ° + = ° which means that f (y)° f (x) < 0.
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3 Applications of the Derivative

Example 3.13. Find the intervals where f (x) = x

4 °2x

2 +3 is increasing or decreasing.
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3 Applications of the Derivative

Example 3.14. Find the intervals where g (x) = x

x

2 +2x +3
is increasing or decreasing.
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3 Applications of the Derivative

Remark 3.15. Observe that the Monotonicity Theorem applies if f

0(x) > 0 or f

0(x) < 0. Some-
times, stationary points, i.e. points where f

0(c) = 0, should be included in the intervals of increas-
ing or decreasing. This can be determined by examining the sign of f

0(x) near x = c.

1. Consider the function f (x) = x

3.

2. Consider the function f (x) = x

4.

What does f

00(x) tells us about f (x) then? From the Monotonicity Theorem, we see that

1. if f

00(x) > 0 on some interval (a,b), then f

0(x) is increasing on (a,b), i.e. slope of tangent
lines is getting larger to the right;

2. if f

00(x) < 0 on some interval (a,b), then f

0(x) is decreasing on (a,b), i.e. slope of tangent
lines is getting smaller to the right.

Roughly speaking, f

00(x) tells us about the “wiggliness” or “curviness” of the function itself.
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3 Applications of the Derivative

Concavity Theorem
Suppose f is twice differentiable on an open interval I , i.e. f

00(x) exists for all x in I .

1. If f

00(x) > 0 for every x 2 I , then f (x) is concave up on I .

2. If f

00(x) < 0 for every x 2 I , then f (x) is concave down on I .

Definition 3.16. A point (c, f (c)) on the graph of y = f (x) where the function changes concavity,
i.e. f

00 changes sign, is called an inflection point.

Example 3.17. Consider the function f (x) = 4x

3 +3x

2 °6x +1.

(a) Determine the intervals where f (x) is increasing or decreasing.

(b) Determine the intervals where f (x) is concave up or concave down. List, if any, inflection
points of f (x).
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3 Applications of the Derivative

Example 3.18. Consider the function f (x) = x

4+x

2
.

(a) Determine the intervals where f (x) is increasing or decreasing.

(b) Determine the intervals where f (x) is concave up or concave down. List, if any, inflection
points of f (x).
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3 Applications of the Derivative

The last two examples demonstrate that if there are inflection points, then they must be lo-
cated at points where f

00(c) = 0. The next example shows that the converse is false, i.e. there exists
a point x = c where f

00(c) = 0 but (c, f (c)) is not an inflection point.

Example 3.19. Consider the function f (x) = x

4.
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3 Applications of the Derivative

Example 3.20 ( f

00 6= 0 but there is an inflection point). Consider the function f (x) = x

1/3.

� In a nutshell, points where f

00(c) = 0 or f

00(c) DNE are “candidates” for
inflection points. We need to check if the concavity actually changes at
these points before we can decide if it is really an inflection point!
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3 Applications of the Derivative

3.3 Local Extrema and Extrema on Open Intervals

• A function f has a local maximum at x = c if f (x) is defined in a neighbourhood of x = c

and f (x) ∑ f (c) for all x near c, in which case f (c) is the local maximum value.

• A function f has a local minimum at x = c if f (x) is defined in a neighbourhood of x = c and
f (x) ∏ f (c) for all x near c, in which case f (c) is the local minimum value.

• A function f has a local extrema at x = c if it has either a local maximum or a local minimum
but not both. The number f (c) is then called the local extreme value.

First Derivative Test
Suppose x = c is a critical point of a continuous function f .

1. If f

0(x) is positive to the left of c and negative to the right of c, then f has a local maxi-
mum at x = c.

2. If f

0(x) is negative to the left of c and positive to the right of c, then f has a local mini-
mum at x = c.

3. If f

0(x) has the same sign on both sides of c, then f has neither a local maximum or a
local minimum at x = c.
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3 Applications of the Derivative

Example 3.21. Find all the critical points and use the First Derivative Test to decide which of the
critical points give a local maximum and which give a local minimum.

(a) f (x) = 1

3
x

3 ° 3

2
x

2 °18x +5

(b) f (x) = 3x

4 °4x

3 °2

19



3 Applications of the Derivative

(c) f (x) = cos2
x °2sin x on the interval (0,2º)

Second Derivative Test
Suppose f

00 is continuous near x = c.

1. If f

0(c) = 0 and f

00(c) > 0, then f has a local minimum at x = c.

2. If f

0(c) = 0 and f

00(c) < 0, then f has a local maximum at x = c.� If f

00(c) = 0, then the Second Derivative Test is inconclusive. This
means that we need to use the First Derivative Test to decide.
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3 Applications of the Derivative

Example 3.22. Find all the critical points and use the Second Derivative Test (whenever possible)
to determine which of the critical points give a local maximum and which give a local minimum.

(a) f (x) = 1

3
x

3 ° 3

2
x

2 °18x +5

(b) f (x) = x

4 °4x

3

21



3 Applications of the Derivative

Example 3.23. Find the global extreme values of f (x) = x

2 + 1

x

2
.
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3 Applications of the Derivative

3.5 Graphing Functions Using Calculus

This section is all about applying the techniques we have learned in the past few sections to graph-
ing functions. To most accurately sketch the graph of a function f , we find all the following:

1. Domain and Range:

2. Symmetry and Periodicity: Symmetry and periodicity allows you to construct the whole
graph from a smaller piece.

3. Intercepts: Where are the x-intercepts and the y-intercept?

4. Asymptotes:

5. Intervals of increasing/decreasing: These are determined by the sign of f

0(x).

6. Local maximum/minimum: Critical points (ignoring endpoints) are the candidates for lo-
cal maximum/minimum.

7. Concavity and inflection points: These are determined by the sign of f

00(x).
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3 Applications of the Derivative

Example 3.24. Sketch a graph of the function f (x) = 1

9
x

3 °3x.

Domain:

Range:

Symmetry:

Periodicity:

x-intercept(s):

y-intercept:

VA:

HA or SA:

Increasing:

Decreasing:

Concave up:

Concave down:

Local maximum(s):

Local minimum(s):

Inflection point(s):
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3 Applications of the Derivative

°5 °4 °3 °2 °1 1 2 3 4 5

-10

-8

-6

-4

-2

2

4

6

8

10

x

y

f

0(x)

f

00(x)
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3 Applications of the Derivative

Example 3.25. Sketch a graph of the function f (x) = 3x +4

x +1
.

Domain:

Range:

Symmetry:

Periodicity:

x-intercept(s):

y-intercept:

VA:

HA or SA:

Increasing:

Decreasing:

Concave up:

Concave down:

Local maximum(s):

Local minimum(s):

Inflection point(s):
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°5 °4 °3 °2 °1 1 2 3 4 5

°5

°4

°3

°2

°1

1

2

3

4

5

x

y

f

0(x)

f

00(x)

27



3 Applications of the Derivative

Example 3.26. Sketch a graph of the function f (x) =
p

x(1°x)2.

Solution: The algebraic trick here is to rewrite f (x) by expanding (1°x)2:

f (x) =
p

x(1°2x +x

2) = x

1/2 °2x

3/2 +x

5/2.

The first derivative of f is

f

0(x) = 1

2
x

°1/2 °3x

1/2 + 5

2
x

3/2

= 1

2x

1/2
°3x

1/2 + 5

2
x

3/2

= 1

2x

1/2

∑
1°

°
3x

1/2¢°2x

1/2¢+
µ

5

2
x

3/2
∂°

2x

1/2¢
∏ ∑

Factor out
1

2x

1/2
from each term.

∏

= 1

2x

1/2

£
1°6x +5x

2§

= 1

2x

1/2

h
(5x °1)(x °1)

i
.

h
Factor the quadratic equation.

i

Thus the critical points of f are x = 0,
1

5
,1. Since the denominator of f

0 is always positive

for x > 0, f

0(x) has the same sign as the numerator (5x °1)(x °1), whose graph is a parabola
opening-upward, with roots x = 1/5 and x = 1:

0 1
5

1

++
°

y = (5x °1)(x °1)

x

From the graph, we deduce that f is increasing on

µ
0,

1

5

∂
[ (1,1) and decreasing on

µ
1

5
,1

∂
.

Using the First Derivative Test, we deduce immediately that f has a local maximum at x = 1/5
and a local minimum at x = 1. Now, the second derivative of f is

f

00(x) =°1

4
x

°3/2 ° 3

2
x

°1/2 + 15

4
x

1/2

=° 1

4x

3/2
° 3

2x

1/2
+ 15

4
x

1/2

= 1

4x

3/2

∑
°1°

µ
3

2x

1/2

∂°
4x

3/2¢+
µ

15

4
x

1/2
∂°

4x

3/2¢
∏ ∑

Factor out
1

4x

3/2
from each term.

∏

= 1

4x

3/2

£
°1°6x +15x

2§ .

Since the denominator of f

00 is always positive for x > 0, f

00(x) has the same sign as the nu-
merator 15x

2 °6x °1, whose roots we need to find using the quadratic formula:

x = °(°6)±
p

(°6)2 °4(15)(°1)

2(15)
= 6±

p
96

30
.
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06°
p

96
30

6+
p

96
30

+

°

y = 15x

2 °6x °1

x

From the graph, we deduce that f is concave up on
≥

6+
p

96
30 ,1

¥
º (0.527,1) and concave

down on
≥
0, 6+

p
96

30

¥
º (0,0.527). Moreover, f has an inflection point at

≥
6+

p
96

30 , f

≥
6+

p
96

30

¥¥
º

(0.527,0.163).

Domain: [0,1).
Range: [0,1).
Symmetry: None.
Periodicity: None.
x-intercepts: (0,0) and (1,0).
y-intercept: (0,0).
VA: None.
HA or SA: None.

Increasing: (0,0.2)[ (1,1).
Decreasing: (0.2,1).
Concave up: º (0.527,1).
Concave down: º (0,0.527).
Local maximum: f (0.2) º 0.286.
Local minimum: f (1) = 0.
Inflection point: º (0.527,0.163).

(0.2,0.286)

(1,0)(0,0)

(0.527,0.163)

Graph of f (x)

x

y

f

0(x)

f

00(x)

0

0

10.2

0.527

Inc. Decreasing Increasing

Concave down Concave up
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3 Applications of the Derivative

3.4 Practical Problems

This section is all about optimisation problems, that is, problems concerned with minimising or
maximising certain quantities of interest. There are no new calculus techniques introduced in
this section. Instead the difficulty lies in correctly translating the problem description into math-
ematics. The easiest way to get comfortable with solving these optimisation problems is to do
examples. Before we do this, let us write down a general step-by-step procedures for tackling op-
timisation problems:

1. Draw a sketch describing the problem. Determine useful information and assign variables
to relevant information.

2. Write down the objective function, i.e. a formula describing all the relevant quantities.

3. Occasionally the objective function might have more than one independent variable. In
this case, eliminate all but one independent variable; generally this is achieved using the
constraint function.

4. Find critical points.

5. Determine which of the critical points give the global minimum and/or maximum.

These are typically physical problems, so you should always stare at your answer and determine if
it makes physical sense.

Example 3.27. Farmer Eli wants to build a rectangular pen for his chickens. He wants the pen to
be as large as possible (in area), but he has only 100 feet of fence. What should the dimensions of
his pen be?
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3 Applications of the Derivative

Example 3.28. Farmer Eli change his mind and wants 4 rectangular pens (side by side) of the same
size out of the 100 feet of fence that he has. What should the dimensions be now to maximise the
area?
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3 Applications of the Derivative

Example 3.29. A theater found that when it priced its tickets at $20 a piece, it sold 200 tickets
on average. After it lowered its prices to $18, it sold 240 tickets on average. Assuming that the
demand function (the number of tickets sold at a given price) is linear, how should the theater
price its tickets in order to maximise revenue?
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3 Applications of the Derivative

Example 3.30. 240 square inches of printed material is to appear on a poster with top and bottom
margins of 5 inches and side margins of 3 inches. Find the dimensions of the poster that uses the
least paper, that is, has the least area.
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3 Applications of the Derivative

Example 3.31. Find the point on the graph of the parabola y = x

2 +1 which is closest to the pointµ
1,

3

2

∂
.
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3 Applications of the Derivative

3.7 Solving Equations Numerically

In this section, we discuss numerical methods for approximating solutions to equations. The
textbook presents three numerical methods for approximating solutions to equations: Bisection
Method, Newton’s Method and Fixed-Point Algorithm. These numerical methods are important
for the simple reason that explicit solutions are just not possible in general and one must be con-
tented with being able to numerically approximate a solution to any specified degree of accuracy.
Due to time constraint, we only study Newton’s method below.

Newton’s method

Albeit some limitations, Newton’s method is an extremely powerful root-finding algorithm since it
converges quadratically in general. The geometrical idea of Newton’s method is presented in the
following figure:

x0x1x2
x

y

Given some function f (x), consider an initial guess x0 which we may assumed to be suffi-
ciently close to a root r of f . The idea is to represent f (x) near x = x0 with its linear approximation,
i.e.

f (x) º L(x; x0) = f (x0)+ f

0(x0)(x °x0).

We use the root of this tangent line, denoted by x1, to approximate r . Let us now solve for x1:
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3 Applications of the Derivative

This procedure can be repeated and provided for each n ∏ 0, we
obtain the recursive relation:

x

n+1 = x

n

° f (x

n

)

f

0(x

n

)
, n ∏ 0

We repeat the process for n = 0,1, . . . until |x
n+1 °x

n

| < E for some specificed tolerance E .

Example 3.32. Use Newton’s method to find the fourth approximation, x3, to the solution of

f (x) = x

3 °x °1 = 0,

with x0 = 1. Note: This is a reasonable first guess since f (1) =°1 and f (2) = 5, and so the Interme-
diate Value Theorem says that there is a root somewhere between x = 1 and x = 2.

n x

n

f (x

n

) f

0(x

n

) x

n+1 = x

n

° f (x

n

)

f

0(x

n

)

0

1

2

Example 3.33. Use Newton’s method to estimate
p

2 correctly to 5 decimal places.

n x

n

f (x

n

) f

0(x

n

) x

n+1 = x

n

° f (x

n

)

f

0(x

n

)

0

1

2

3
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3 Applications of the Derivative

3.8 Antiderivatives

Antiderivatives = Inverse of Derivatives
Definition 3.34. A function F (x) is an antiderivative of f (x) on the interval I if F

0(x) = f (x) for all
x in I . When an interval is not specified, it is assumed that I = (°1,1) or the domain of f .

Theorem 3.35. If F (x) is an antiderivative of f (x) on I , then any other antiderivative of f (x) on I

is of the form F (x)+C for some constant C . We call this family of functions F (x)+C the general
antiderivative of f .

Proof. This follows immediately from the fact that the derivative of any constant is zero:

D

x

[F (x)+C ] = D

x

[F (x)]+D

x

[C ] = F

0(x)+0 = F

0(x) = f (x).

Note the following notation:

=
Z

f (x)d x =

1. This is also called the indefinite integral of f (x).

2.
R

is called the integral sign and f (x) is referred to as the integrand.

So the two terms are basically interchangeable:

General Antiderivative () Indefinite Integral

Example 3.36. Find the following general antiderivatives. Verify your answer by taking the deriva-
tive.

(a)
Z

7d x

(b)
Z

x

2
d x

(c)
Z

sin(4x)d x
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3 Applications of the Derivative

Integral is a Linear Operator
The indefinite integral is linear. That is, if F (x) is an antiderivative of f (x), G(x) is an an-
tiderivative of g (x), and k a real number, then

Z
k f (x)d x = k

Z
f (x)d x =

Z
f (x)+ g (x)d x =

Z
f (x)d x +

Z
g (x)d x =

Z
f (x)° g (x)d x =

Z
f (x)d x °

Z
g (x)d x =

Let us recall the Power Rule for derivatives. If f (x) = x

n , then its derivative f

0(x) = nx

n°1 is
found by:

1. Multiply the exponent;

2. Decrease (lower) the exponent by 1.

Because antiderivative is the inverse of derivative, we simply reverse the above steps to find the
antiderivative of f (x) = x

n :

1.

2.

We arrive at the first rule for finding antiderivative, the Power Rule:

Z
x

n

d x = x

n+1

n +1
+C for any n 6=°1.

Example 3.37. Find the following indefinite integrals.

(a)
Z

5x

2 +3x

2018
d x

38



3 Applications of the Derivative

(b)
Z

x

4 °4x

2 ° 1

x

2
d x

(c)
Zp

x °6 3
p

x d x

The Power Rule, along with basic trigonometric differentiation rules gives us the following list
of functions f and their general antiderivatives F :

General Antiderivative, F (x) f (x) Derivative, f

0(x)

k constant

x

n

sin x

cos x

tan x

sec2
x
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3 Applications of the Derivative

Generalised Power Rule
Suppose g (x) is a differentiable function and n 6=°1. Then

Z
g (x)n

g

0(x)d x = g (x)n+1

n +1
+C .

Example 3.38. Find the following indefinite integrals.

(a)
Z

(3x

2 +1)4(6x)d x

(b)
Z

sin6
x cos x d x

(c)
Z°

x

3 +9
¢7

(x

2)d x
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