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2 The Derivative

We are now ready to reap all the hard work we put into studying limits in Chapter 1. Many impor-
tant real-world problems can be formulated in terms of system of equations using the concept of
limits. The next two chapters concern the following specific question:

What is the instantaneous rate of change of
certain quantity of interest?

It is the word instantaneous that links to finding limits! These rates of change are ubiquitous that
they deserve a special name:

Instantaneous rate of change = Derivative

2.1 Two Problems with One Theme

We study two seemingly unrelated problems: one geometric and the other mechanical.

The tangent line

The tangent line to a curve at a given point P is the line that passes through P in the same direction
as the curve. At first sight this definition seems confusing if anything, how does one define the
“direction” of a curve at a point? It makes sense to talk about the direction of a line passing through
two given points P and Q on the curve, the problem is that we are only given P . How do we go
from two points P and Q to one point P? If you happen to read on this while I ask the question in
class, please stand up now and say this out loud: We move the point Q closer and closer to the point
P, duhhhhhhhhhh Chee Han duhhhhhhhhhhh............ This leads us to the notion of secant line:
a line connecting two points on the curve.
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2 The Derivative

Now that we know what the tangent line should be, a practical question arises: can we write
down the equation of the tangent line through P? We know the point P , but is that enough?
NOOOOOOOOOOOOOOOOOO, we also need the slope of the tangent line, but how on Earth do
we measure the slope of a line with just one point? Since we are approximating the tangent line by
secant lines through P , why not approximate the slope of the tangent line by the slope of secant
lines through P? Let us summarise this discussion using limit notations:

Definition 2.1. The tangent line to the curve y = f (x) at a given point P = (c, f (c)) is the line
passing through P with slope

mtangent = lim
x!c

f (x)° f (c)
x ° c

= lim
h!0

f (c +h)° f (c)
h

provided that this limit exists and is not 1 or °1.

The slope of the tangent line is understood to be the limit of the difference quotient
f (x)° f (c)

x ° c
as x approaches c, if the limit exists. The second limit expression above is obtained using the fol-
lowing change of variables. We set h = x ° c and so x = c +h. Now as x approaches c, the quantity
h = x ° c approaches 0. Thus we have the equality

lim
x!c

f (x)° f (c)
x ° c

= lim
h!0

f (c +h)° f (c)
h

.

Example 2.2. Find the slope of the tangent line to the curve y = x2 at the point (2,4).
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2 The Derivative

Example 2.3. Find the equation of the tangent line to the graph of y = 1
x

at x = 3.

Average velocity and instantaneous velocity

The concept of instantaneous rate of change is familiar. If d(t ) is a function that gives your dis-
tance travelled in your car as a function of time, then the instantaneous rate of change of d(t ) at
time t = t0 would merely be the reading of your speedometer at time t = t0. If you were outside of
the car and were trying to calculate its velocity, your only option is to see how far the car travelled
in some amount of time and then divide by the amount of time. This is the average velocity over
the time interval. In general, the average velocity over the time interval [t0, t ] would be given by

vavg =
d(t )°d(t0)

t ° t0
.

We would expect that as t approaches t0 that this average velocity should approach the instanta-
neous velocity at time t = t0. As above, we could write

v(t0) = lim
t!t0

d(t )°d(t0)
t ° t0

= lim
h!0

d(t0 +h)°d(t0)
h

provided the limit exists and is not 1 or °1.

These are the same limits considered in our discussion of the slope of the tangent line, so it
appears that the velocity at time t = t0 should be the slope of the tangent line to the function d(t )
at t = t0. In other words, we can think of the slope of the tangent line to a curve at a point P as
an instantaneous rate of change of the curve at that point.
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2 The Derivative

Example 2.4. The distance an object falls is proportional to the time it falls squared. With an
accurate experiment, one would find that the cosntant of proportionality is 16 ft/s2. That is, if d(t )
denote the distance in feet an object has fallen after t seconds, then

d(t ) =°16t 2.

This is an approximation as it neglects air resistance. Now, suppose a tennis ball is dropped off of
a 144 foot tower.

(a) How long before the tennis ball hits the ground?

(b) Find the average velocity of the tennis ball in the first 2 seconds.

(c) Find the instantaneous velocity of the tennis ball at t = 1 second.

(d) Find the instantaneous velocity of the tennis ball at t = 3 seconds, right as it hits the ground.
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2 The Derivative

2.2 The Derivative

In the last section, we have seen that slope of the tangent line to a curve and instantaneous rate of
change of a function are manifestations of the same underlying concept. Let us formalise this idea
now.

Derivative at a point

The derivative of a function f at x = c, denoted by f 0(c) (read “ f prime of c”), is given by

f 0(c) = lim
x!c

f (x)° f (c)
x ° c

= lim
h!0

f (c +h)° f (c)
h

.

If this limit does exist, i.e. f 0(c) exists, then we say that f is differentiable at x = c.

Example 2.5. Find f 0(1) for the function f (x) = x2 °x.

Derivative as a function

Above, we defined how to find the derivative of a function f (x) at a given input x = c. But for every
value c at which the derivative exists, we get a corresponding value f 0(c). This is a function which
we call the derivative of f (x).

Definition 2.6. The derivative of a function f (x) is the function f 0(x) (read “ f prime of x”) given
by

f 0(x) = lim
h!0

f (x +h)° f (x)
h

.

We say that f is differentiable on the open interval (a, b) if it is differentiable at all points in the
interval, i.e. f 0(x) exists for all a < x < b. Finding a derivative is called differentiation.
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2 The Derivative

Example 2.7. Find the derivative f 0(x) for the following functions.

(a) f (x) = 5x °3

(b) f (x) = 1
x

(c) f (x) =
p

x
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2 The Derivative

Non-differentiable functions

There will be functions that are not differentiable, simply because the derivative is defined in
terms of a limit, and it is possible that limits do not exist! Let us examine a number of ways for
which a function is not differentiable at a point.

1.

In this case, we cannot even evaluate f (c) and so the expression lim
h!0

f (c +h)° f (c)
h

does not

make any sense. For example, the reciprocal function f (x) = 1
x

is not differentiable at x = 0

because it is not even defined at x = 0. Note that the function is not continuous at x = 0.

2. It seems like the issue above is continuity, so maybe the function would be differentiable if
it is continuous? Sadly, this is not true in general.

(a) The absolute value function f (x) = |x| is continuous everywhere, but we claim that it
is not differentiable at x = 0.

The problem is that .

(b) The cube root function f (x) = 3
p

x = x1/3 is continuous everywhere, but we claim that
it is not differentiable at x = 0.

The problem is that .

We have seen a few examples where a function is continuous but not differentiable. Can a function
be differentiable but not continuous? The answer is no, as the following theorem indicates.

Theorem 2.8. If f is differentiable at x = c, then f is continuous at x = c.
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2 The Derivative

2.3 Rules for Finding Derivatives

The truth is, using the limit definition of a derivative to find the derivative of a function, i.e. by
evaluating the limit of the difference quotient, is no fun at all; the process can be onerous and time
consuming for all we know. Because of this, it seems reasonable that we should develop rules and
properties that will allow us to compute derivatives of familiar functions and more importantly,
arithmetic combinations of these functions. Before we proceed, we point out that there are four
common notations for the derivative of a function y = f (x):

ƒ Lagrange’s notation: f 0(x)

ƒ Leibniz’s notation:
d y

d x

ƒ Newton’s notation: ẏ

ƒ Euler’s notation: Dx f

Constant Multiple, Sum, Difference and Power Rules
Suppose f and g are differentiable functions and k is a constant. Then

1. Dx(k) = 0, i.e. the derivative of any constant function is zero.

2. Dx
£
k f (x)

§
= kDx

£
f (x)

§
, i.e. constant pulls out of differentiation.

3. Dx
£

f (x)+ g (x)
§
= Dx

£
f (x)

§
+Dx

£
g (x)

§
.

4. Dx
£

f (x)° g (x)
§
= Dx

£
f (x)

§
°Dx

£
g (x)

§
.

5. Dx [xn] = nxn°1, where n is any positive integer.

Example 2.9. Use the Power Rule and rules of derivative to find the derivatives of the following
functions.

(a) Dx
£
3x4 °x3 +x

§

(b) Dx
£
x9 +10x8 °2x3 +6

§
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2 The Derivative

Now with our properties and the Power Rule, we know how to differentiate any polynomial. It
turns out that the “Power Rule” above holds for more than just positive integers. We won’t prove
this now; instead, we will return to this when we have more techniques at our disposal.

Product Rule
Suppose f and g are differentiable functions. Then

( f g )0(x) = f (x)g 0(x)+ g (x) f 0(x).

Example 2.10. Compute the derivative of the following functions using the Product Rule.

(a) f (x) = (x2 +x)(x4 +5x2)

(b) f (x) = (6°x3)(x2 °1)
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2 The Derivative

Quotient Rule
Suppose f and g are differentiable functions with g (x) 6= 0. We have that

µ
f

g

∂0
(x) = g (x) f 0(x)° f (x)g 0(x)

£
g (x)

§2 .

Remember this with the mnemonic "low D-high minus high D-low, square the bottom and
away we go!"

Example 2.11. Use the Quotient Rule to differentiate the function F (x) = 7x3 °x

2x4 +5
.

Example 2.12. Use the Quotient Rule to show that the Power Rule holds for negative integer ex-
ponents. That is,

Dx
£
x°n§

=°nx°n°1

where n is any positive integer.
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2 The Derivative

Example 2.13. Find the equation of the tangent line to the graph of f (x) = 1
x2 +1

at x = 1.

This is a good time to return to the idea that the derivative is the slope of the tangent line to
the graph at a given point. Specifically, the tangent line to the graph of y = f (x) at x = c is the
unique line with slope f 0(c) that passes through the point P = (c, f (c)). Using point-slope form,
the equation of the tangent line has the form

y ° f (c) = f 0(c)(x ° c) =) y = f (c)+ f 0(c)(x ° c).

This formula is worth memorising, since we will have occasion to use it often.
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2 The Derivative

2.4 Derivatives of Trigonometric Functions

We now expand the list of functions we can differentiate to include the trigonometric functions.
The derivatives of sine and cosine are obtained by using the special trigonometric limits we found
in Section 1.4, while the derivatives of the other trigonometric functions follow from these using
the Quotient Rule. Recall the angle-sum identities

sin(x + y) = sin(x)cos(y)+cos(x)sin(y)

cos(x + y) = cos(x)cos(y)° sin(x)sin(y)

and the special trigonometric limits

lim
t!0

sin t

t
= 1 and lim

t!0

1°cos t

t
= 0.

Derivatives of Sine and Cosine Functions
The functions sin x and cos x are both differentiable on R and

Dx [sin x] = cos x and Dx [cos x] =°sin x.

Let us prove that Dx [sin x] = cos x using the limit definition of the derivative.

Dx [sin x]

= lim
h!0

sin(x +h)° sin(x)
h

= lim
h!0

sin x cosh +cos x sinh ° sin x

h

h
From the angle-sum identity.

i

= lim
h!0

sin(x) [cosh °1]+cos x sinh

h

h
Factor sin x from the first and third term.

i

= lim
h!0

Ω
sin x [cosh °1]

h
+ cos x sinh

h

æ h
Separating fraction.

i

= lim
h!0

Ω
sin x

µ
cosh °1

h

∂
+cos x

µ
sinh

h

∂æ

=
µ

lim
h!0

sin x

∂µ
lim
h!0

cosh °1
h

∂
+

µ
lim
h!0

cos x

∂µ
lim
h!0

sinh

h

∂

Since sin x and cos x do not depend on h, the limit as h °! 0 of sin x and cos x are just itself, i.e.

lim
h!0

(sin x) = sin x and lim
h!0

(cos x) = cos x.

The remaining ones are special trigonometric limits:

lim
h!0

cosh °1
h

= lim
h!0

°1°cosh

h
=°1(0) = 0 and lim

h!0

sinh

h
= 1.

Hence
Dx [sin x] = [sin x] [0]+ [cos x] [1] = cos x.

12



2 The Derivative

Derivatives of Other Trigonometric Functions
For all x in the domain of the trigonometric function, we have the following:

Dx [tan x] = Dx [cot x] =
Dx [sec x] = Dx [csc x] =

Example 2.14. Compute the following derivatives.

(a) Dx(3sin x °5tan x)

(b) Dx(x3 tan x +cos x)

(c) Dx

µ
x cot x °x5

sin x

∂
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2 The Derivative

2.5 The Chain Rule

Imagine trying to find the derivative of f (x) = (x2 +x °3)1000 or g (x) = cos(4x). For f (x), we could
expand the quadratic function (x2 + x °3) 1000 times and then differentiate the resulting polyno-
mial using Power Rule; for g (x), we might be able to use some trigonometric identities and rewrite
it in terms of sin x and cos x. Fortunately, there is a much better way! This is not obvious at all, but
the idea, due to Leibniz, is to rewrite the given function as the composition of several functions.

Chain Rule
Suppose g is differentiable at x and f is differentiable at g (x). Then the composite function
( f ± g )(x) = f (g (x)) is differentiable at x and

Dx
£

f (g (x))
§
= f 0(g (x))g 0(x).

In Leibniz notation, if we set u = g (x) and y = f (u) = f (g (x)), then the Chain Rule gives

d y

d x
= d y

du

du

d x
.

Example 2.15. Suppose f (x) = x2 and g (x) = x3°x. Use the Chain Rule to find Dx
£

f (g (x)
§
. Com-

pare this to what you get when you first find f (g (x)) by substitution then differentiate the resulting
function.

Remark 2.16. Actually, the Chain Rule can also be applied to composition of three or more func-
tions! For example, if we consider the composite function ( f ± g ±h)(x), then

Dx
£

f (g (h(x)))
§
= f 0(g (h(x)))g 0(h(x))h0(x).
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2 The Derivative

Example 2.17. Differentiate the following functions using the Chain Rule.

(a) F (x) = (x2 +x °3)100

(b) F (x) = (5x3 °x2 +3x °1)8

(c) F (x) = 1
5°x2
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2 The Derivative

(d) F (x) = cos(x4 °x2 +2)

(e) F (x) = tan5(x)

(f) F (x) =
µ

x2 °1
x

∂7

16



2 The Derivative

(g) F (x) = sin5
µ

1
x3 +1

∂

(h) F (x) = sin2(x2 °x)sec3(4x)
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2 The Derivative

(i) F (x) = sin
°
cos(x2)

¢

(j) F (x) = x cos2(4x)
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2 The Derivative

2.6 Higher-Order Derivatives

When we differentiate a function f (x), we get the derivative f 0(x) which is a function itself. We
could now differentiate f 0(x) to get the second derivative of f , denoted f 00(x). Repeating the
same process yields the third derivative of f , denoted f 000(x); the fourth derivative of f , denoted
f 0000(x), and so on. These multiple derivatives are referred to as higher-order derivatives.

Derivative Lagrange notation y 0 notation D notation Leibniz notation

First f 0(x) y 0 Dx(y)
d y

d x

Second f 00(x) y 00 D2
x(y)

d 2 y

d x2

Third f 000(x) y 000 D3
x(y)

d 3 y

d x3

Fourth f (4)(x) y (4) D4
x(y)

d 4 y

d x4

...
...

...
...

...

nth f (n)(x) y (n) Dn
x (y)

d n y

d xn

Example 2.18. For the function y = f (x) = x2 +cos x + 1
x

, find
d y

d x
,

d 2 y

d x2 and
d 3 y

d x3 .
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2 The Derivative

Example 2.19. Find f 00(x) if f (x) = x2 +x

x3 +9
.

Example 2.20. Compute the first few derivatives of f (x) = 3sin(2x) and use the pattern you dis-
cover to find f (26)(x).

Physics of moving objects

We used the notion of instantaneous velocity to motivate the definition of derivative. Now let us
return to this idea. Unless stated otherwise, the word velocity refers to instantaneous velocity.
Suppose s(t ) is the position function represents the position of some object at time t . How are the
velocity and acceleration of the object related to s(t )?

Velocity =

Acceleration =

20



2 The Derivative

Note that velocity v(t ) could be positive or negative. This reflects the fact that velocity is a vector
quantity, i.e. it has a direction and magnitude. Essentially, positive velocity corresponds to moving
in the direction of increasing position variable (usually right or up); negative velocity corresponds
to moving in the direction of decreasing position variable (usually left or down). Speed is defined
to be the magnitude of velocity, i.e. |v(t )|; speed does not take direction into account.

Example 2.21. Let s(t ) = cos(t ) be the position of a cart (measured in feet) moving back and forth
on a track at time t (measured in seconds). What is the velocity of the cart at t = º/2? What is the
speed of the cart at t =º/2?

Example 2.22. Let the position of a charged particle in a magnetic field be given by

s(t ) = t 3 °6t 2 +9t

where s is measured in metres and t in seconds. Assume the particle travels on a number line,
with positive values of s to the right.

(a) What is the velocity of the particle at time t?

(b) When is the particle at rest?
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2 The Derivative

(c) When is the particle moving to the right? When is the particle moving to the left?

(d) Find the acceleration of the particle at time t . When is the particle undergoing no accelera-
tion?

(e) At what time is the particle moving fastest to the left?
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2 The Derivative

2.7 Implicit Differentiation

Recall that the slope of the tangent line to the graph of a function f at x = c is given by f 0(c), but
the truth is that any suitable smooth curve in the x y-plane could have a tangent line at a point on
the curve. If the curve happens to have an explicit equation of the form y = f (x), great, we find
f 0(c) and move on.

Not all curves in the x y-plane
have explicit equations. What then?

Example 2.23. A classical example is the unit circle which has the equation

x2 + y2 = 1.

The unit circle is not the graph of a function because it fails to pass the Vertical Line Test. Observe
that if we remove some parts of the circle, say the lower half of the circle, then the remaining curve
becomes the graph of a function. This function is called an implicit function, and finding the
derivatives of implicit functions is the focus of this section.

x

y Let us try to solve x2 + y2 = 1 for y :

The problem is apparent: we have two implicit
functions..........

1. The graph of the positive square root function y = g (x) =

corresponds to the of the circle.

2. The graph of the negative square root function y = h(x) =

corresponds to the of the circle.

Together, the graphs of g (x) and h(x) constitute the entire unit circle. The problem of which im-
plicit functions to choose is dictated by the given point (x, y) on the unit circle.

ƒ The implicit function of x2 + y2 = 1 at the point (0,1) is

ƒ The implicit function of x2 + y2 = 1 at the point (0,°1) is

ÁÁ The implicit function of x2 + y2 = 1 at the point (1,0) is
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2 The Derivative

Although the equation x2+ y2 = 1 does not represent y as a function of x, it is still “nice” in the
sense that we are able to solve for y in terms of x. As you can see, we actually solve the problem
of finding the slope of the tangent line of a given point (except (±1,0)) on the unit circle, because
g (x) and h(x) are both explicit functions of x and so we could compute their derivatives. Indeed,
assuming the Power Rule holds for rational exponents,

Surprisingly, it is not necessary to find the formula for an implicit function in order to find
its derivative. The idea behind this technique, called implicit differentiation, is to treat y as a
function of x, i.e. we replace y with y(x). For the equation of unit circle,

x2 +
£

y(x)
§2 = 1.

We differentiate both sides of the equation with respect to x, in particular we use the Chain Rule
to differentiate the term

£
y(x)

§2.
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2 The Derivative

Example 2.24. It seems like implicit differentiation is unnecessary if we can find implicit func-
tions, but don’t be deceived by the unit circle example! Indeed, consider the equation

y3 +7y = x.

Clearly we cannot solve for y in terms of x. Nevertheless, one can show that for every x-value,
there is exactly one corresponding y-value. We say that the equation y3 +7y = x defines y as an

implicit function of x, even when we cannot write down an explicit formula for y . To find
d y

d x
using implicit differentiation, we rewrite the equation by replacing y with y(x) again:

We differentiate both sides and apply the Chain Rule to differentiate terms involving y(x).

The technique of implicit differentiation can be summarised as follows:

1. We are given an equation in x and y .

2. Differentiate both sides of the equation with respect to x. Treat y as a “mystery” function
of x; hence, use the Chain Rule to differentiate expressions involving y . This will result

in an equation involving x, y , and
d y

d x
.

3. Either solve for
d y

d x
in terms of x and y , or solve for

d y

d x
at a specific point by plugging in

for x and y .
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2 The Derivative

Example 2.25. Find the value of
d y

d x
at the point (1,°1), where y is given by the equation

x2 ° y3 = 2x.

Example 2.26. Find the equation of the tangent line to the curve

5x2 °7x y2 = x2 y4 °3

at the point P = (1,1).
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2 The Derivative

Example 2.27. At what values of x is the tangent line to the curve determined by

2y3 + y2 ° y5 = x4 °2x3 +x2

horizontal? This curve is called the “bouncing wagon” for obvious reasons.

27



2 The Derivative

Implicit differentiation can be used to show that the Power Rule holds not only for integer
exponents, but rational exponents as well. We refer the interested readers to the textbook for the
proof.

Power Rule, Again
For any nonzero rational number n,

Dx
£
xn§

= nxn°1.

Example 2.28. Differentiate the following functions.

(a) f (x) = x2/5 °5x°3/2

(b) f (x) = 3p
x2 +9+cos

°
5
p

x
¢
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2 The Derivative

2.8 Related Rates

If a quantity y depends on time t , then its derivative
d y

d t
is called a time rate of change. As before,

if y has an explicit expression in terms of t , we simply differentiate to obtain
d y

d t
and evaluate the

derivative at the given time. However, it might very well be the case that we know a relation that
connects y and another quantity x that also depends on time instead, i.e. we have two changing
quantities that, for all time t , are related by an equation.

Differentiating this equation with respect to t gives us a

relationship between
d y

d t
and

d x

d t
, and we called these related rates.

Example 2.29. Suppose we have a circle whose radius is changing as a function of time. As the
radius of the circle changes, so does the area, and we are interested in knowing how fast the area
of the circle is changing at a given time.

1. First, we need an equation that relates area and radius of a circle as a function of time:

Note that this equation holds true for all time t even though A and r are changing in time.

2. We can differentiate the relation using the Chain Rule:

3. If we know that at a particular time t§, the radius is 3 metres and it is growing at a rate of 1.5
metres per second, then

29



2 The Derivative

Rule of thumb for solving related rates problems

30



2 The Derivative

Example 2.30. Suppose a balloon is being inflated from an air tank which expels 0.2º ft3 of air
per second. For simplicity, assume that the balloon is always perfectly spherical. How fast is the

radius increasing when there is
4º
3

ft3 of air in the balloon?
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2 The Derivative

Example 2.31. A 13 foot ladder is leaning against a vertical wall. Suppose the base of the ladder
starts sliding away from the wall at a constant rate of 0.4 feet per second. How fast is the top of the
ladder sliding down the wall when the base of the ladder is 5 feet away from the wall ?
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2 The Derivative

Example 2.32. A person stands on a lighthouse that is 30 metres tall. At time t = 0, a ship ap-
proaches at a speed of 2 metres per second travelling directly towards the lighthouse from 160
metres away (from the base of the lighthouse).

(a) How fast is the distance between the person and the ship decreasing one minute after the ship
leaves?
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2 The Derivative

(b) How fast is the angle of elevation changing when the ship is 30 metres from the lighthouse?
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2 The Derivative

2.9 Differentials and Approximations

This final section is to tie up any loose ends on tangent line, in particular why do we care so much
about tangent line. Consider a point P =

°
a, f (a)

¢
on the graph of a function f . The intuition is

that, if we zoom in the point P close enough, then the graph of f (x) looks approximately like the
tangent line at point P ; this should not be too surprising since the slope of the tangent line, which
is the derivative f 0(x), is defined in terms of limits.

Linear Approximation
If f is a differentiable function at x = a, then the function

L(x) = f (a)+ f 0(a)(x °a)

is called the linear approximation of f at x = a. The function L(x) is also called the linearisa-
tion of f at x = a and is simply the equation of the tangent line to the graph of f at x = a.

Example 2.33. Find the linear approximation of f (x) =
p

x at x = 1, and use this to approximatep
1.02 and

p
0.97. How do these approximations compare to the true values?
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2 The Derivative

Example 2.34. Find the linearisation of f (x) = tan x at x = º

4
, and use this to estimate tan

≥º
3

¥
.

Differentials

The same logic in terms of approximating a function by its tangent line can be used to derive a
method for approximating changes in functions. Suppose we are given a function y = f (x) and an
x-value x = a. As discussed above, when x º a, we have

As x gets closer to a (or¢x °! 0), this approximation gets better and better and is exactly equal in
the limit.
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2 The Derivative

The equation is called the
This viewpoint is beneficial when we are concerned with how the output of the function f changes
near a given input x = a. If we think of d as representing change, then

d x =

¢y =

d y =

Example 2.35. Consider the function f (x) = x2 +x.

(a) Use differentials to estimate how f (x) changes as x changes from x = 4 to x = 4.1.

(b) Find a good approximation to (4.1)2 +4.1.

Example 2.36. Suppose a sphere 1 metre in radius is given a coat of paint 2 millimetres thick. Use
differentials to estimate the volume of the paint used.
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Error Estimation

Error estimation is ubiquitous in science. When scientists conduct experiment, they measure the
input x0 that has a possible error of size ±¢x; the value x0 is then used to calculate the corre-
sponding output y0 that is contaminated by the error in x. An important task is to estimate the
magnitude and quantify the size of the error of y0. This can be achieved by means of differentials.

Definition 2.37. Given a function y = f (x),

1. the absolute error is the change in y for a small change in x:

2. the relative error is the ratio of the absolute error and the quantity:

We often express the relative error as a percentage, and refer to that as percent error.

Example 2.38. You are building a container that will be used to carry water. The container is to be
a cube with no lid, and it must carry 27 cm3 of water with a possible 2% error.

(a) What is the absolute error for the length of the sides of the container?

(b) What is the absolute error for the surface area of the container?
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