Section II (Separation Theorems)

Part III of this text is concerned w/ duality correspondences, Rockafellar states that separation theorems are the foundations for duality correspondences. Almost everything that follows in this chapter is based on the fact that a hyperplane in \(\mathbb{R}^n \) divides \(\mathbb{R}^n \) “evenly in two.”

Definition

- A hyperplane \(H \) is said to separate \(C_1 \) & \(C_2 \) if \(C_1 \) is contained in one of the closed half-spaces assoc. w/ \(H \) and \(C_2 \) lies in the opposite closed half-space.
- \(H \) separates \(C_1 \) & \(C_2 \) properly if \(C_1 \) & \(C_2 \) are not both contained in \(H \) itself.
- \(H \) separates \(C_1 \) & \(C_2 \) strongly if \(\exists \ E > 0 \) s.t. \(C_1 + E \delta \) is contained in one of the assoc. open half-spaces & \(C_2 + E \delta \) is contained in the opposite open half space.
- Other kinds of separation are considered in general, e.g. strict separation (\(C_1 \) & \(C_2 \) must simply belong to opposing open h.s.), however proper & strong separation are most useful for our purposes.
Theorem 11.1

Let \(C_1, C_2 \subset \mathbb{R}^n \) be non-empty sets. \(\exists \) a hyperplane separating \(C_1 \) & \(C_2 \) properly iff \(\exists \) a vector \(b \) s.t.

\[
\begin{align*}
(i) & \quad \inf \{ \langle x, b \rangle \mid x \in C_1 \} \geq \sup \{ \langle x, b \rangle \mid x \in C_2 \}, \\
(ii) & \quad \sup \{ \langle x, b \rangle \mid x \in C_1 \} > \inf \{ \langle x, b \rangle \mid x \in C_2 \}.
\end{align*}
\]

Additionally, \(\exists \) a hyperplane separating \(C_1 \) & \(C_2 \) strongly iff \(\exists \) a vector \(b \) s.t.

\[
(i) \quad \inf \{ \langle x, b \rangle \mid x \in C_1 \} > \sup \{ \langle x, b \rangle \mid x \in C_2 \}.
\]

Proof

(i) \(\iff \) Suppose \(\exists b \) satisfying (a) \& (b) \& let \(\beta \) be s.t.

\[
\inf \{ \langle x, b \rangle \mid x \in C_1 \} \geq \beta \geq \sup \{ \langle x, b \rangle \mid x \in C_2 \}.
\]

\(b \neq 0 \) \& \(b \in \mathbb{R} \Rightarrow H = \{ x \mid \langle x, b \rangle = \beta \} \) is a hyperplane (Thm 1.3).
Then \(C_1 \subset \{ x \mid \langle x, b \rangle \geq \beta \} \) \& \(C_2 \subset \{ x \mid \langle x, b \rangle \leq \beta \} \).
Condition (b) implies \(C_1 \) \& \(C_2 \) are not both contained in \(H \), i.e. \(H \) separates \(C_1 \) \& \(C_2 \) properly. \(\checkmark \)

(\(\Rightarrow \)) Assume \(C_1 \) \& \(C_2 \) can be separated properly, then there exists \(b \) \& \(\beta \) s.t. \(H = \{ x \mid \langle x, b \rangle = \beta \} \) \& \(x \in C_1 \Rightarrow \langle x, b \rangle \geq \beta \) \& \(x \in C_2 \Rightarrow \langle x, b \rangle \leq \beta \) w/ one \(x \in C_1 \) or \(x \in C_2 \), therefore \(b \) satisfies (a) \& (b). \(\square \)

(ii) \(\iff \) If \(b \) satisfies (c) we can choose \(\epsilon \in \mathbb{R} \) \& \(\delta > 0 \) s.t. \(\langle x, b \rangle \geq \beta + \delta \) \(\forall x \in C_1 \) \& \(\langle x, b \rangle \leq \beta - \delta \) \(\forall x \in C_2 \).
Then \(\exists \epsilon > 0 \) such that \(|\langle y, b \rangle| < \delta \neq y \in E \). Let \(x \in C_1 \) \& \(y \in E \) then

\[
\langle x, b \rangle > \beta + \delta \text{ or } \langle y, b \rangle < \beta - \delta.
\]
\[
\langle x+y, b \rangle = \langle x, b \rangle + \langle y, b \rangle > B+\delta-S-B \Rightarrow C_1+\mathbb{B} \leq \{x | \langle x, b \rangle > B\}. \\
\]
Similarly, we have \(C_2+\mathbb{B} \leq \{x | \langle x, b \rangle > B\}. \) Therefore,
\(H= \{x | \langle x, b \rangle = B\} \) separates \(C_1 \) \& \(C_2 \) strongly. \(\square \)

(\Rightarrow) Assume \(C_1 \) \& \(C_2 \) can be separated strongly, then
\[
\exists b \notin B s.t
\]
\[
\inf_{x \in C_1} \langle x, b \rangle > \inf_{y \in B} \langle x, b \rangle + \varepsilon \langle y, b \rangle \geq B \geq \sup_{x \in C_2} \langle x, b \rangle + \varepsilon \langle y, b \rangle > \sup_{y \in B} \langle x, b \rangle.
\]

Now we turn to the existence question which is:
given two sets can we find a separating hyperplane?

Theorem 11.2

Let \(C \in \mathbb{R}^n \) be a non-empty relatively open convex set, and let \(M \in \mathbb{R}^n \) be a non-empty affine set not meeting \(C \), i.e., \(M \cap C = \emptyset \). Then \(\exists \) a hyperplane \(H \) containing \(M \), s.t. one of the open half-spaces assoc. w/ \(H \) contains \(C \).

Proof

If \(M \) is a hyperplane (i.e., \(M \) is \(n-1 \) dimensional) then we are done, \(M \) separates \(C \) otherwise \(M \cap C = \emptyset \).

Therefore, WLOG assume \(M \) is not a hyperplane.

Set up

1) we will construct an affine set \(M' \) one dimension higher than \(M \), s.t. again \(M' \cap C = \emptyset \).

2) In \(n \) steps or less this will determine a hyperplane \(H (H \cap C = \emptyset) \) which will prove the theorem.
WLOG assume $O \in M$, so that M is a subspace.
Of C then $C \cap (C-M)$ but $O \notin C-M$ ($M \cap C = \emptyset$). M is not a hyperplane \Rightarrow the subspace M' contains a two-dimensional subspace P. Define $C' = P \cap (C-M)$, C' is a relatively open convex set in P (Cor 6.5.1: $r_i(P \cap (C-M)) = r_i(P \cap (C-M))$)
and (Cor 6.6.2: $r_i(C-M) = r_i(C) - r_i(M) = C-M$) \& $O \notin C$. Now we want to find a line L through O in P not meeting C' then $M'_1 = M \cup L$ is one dimension higher than M & $M \cap C = \emptyset$ (if $(M+L) \cap C = \emptyset$ then $(M+L) \cap C = \emptyset$), which contradicts $C \cap C' = \emptyset$ by construction). WLOG identify $P \equiv \mathbb{R}^2$.

Cases.
(i) C' is empty or zero dimensional then finding L is trivial.
(ii) aff C' is a line not containing O, take L to be the parallel line through O.
(iii) aff C' is a line containing O, take L to be the perpendicular line through O.
(iv) C' is two-dimensional and hence open, then $K = \text{conv} C'$ is the smallest convex cone containing C' (Cor 2.6.3).
Note that K is open and does not contain O.
Therefore K is an open sector of \mathbb{R}^2 corresponding to an angle no greater than π. Take L to be the line extending one of the two boundary rays of the sector. \[\square\]
Theorem 11.3 (Main Separation Theorem)

Let \(C_1, C_2 \subseteq \mathbb{R}^n \) be non-empty convex sets. In order that there exists a hyperplane separating \(C_1 \) and \(C_2 \) properly, it is necessary and sufficient that \(\text{ri} C_1 \cap \text{ri} C_2 \) have no point in common.

Proof

Consider the convex set \(C = C_1 - C_2 \), then \(\text{ri} C = \text{ri} C_1 - \text{ri} C_2 \) (Thm 6.6.2). So \(0 \notin \text{ri} C \iff \text{ri} C \cap \text{ri} C = \emptyset \). Since \(0 \notin \text{ri} C \) Thm 11.2 guarantees the existence of a hyperplane containing \(M = \{0\} \subseteq \mathbb{R}^n \) s.t. \(\text{ri} C \) is contained in one of the associated half-spaces. Therefore, if \(0 \notin \text{ri} (C) \)

\[\exists \ b \text{ s.t.} \]

\[0 \leq \inf_{x \in C} \langle x, b \rangle = \inf_{x \in C_1} \langle x, b \rangle - \sup_{x \in C_2} \langle x, b \rangle \]

\[0 \leq \sup_{x \in C} \langle x, b \rangle = \sup_{x \in C_1} \langle x, b \rangle - \inf_{x \in C_2} \langle x, b \rangle \]

Now Thm 11.1 implies \(C_1 + C_2 \) can be separated properly. Conditions in 11.1 imply \(0 \notin \text{ri} (C) \) since they assert the existence of a h.s. \(D = \{ x \mid \langle x, b \rangle \geq 3 \} \) containing \(C \) where \(\text{ri} D \cap C = \emptyset \Rightarrow \text{ri} C \cap \text{ri} D \) (Cor 6.5.2). □

Example. Why does 11.5 only give proper separation?

Consider

\[C_1 = \{(y_1, y_2) \mid y_1 > 0, y_2 \geq 0, y_1 + y_2 \geq 3\}, \quad C_2 = \{(y_1, 0) \mid y_1 \geq 3, 0 \geq 3\}. \]

Then \(C_1 \cap C_2 = \emptyset \) but the only separating hyperplane is the \(y_1 \)-axis which contains all of \(C_2 \). That is, \(C_1 \) and \(C_2 \) are properly separated but NOT strongly separated.
Theorem 11.4

Let $C_1, C_2 \in \mathbb{R}$ be non-empty, convex sets. In order that there exists a hyperplane separating $C_1 \subseteq C_2$ strongly, it is necessary and sufficient that

$$\inf \{ \| x_1 - x_2 \| : x_1 \in C_1, x_2 \in C_2 \} > 0,$$

or in other words that $0 \notin \text{cl}(C_1 - C_2)$.

Proof

By definition of strong separation exists $E > 0$ such that $(C_1 + E) \cap (C_2 + E) = \emptyset$. Considering $(C_1 + E) \cap (C_2 + E) = \emptyset$ then it implies $C_1 + E \cap C_2 + E$ can be separated properly, i.e., $C_1 + \frac{E}{2} \cap C_2 + \frac{E}{2}$ belong to opposite (closed) half-spaces so that $C_1 + \frac{E}{2} \cap C_2 + \frac{E}{2}$ belong to opposite open half-spaces. That is C_1 and C_2 can be separated strongly if and only if for some $E > 0$ the origin is not contained in

$$(C_1 + E) - (C_2 + E) = C_1 - C_2 - 2E$$

i.e., $2E = |C_1 - C_2|$ for some $E > 0$ which says $0 \notin \text{cl}(C_1 - C_2)$. \(\Box\)

Skipping Corollary 11.4.1 b/c it depends on recession.

Corollary 11.4.2

Let $C_1, C_2 \in \mathbb{R}^n$ be non-empty, convex sets whose closures are disjoint. If either set is bounded then a hyperplane separating $C_1 \subseteq C_2$ strongly.

Proof

See book1, depends on recession & Corollary 11.4.1.
Theorem 11.5 (updated in 18.8)
A closed convex set C is the intersection of the closed half-spaces which contain it.

Proof
Assume $0 \notin C \subseteq \mathbb{R}^n$ (otherwise it is trivial). Consider $a \in C$, then $C = \{a\} \cup C$, C satisfy 11.4 implying \exists hyperplane H separating $\{a\}$ and C strongly. One of the closed half-spaces contains C but not $\{a\}$, therefore the intersection of all closed half-spaces containing C contains no points other than those in C.

Corollary 11.5.1
Let S be any subset of \mathbb{R}^n. The $\text{cl}(\text{conv} S)$ is the intersection of all the closed half spaces containing S.

Corollary 11.5.2
Let C be a convex subset of \mathbb{R}^n other than \mathbb{R}^n itself. Then \exists a closed half-space containing C, i.e., there exists some $b \in \mathbb{R}^n$ s.t. the linear $\langle \cdot , b \rangle$ is bounded above on C.

Definition
* A supporting half-space to a convex set $C \subseteq \mathbb{R}^n$ is a closed half-space containing C has a point of C in its boundary.
* A supporting hyperplane to a convex set C is a hyperplane which is the boundary of supporting half-spaces to C.
Supporting hyperplanes are \(H = \{ x \in \mathbb{R}^d : \langle x, b \rangle = \beta \} \), \(b \neq 0 \), \(\langle x, b \rangle \leq \beta \) \(\forall x \in C \) \& \(\exists \in C \ s.t. \ \langle x, b \rangle = \beta \), i.e., a supporting hyperplane is assoc. w/ a linear funct which achieves its maximum on \(C \). We consider non-trivial supporting hyperplanes to \(C \), which are supporting hyperplanes to \(C \) that do not contain \(C \) itself.

Theorem 11.6

Let \(C \) be a convex set, \& let \(D \) be a non-empty, convex subset of \(C \) (e.g. a single point). In order that there exists a non-trivial supporting hyperplane to \(C \) containing \(D \), it is necessary and sufficient that \(D \) be disjoint from \(\text{ri} C \).

Proof

\[D \subseteq C \Rightarrow \text{the non-trivial supporting hyperplanes (H) to } C \ s.t. D \cap H \text{ are hyperplanes separating } C \setminus D \text{ properly. Such } H \text{ exist iff } \text{ri} C \cap \text{ri} D = \emptyset \text{ (Thm 11.5)}. \]

Assume \(\text{ri} D \subseteq \text{ri} C \), then Cor 6.5.2 implies that \(\text{ri} D \subseteq \text{ri} C \) which is a contradiction. Therefore we have \(\text{ri} D \cap \text{ri} C = \emptyset \) is equivalent to \(D \cap \text{ri} C = \emptyset \) \(\square \)

Corollary 11.6.1

A convex set has a non-zero normal at each of its boundary points.

Corollary 11.6.2

Let \(C \) be a convex set. \(x \in C \) is a relative boundary pt iff there exists a linear funct \(h \) not constant on \(C \) s.t. \(h \) achieves its maximum over \(C \) at \(x \).