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1 Normed Spaces. Banach Spaces.

1.1 Vector Space.

Definition 1.1.

1. An arbitrary subset M of a vector space X is said to be linearly independent if
every non-empty finite subset of M is linearly independent.

2. A vector space X is said to be finite dimensional if there is a positive integer
n such that X contains a linearly independent set of n vectors whereas any set of
n+1 or more vectors of X is linearly dependent. n is called the dimension of X,
written n = dim X.

3. If X is any vector space, not necessarily finite dimensional, and B is a linearly
independent subset of X which spans X, then B is called a basis (or Hamel
basis) of X.

• Hence if B is a basis for X, then every nonzero x 2 X has a unique repre-
sentation as a linear combination of (finitely many!) elements of B with
nonzero scalars as coe�cients.

Theorem 1.2. Let X be an n-dimensional vector space. Then any proper subspace Y of
X has dimension less than n.

1. Show that the set of all real numbers, with the usual addition and multiplication,
constitutes a one-dimensional real vector space, and the set of all complex numbers
constitutes a one-dimensional complex vector space.

Solution: The usual addition on R and C are commutative and associative, while
scalar multiplication on R and C are also associative and distributive. For R, the
zero vector is 0

R

= 0 2 R, the identity scalar is 1R = 1 2 R, and the additive
inverse is �x for any x 2 R. For C, the zero vector is 0C = 0 + 0i 2 C, the
identity scalar is 1C = 1 + 0i 2 C and the additive inverse is �z for all z 2 C.

2. Prove that 0x = 0, ↵0 = 0 and (�1)x = �x.

Solution:

0x = (0 + 0)x = 0x+ 0x =) 0 = 0x+ (�(0x))

= 0x+ 0x+ (�(0x))

= 0x+ 0 = 0x.

↵0 = ↵(0+ 0) = ↵0+ ↵0 =) 0 = ↵0+ (�(↵0))

= ↵0+ ↵0+ (�(↵0))

= ↵0+ 0 = ↵0.

(�1)x = (�1(1))x = �1(1x) = �x.
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3. Describe the span of M = {(1, 1, 1), (0, 0, 2)} in R3.

Solution: The span of M is

span M =

8

<

:

↵

2

4

1
1
1

3

5+ �

2

4

0
0
2

3

5 : ↵, � 2 R

9

=

;

=

8

<

:

2

4

↵
↵

↵ + 2�

3

5 : ↵, � 2 R

9

=

;

.

We see that span M corresponds to the plane x = y on R3.

4. Which of the following subsets of R3 constitute a subspace of R3? Here, x =
(⇠1, ⇠2, ⇠3).

(a) All x with ⇠1 = ⇠2 and ⇠3 = 0.

Solution: For any x, y 2 W and any ↵, � 2 R,

↵x+ �y = ↵

2

4

⇠1
⇠2
0

3

5+ �

2

4

⌘1
⌘2
0

3

5 =

2

4

↵⇠1 + �⌘1
↵⇠2 + �⌘2

0

3

5 2 W.

(b) All x with ⇠1 = ⇠2 + 1.

Solution: Choose x1 =

2

4

2
1
0

3

5 2 W , x2 =

2

4

3
2
0

3

5 2 W , then

x1 + x2 =

2

4

2
1
0

3

5+

2

4

3
2
0

3

5 =

2

4

5
3
0

3

5 /2 W

since 5 6= 3 + 1.

(c) All x with positive ⇠1, ⇠2, ⇠3.

Solution: Choose ↵ = �1, then for any x 2 W , ↵x /2 W .

(d) All x with ⇠1 � ⇠2 + ⇠3 = k.

Solution: For any x, y 2 W ,

x+ y =

2

4

⇠1 + ⌘1
⇠2 + ⌘2
⇠3 + ⌘3

3

5 .
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Since

⇠1 + ⌘1 � (⇠2 + ⌘2) + (⇠3 + ⌘3) = (⇠1 � ⇠2 + ⇠3) + (⌘1 � ⌘2 + ⌘3) = 2k.

we see that W is a subspace of R3 if and only if k = 0.

5. Show that {x1, . . . , xn

}, where x
j

(t) = tj, is a linearly independent set in the space
C[a, b].

Solution: This is a simple consequence of Fundamental Theorem of Alge-
bra. Fix a finite n > 1. Suppose that for all t 2 [a, b], we have

n

X

j=1

�
j

x
j

(t) =
n

X

j=1

�
j

tj = 0.

Suppose �
n

6= 0. Fundamental Theorem of Algebra states that any polynomials
with degree n can have at most n real roots. Since the equation above is true for

all t 2 [a, b], and the set of points in the interval [a, b] is uncountable,
n

X

j=1

�
j

tj has

to be the zero polynomial. Since n � 1 was arbitrary (but finite), this shows that
any non-empty finite subset of {x

j

}
j2⇤, ⇤ a countable/uncountable indexing set,

is linearly independent.

6. Show that in an n-dimensional vector space X, the representation of any x as a linear
combination of a given basis vectors e1, . . . , en is unique.

Solution: Let X is an n-dimensional vector space, with a basis {e1, . . . , en}.
Suppose any x 2 X has a representation as a linear combination of the basis
vectors, we claim that the representation is unique. Indeed, if x 2 X has two
representations

x = ↵1e1 + . . .+ ↵
n

e
n

= �1e1 + . . .+ �
n

e
n

.

subtracting them gives

(↵1 � �1)e1 + . . .+ (↵
n

� �
n

)e
n

=
n

X

j=1

(↵
j

� �
j

)e
j

= 0.

Since {e1, . . . , en} is a basis of X, by definition it is linearly independent, which
implies that ↵

j

� �
j

= 0 for all j = 1, . . . , n, i.e. the representation is unique.

7. Let {e1, . . . , en} be a basis for a complex vector space X. Find a basis for X regarded
as a real vector space. What is the dimension of X in either case?
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Solution: A basis forX regarded as a real vector space is {e1, . . . , en, ie1, . . . , ien}.
The dimension of X is n as a complex vector space and 2n as a real vector space.

8. If M is a linearly dependent set in a complex vector space X, is M linearly dependent
in X, regarded as a real vector space?

Solution: No. Let X = C2, with K = C, and consider x =



1
i

�

and y =



i
�1

�

.

{x, y} is a linearly dependent set in X since ix = y. Now suppose K = R, and

↵x+ �y =



↵ + �i
↵i� �

�

= 0 =



0 + 0i
0 + 0i

�

.

Since ↵, � can only be real numbers, we see that (↵, �) = (0, 0) is the only solution
to the equation. Hence {x, y} is a linearly independent set in X = C2 over R.

9. On a fixed interval [a, b] ⇢ R, consider the set X consisting of all polynomials with
real coe�cients and of degree not exceeding a given n, and the polynomial x = 0 (for
which a degree is not defined in the usual discussion of degree).

(a) Show that X, with the usual addition and the usual multiplication by real num-
bers, is a real vector space of dimension n+ 1. Find a basis for X.

Solution: Let X be the set given in the problem. It is clear that X is
a real vector space. Indeed, for any P,Q 2 X, with deg(P ), deg(Q)  n,
deg(P +Q)  n and deg(↵P )  n for any ↵ 2 R. A similar argument from
Problem 5 shows that {1, t, t2, . . . , tn} is a linearly independent set in X, and
since {1, t, t2, . . . , tn} spans X, it is a basis of X and X has dimension n+1.

(b) Show that we can obtain a complex vector space X̃ in a similar fashion if we let
those coe�cients be complex. Is X a subspace of X̃?

Solution: No. Consider P (t) = t 2 X, choose ↵ = i, then ↵P (t) = it /2 X.

10. If Y and Z are subspaces of a vector space X, show that Y \ Z is a subspace of X,
but Y [ Z need not be one. Give examples.

Solution: Let Y and Z be subspaces of a vector space X. Take any x, y 2 Y \Z,
note that x, y are both elements of Y and Z. For any ↵, � 2 K, ↵x + �y 2 Y
(since Y is a subspace of X) and ↵x+�y 2 Z (since Z is a subspace of X). Hence
↵x+ �y 2 Y \ Z.
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For the second part, consider Y =

⇢

↵
0

�

: ↵ 2 R
�

and Z =

⇢

0
↵

�

: ↵ 2 R
�

. It

can be (easily) deduced that Y and Z are subspaces of R2, but Y [ Z is not a

subspace of R2. To see this, choose x =



1
0

�

and y =



0
1

�

, then x + y =



1
1

�

/2

Y [ Z.

11. If M 6= ? is any subset of a vector space X, show that span M is a subspace of X.

Solution: This is immediate since a (scalar) field K is closed under addition and
sums of two finite sums remain finite.

12. (a) Show that the set of all real two-rowed square matrices forms a vector space X.
What is the zero vector in X?

Solution: This follows from Problem 1 and the definition of matrix addition
and matrix scalar multiplication: we prove that R is a vector space over R
or C. The zero vector in X is 0 =



0 0
0 0

�

.

(b) Determine dim X. Find a basis for X.

Solution: We claim that dim X = 4. To prove this, consider the following
four vectors in X

e1 =



1 0
0 0

�

e2 =



0 1
0 0

�

e3 =



0 0
1 0

�

e4 =



0 0
0 1

�

.

Suppose ↵1e1 + . . .+↵4e4 = 0 =



↵1 ↵2

↵3 ↵4

�

, we have ↵1 = ↵2 = ↵3 = ↵4 = 0,

i.e. {e1, e2, e3, e4} is a linearly independent set in X. However, any set of 5

or more vectors of X is linearly dependent, since any x =



a b
c d

�

2 X can be

written as a linear combination of {e1, e2, e3, e4}, i.e. x = ae1+be2+ce3+de4.
Hence, a basis for X is {e1, e2, e3, e4}.

(c) Give examples of subspaces of X.

Solution: An example is W =

⇢

↵ 0
0 0

�

: ↵ 2 R
�

.

(d) Do the symmetric matrices x 2 X form a subspace of X?
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Solution: Yes. Consider any symmetric matrices x =



a1 b1
b1 d1

�

, y =



a2 b2
b2 d2

�

.

For any ↵, � 2 R (or C),

↵x+ �y =



↵a1 + �a2 ↵b1 + �b2
↵b1 + �b2 ↵d1 + �d2

�

which is a symmetric matrix.

(e) Do the singular matrices x 2 X form a subspace of X?

Solution: No. To see this, consider x =



1 1
1 1

�

and y =



3 2
6 4

�

; both

x and y are singular matrices since they have zero determinant. However,

x+y =



4 3
7 5

�

is not a singular matrix since det(x+y) = 20�21 = �1 6= 0.

13. (Product) Show that the Cartesian product X = X1⇥X2 of two vector spaces over
the same field becomes a vector space if we define the two algebraic operations by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2),

↵(x1, x2) = (↵x1,↵x2).

Solution: This is a simple exercise. We first verify vector addition:

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

= (y1 + x1, y2 + x2)

= (y1, y2) + (x1, x2).

(x1, x2) + [(y1, y2) + (z1, z2)] =
⇣

x1 + (y1 + z1), x2 + (y2 + z2)
⌘

=
⇣

(x1 + y1) + z1, (x2 + y2) + z2

⌘

= (x1 + y1, x2 + y2) + (z1, z2)

=
h

(x1, x2) + (y1, y2)
i

+ (z1, z2).

(x1, x2) = (x1 + 0, x2 + 0)

= (x1, x2) + (0,0).

(0,0) = (x1 + (�x1), y1 + (�y1))

= (x1, y1) + (�x1,�y1).

Next, we verify scalar vector multiplication:

(x1, x2) = (1
K

x1, 1Kx2)

= 1
K

(x1, x2).
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↵
h

�(x1, x2)
i

= ↵(�x1, �x2)

=
⇣

↵(�x1),↵(�x2)
⌘

=
⇣

(↵�)x1, (↵�)x2

⌘

= (↵�)(x1, x2).

↵
h

(x1, x2) + (y1, y2)
i

= ↵(x1 + y1, x2 + y2)

=
⇣

↵(x1 + y1),↵(x2 + y2)
⌘

= (↵x1 + ↵y1,↵x2 + ↵y2)

= (↵x1,↵y1) + (↵x2,↵y2)

= ↵(x1, y1) + ↵(x2, y2).

(↵ + �)(x1, x2) =
⇣

(↵ + �)x1, (↵ + �)x2

⌘

= (↵x1 + �x1,↵x2 + �x2)

= (↵x1,↵x2) + (�x1, �x2)

= ↵(x1, x2) + �(x1, x2).

l

14. (Quotient space, codimension) Let Y be a subspace of a vector space X. The
coset of an element x 2 X with respect to Y is denoted by x + Y and is defined to
be the set

x+ Y = {x : v = x+ y, y 2 Y }.

(a) Show that the distinct cosets form a partition of X.

Solution:

(b) Show that under algebraic operations defined by

(w + Y ) + (x+ Y ) = (w + x) + Y

↵(x+ Y ) = ↵x+ Y

these cosets constitute the elements of a vector space. This space is called the
quotient space (or sometimes factor space) of X by Y (or modulo Y ) and is
denoted by X/Y . Its dimension is called the codimension of Y and is denoted
by codim Y , that is,

codim Y = dim (X/Y ).

Solution:

15. Let X = R3 and Y = {(⇠1, 0, 0) : ⇠1 2 R}. Find X/Y , X/X, X/{0}.
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Solution: First, X/X = {x + X : x 2 X}; since x + X 2 X for any x 2 X,
we see that X/X = {0}. Next, X/{0} = {x + 0 : x 2 X} = {x : x 2 X} = X.
For X/Y , we are able to deduce (geometrically) that elements of X/Y are lines
parallel to the ⇠1-axis. More precisely, by definition,X/Y = {x+ Y : x 2 X}; for
a fixed x0 = (⇠01 , ⇠

0
2 , ⇠

0
3),

x0 + Y = {(⇠01 , ⇠02 , ⇠03) + (0, 0, ⇠3) : ⇠3 2 R}
= {(⇠01 , ⇠02 , ⇠̃3) : ⇠̃3 2 R}.

which corresponds to a line parallel to ⇠1-axis.
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1.2 Normed Space. Banach Space.

Definition 1.3. A norm on a (real or complex) vector space X is a real-valued function
on X whose value at an x 2 X is denoted by kxk and which has the properties

(N1) kxk � 0.

(N2) kxk = 0 () x = 0.

(N3) k↵xk = |↵|kxk.

(N4) kx+ yk  kxk+ kyk. (Triangle inequality)

Here, x and y are arbitrary vectors in X and ↵ is any scalar.

• A norm on X defines a metric d on X which is given by

d(x, y) = kx� yk , x, y,2 X

and is called the metric induced by the norm.

• The norm is continuous, that is, x 7! kxk is a continuous mapping of (X, k·k) into R.

Theorem 1.4. A metric d induced by a norm on a normed space X satisfies
(a) d(x+ a, y + a) = d(x, y).

(b) d(↵x,↵y) = |↵|d(x, y).
for all x, y, a 2 X and every scalar ↵.

• This theorem illustrates an important fact: Every metric on a vector space might
not necessarily be obtained from a norm.

• A counterexample is the space s consisting of all (bounded or unbounded) sequences
of complex numbers with a metric d defined by

d(x, y) =
1
X

j=1

1

2j
|⇠

j

� ⌘
j

|
1 + |⇠

j

� ⌘
j

| .
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1. Show that the norm kxk of x is the distance from x to 0.

Solution: kxk = kx� yk
�

�

�

y=0
= d(x,0), which is precisely the distance from x to

0.

2. Verify that the usual length of a vector in the plane or in three dimensional space
has the properties (N1) to (N4) of a norm.

Solution: For all x 2 R3, define kxk =
p

x2
1 + x2

2 + x2
3. (N1) to (N3) are obvious.

(N4) is an easy consequence of the Cauchy-Schwarz inequality for sums.
More precisely, for x = (x1, x2, x3) and y = (y1, y2, y3) we have:

kx+ yk2 = (x1 + y1)
2 + (x2 + y2)

2 + (x3 + y3)
2

= (x2
1 + x2

2 + x2
3) + (y21 + y22 + y23) + 2(x1y1 + x2y2 + x3y3)

 kxk2 + kyk2 + 2kxkkyk = (kxk+ kyk)2.

Taking square root on both sides yields (N4).

3. Prove (N4) implies
�

�

�

kyk � kxk
�

�

�

 ky � xk.

Solution: From triangle inequality of norm we have the following two inequali-
ties:

kxk = kx� y + yk  kx� yk+ kxk
=) kxk � kyk  kx� yk.

kyk = ky � x+ xk  ky � xk+ kxk
=) kyk � kxk  kx� yk.

Combining these two yields the desired inequality.

4. Show that we may replace (N2) by kxk = 0 =) x = 0 without altering the concept
of a norm. Show that nonnegativity of a norm also follows from (N3) and (N4).

Solution: For any x 2 X,

kxk = kx+ x� xk  kx+ xk+ k � xk = 2kxk+ kxk = 3kxk
=) 0  2kxk =) 0  kxk.

5. Show that kxk =

 

n

X

j=1

|⇠
j

|2
!1/2

=
p

|⇠1|2 + . . .+ |⇠
n

|2 defines a norm.
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Solution: (N1) to (N3) are obvious. (N4) follows from the Cauchy-Schwarz
inequality for sums, the proof is similar to that in Problem 3.

6. Let X be the vector space of all ordered pairs x = (⇠1, ⇠2), y = (⌘1, ⌘2), · · · of real
numbers. Show that norms on X are defined by

kxk1 = |⇠1|+ |⇠2|
kxk2 = (⇠21 + ⇠22)

1/2

kxk1 = max{|⇠1|, |⇠2|}.

Solution: (N1) to (N3) are obvious for each of them. To verify (N4), for x =
(⇠1, ⇠2) and y = (⌘1, ⌘2),

kx+ yk1 = |⇠1 + ⌘1|+ |⇠2 + ⌘2|
 |⇠1|+ |⌘1|+ |⇠2|+ |⌘2| = kxk1 + kyk1.

kx+ yk22 = (⇠1 + ⌘1)
2 + (⇠2 + ⌘2)

2

= (⇠21 + ⇠22) + (⌘21 + ⌘22) + 2(⇠1⌘1 + ⇠2⌘2)

 kxk2 + kyk2 + 2kxk2kyk2 = (kxk2 + kyk2)2

=) kx+ yk2  kxk2 + kyk2.

kx+ yk1 = max{|⇠1 + ⌘1|, |⇠2 + ⌘2|}
 max{|⇠1|+ |⌘1|, |⇠2|+ |⌘2|}
 max{|⇠1|, |⇠2|}+max{|⌘1|, |⌘2|} = kxk1 + kyk1.

where we use the inequality |a|  max{|a|, |b|} for any a, b 2 R.

7. Verify that kxk =

 1
X

j=1

|⇠
j

|p
!1/p

satisfies (N1) to (N4).

Solution: (N1) to (N3) are obvious. (N4) follows from Minkowski inequality
for sums. More precisely, for x = (⇠

j

) and y = (⌘
j

),

kx+ yk =

 1
X

j=1

|⇠
j

+ ⌘
j

|p
!

1
p


 1
X

k=1

|⇠
k

|p
!

1
p

+

 1
X

m=1

|⌘
m

|p
!

1
p

.

8. There are several norms of practical importance on the vector space of ordered n-
tuples of numbers, notably those defined by

kxk1 = |⇠1|+ |⇠2|+ . . .+ |⇠
n

|
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kxk
p

=
⇣

|⇠1|p + |⇠2|p + . . .+ |⇠
n

|p
⌘1/p

(1 < p < +1)

kxk1 = max{|⇠1|, . . . , |⇠n|}.

In each case, verify that (N1) to (N4) are satisfied.

Solution: This is a generalisation of Problem 6, with the proof being almost
identicall. The only thing that di↵ers is we use Minkowski inequality for
sums to prove (N4) for k · k

p

.

9. Verify that kxk = max
t2[a,b]

|x(t)| defines a norm on the space C[a, b].

Solution: (N1) and (N2) are clear, as we readily see. For (N3), for any scalars
↵ we have:

k↵xk = max
t2[a,b]

|↵x(t)| = |↵| max
t2[a,b]

|x(t)| = |↵|kxk.

Finally, for (N4),

kx+ yk = max
t2[a,b]

|x(t) + y(t)|  max
t2[a,b]

|x(t)|+ max
t2[a,b]

|y(t)| = kxk+ kyk.

10. (Unit Sphere) The sphere

S1(0) = {x 2 X : kxk = 1}.

in a normed space X is called the unit sphere. Show that for the norms in Problem
6 and for the norm defined by kxk4 = (⇠41 + ⇠42)

1/4, the unit spheres look as shown in
figure.

Solution: Refer to Kreyszig, page 65.

11. (Convex set, segment) A subset A of a vector space X is said to be convex if
x, y 2 A implies

M = {z 2 X : z = ↵x+ (1� ↵)y, 0  ↵  1} ⇢ A.

M is called a closed segment with boundary points x and y; any other z 2 M is called
an interior point of M . Show that the closed unit ball in a normed space X is convex.

Solution: Choose any x, y 2 B̃1(0), then for any 0  ↵  1,

k↵x+ (1� ↵)yk  ↵kxk+ (1� ↵)kyk  ↵ + 1� ↵ = 1.

This shows that the closed unit ball in X is convex.
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12. Using Problem 11, show that

 (x) =
⇣

p

|⇠1|+
p

|⇠2|
⌘2

does not define a norm on the vector space of all ordered pairs x = (⇠1, ⇠2) of real
numbers. Sketch the curve  (x) = 1.

Solution: Problem 11 shows that if  is a norm, then the closed unit ball in a
normed space X = (X, ) is convex. Choose x = (1, 0) and y = (0, 1), x, y are
elements of the closed unit ball in (X, ) since  (x) =  (y) = 1. However, if we
choose ↵ = 0.5,

 (0.5x+ 0.5y) =
⇣

p

|0.5|+
p

|0.5|
⌘2

= (2
p
0.5)2 = 2 > 1.

This shows that for 0.5x+0.5y is not an element of the closed unit ball in (X, ),
and contrapositive of result from Problem 11 shows that  (x) does not define a
norm on X.

13. Show that the discrete metric on a vector space X 6= {0} cannot be obtained from a
norm.

Solution: Consider a discrete metric space X 6= {0}. Choose distinct x, y 2 X,
for ↵ = 2, d(2x, 2y) = 1 but |2|d(x, y) = 2. The statement then follows from
theorem.

14. If d is a metric on a vector space X 6= {0} which is obtained from a norm, and d̃ is
defined by

d̃(x, x) = 0, d̃(x, y) = d(x, y) + 1 (x 6= y),

show that d̃ cannot be obtained from a norm.

Solution: Consider a metric space X 6= {0}. Choose any x 2 X, for ↵ = 2,
d̃(2x, 2x) = d(2x, 2x) + 1 = 1 but |2|d̃(x, x) = 2(d(x, x) + 1) = 2. The statement
then follows from theorem.

15. (Bounded set) Show that a subset M in a normed space X is bounded if and only
if there is a positive number c such that kxk  c for every x 2 M .

Solution: Suppose a subset M in a normed space X is bounded. By definition,
the diameter �(M) of M is finite, i.e.

�(M) = sup
x,y2M

d(x, y) = sup
x,y2M

kx� yk < 1.

Page 14



Fix an y 2 M , then for any x 2 M ,

kxk = kx� y + yk  kx� yk+ kyk  �(M) + kyk < 1.

Choosing c = �(M) + kyk yields the desired result. Conversely, suppose there
exists an c > 0 such that kxk  c for all x 2 M . Then for any x, y 2 M ,

d(x, y) = kx� yk  kxk+ kyk  2c.

Taking supremum over x, y 2 M on both sides, we obtain �(M)  2c < 1. This
shows that M (in a normed space X) is bounded.
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1.3 Further Properties of Normed Spaces.

Definition 1.5. A subspace Y of a normed space X is a subspace of X considered as a
vector space, with the norm obtained by restricting the norm on X to the subset Y . This
norm on Y is said to be induced by the norm on X.

Theorem 1.6. A subspace Y of a Banach space X is complete if and only if the set Y
is closed in X.

Definition 1.7.

1. If (x
k

) is a sequence in a normed space X, we can associate with (x
k

) the sequence
(s

n

) of partial sums
s
n

= x1 + x2 + . . .+ x
n

where n = 1, 2, . . .. If (s
n

) is convergent, say, s
n

�! s as n �! 1, then the

infinite series
1
X

k=1

x
k

is said to converge or to be convergent, s is called the

sum of the infinite series and we write

s =
1
X

k=1

x
k

= x1 + x2 + . . . .

2. If kx1k+kx2k+. . . converges, the series
1
X

k=1

x
k

is said to be absolutely convergent.

3. If a normed space X contains a sequence (e
n

) with the property that for every x 2 X,
there is a unique sequence of scalars (↵

n

) such that

kx� (↵1e1 + . . .+ ↵
n

e
n

)k �! 0 as n �! 1.

then (e
n

) is called a Schauder basis for X. The series
1
X

j=1

↵
j

e
j

which has the

sum x is called the expansion of x with respect to (e
n

), and we write

x =
1
X

j=1

↵
j

e
j

.

• If X has a Schauder basis, then it is separable. The converse is however not
generally true.

Theorem 1.8. Let X = (X, k · k) be a normed space. There exists a Banach space X̂
and an isometry A from X onto a subspace W of X̂ which is dense in X̂. The space X̂
is unique, except for isometries.
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1. Show that c ⇢ l1 is a vector subspace of l1 and so is c0, the space of all sequences
of scalars converging to zero.

Solution: The space c consists of all convergent sequences x = (⇠
j

) of complex
numbers. Choose any x = (⇠

j

), y = (⌘
j

) 2 c ⇢ l1, with limit ⇠, ⌘ 2 C respectively.
For fixed scalars ↵, �, the result is trivial if they are zero, so suppose not. Given
any " > 0, there exists N1, N2 2 N such that

|⇠
j

� ⇠| < "

2|↵| for all j > N1.

|⌘
j

� ⌘| < "

2|�| for all j > N2.

Choose N = max{N1, N2}, then for all j > N we have that

|↵⇠
j

+ �⌘
j

� ↵⇠ � �⌘| = |↵(⇠
j

� ⇠) + �(⌘
j

� ⌘)|
 |↵||⇠

j

� ⇠|+ |�|k⌘
j

� ⌘k

<�
�|↵| "

2��|↵|
+��|�|

"

2��|�|
= ".

This shows that the sequence ↵x + �y = (↵⇠
j

+ �⌘
j

) is convergent, hence x 2 c.
Since ↵, � were arbitrary scalar, this proves that c is a subspace of l1. By
replacing ⇠ = ⌘ = 0 as limit, the same argument also shows that c0 is a subspace
of l1.

2. Show that c0 in Problem 1 is a closed subspace of l1, so that c0 is complete.

Solution: Consider any x = (⇠
j

) 2 c̄0, the closure of c. There exists xn

= (⇠n
j

) 2
c0 such that x

n

�! x in l1. Hence, given any " > 0, there exists an N 2 N such
that for all n � N and all j we have

|⇠n
j

� ⇠
j

|  kx
n

� xk <
"

2
.

in particular, for n = N and all j. Since x
N

2 c0, its terms ⇠N
j

form a convergent
sequence with limit 0. Thus there exists an N1 2 N such that for all j � N1 we
have

|⇠N
j

| < "

2
.

The triangle inequality now yields for all j � N1 the following inequality:

|⇠
j

|  |⇠
j

� ⇠N
j

|+ |⇠N
j

| < "

2
+
"

2
= ".

This shows that the sequence x = (⇠
j

) is convergent with limit 0. Hence, x 2 c0.
Since x 2 c̄0 was arbitrary, this proves closedness of c0 in l1.
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3. In l1, let Y be the subset of all sequences with only finitely many nonzero terms.
Show that Y is a subspace of l1 but not a closed subspace.

Solution: Consider any x = (⇠
j

), y = (⌘
j

) 2 Y ⇢ l1, there exists N
x

, N
y

2 N
such that ⇠

j

= 0 for all j > N
x

and ⌘
j

= 0 for all j > N
y

. Thus for any scalars
↵, �, ↵⇠

j

+ �⌘
j

= 0 for all j > N = max{N
x

, N
y

}, and ↵x+ �y 2 Y . This shows
that Y is a subspace of l1. However, Y is not a closed subspace. Indeed, consider
a sequence x

n

= (⇠n
j

) 2 Y defined by

⇠n
j

=

8

<

:

1

j
if j  n,

0 if j > n.

Let x = (⇠
j

) =

✓

1

j

◆

, then x
n

�! x in l1 since

kx
n

� xk
l

1 = sup
j>n

|⇠
j

| = 1

n+ 1
�! 0 as n �! 1.

but x /2 Y since x has infinitely many nonzero terms.

4. (Continuity of vector space operations) Show that in a normed space X, vector
addition and multiplication by scalars are continuous operation with respect to the
norm; that is, the mappings defined by (x, y) 7! x+y and (↵, x) 7! ↵x are continuous.

Solution: Consider any pair of points (x0, y0) 2 X⇥X. Given any " > 0, choose

�1 = �2 =
"

2
> 0. Then for all x satisfying kx � x0k < �1 and all y satisfying

ky � y0k < �2,

kx+ y � (x0 + y0)k  kx� x0k+ ky � y0k < �1 + �2 = ".

Since (x0, y0) 2 X ⇥X was arbitrary, the mapping defined by (x, y) 7! x + y is
continuous with respect to the norm.

Choose any scalar ↵0. Consider any nonzero x0 2 X. Given any " > 0, choose

�1 =
"

2kx0k
> 0 and �2 > 0 such that (�1 + |↵0|)�2 =

"

2
. Then for all ↵ satisfying

k↵� ↵0k < �1 and all x satisfying kx� x0k < �2,

k↵x� ↵0x0k = k↵x� ↵x0 + ↵x0 � ↵0x0k
 |↵|kx� x0k+ |↵� ↵0|kx0k


⇣

|↵� ↵0|+ |↵0|
⌘

kx� x0k+ |↵� ↵0|kx0k

< (�1 + |↵0|)�2 + �1kx0k = ".
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If x0 = 0 2 X, choose �1 = 1 > 0 and �2 =
"

1 + |↵0|
> 0. Then for all ↵ satisfying

|↵� ↵0| < �1 and all x satisfying kxk < �2,

k↵xk = |↵|kxk 
⇣

|↵� ↵0|+ |↵0|
⌘

kxk

<
⇣

�1 + |↵0|
⌘

�2

=
������⇣

1 + |↵0|
⌘ "

⇠⇠⇠⇠⇠1 + |↵0|
= ".

Since ↵0 and x0 were arbitrary scalars and vectors in K and X, the mapping
defined by (↵, x) 7! ↵x is continuous with respect to the norm.

5. Show that x
n

�! x and y
n

�! y implies x
n

+ y
n

�! x + y. Show that ↵
n

�! ↵
and x

n

�! x implies ↵
n

x
n

�! ↵x.

Solution: If x
n

�! x and y
n

�! y, then

kx
n

+ y
n

� x� yk  kx
n

� xk+ ky
n

� yk �! 0 as n �! 1.

If ↵
n

�! ↵ and x
n

�! x, then

k↵
n

x
n

� ↵xk = k↵
n

x
n

� ↵
n

x+ ↵
n

x� ↵xk
= k↵

n

(x
n

� x) + (↵
n

� ↵)xk
 |↵

n

|kx
n

� xk+ |↵
n

� ↵|kxk
 C kx

n

� xk
| {z }

�!0

+ |↵
n

� ↵|
| {z }

�!0

kxk

where we use the fact that convergent sequences are bounded for the last inequal-
ity.

6. Show that the closure Ȳ of a subspace Y of a normed space X is again a vector
subspace.

Solution: If x, y 2 Ȳ , there exists sequences x
n

, y
n

2 Y such that x
n

�! x and
y
n

�! y. Then for any scalars ↵, �,

k↵x
n

+ �y
n

� (↵x+ �y)k  |↵|kx
n

� xk+ |�|ky
n

� yk �! 0 as n �! 1.

This shows that the sequence (↵x
n

+ �y
n

) 2 Y converges to ↵x + �y, which
implies that ↵x+ �y 2 Ȳ .
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7. (Absolute convergence) Show that convergence of ky1k + ky2k + ky3k + . . . may
not imply convergence of y1 + y2 + y3 + . . ..

Solution: Let Y be the set of all sequences in l1 with only finitely many nonzero
terms, which is a normed space. Consider the sequence (y

n

) = (⌘n
j

) 2 Y defined
by

⌘n
j

=

8

<

:

1

j2
if j = n,

0 if j 6= n.

Then ky
n

k =
1

n2
and

1
X

n=1

1

n2
< 1. However, y1 + y2 + y3 + . . . �! y, where

y =

✓

1

n2

◆

, since

�

�

�

�

�

n

X

j=1

y
j

� y

�

�

�

�

�

=
1

(n+ 1)2
�! 0 as n �! 1.

but y /2 Y .

8. If in a normed space X, absolute convergence of any series always implies convergence
of that series, show that X is complete.

Solution: Choose (x
n

) be any Cauchy sequence in X. Given any k 2 N, there
exists N

k

2 N such that for all m,n � N
k

, kx
m

�x
n

k <
1

2k
; by construction, (N

k

)

is an increasing sequence. Consider the sequence (y
k

) defined by y
k

= x
Nk+1

�x
Nk
.

Then
1
X

k=1

ky
k

k =
1
X

k=1

kx
Nk+1

� x
Nk
k <

1
X

k=1

1

2k
< 1.

This shows that the series
1
X

k=1

y
k

is absolute convergent, which is also convergent

by assumption. Thus,

1
X

k=1

y
k

= lim
n!1

n

X

k=1

y
k

= lim
n!1

n

X

k=1

x
Nk+1

� x
Nk

= lim
n!1

x
Nn+1 � x

N1 < 1.

Hence, (x
Nn+1) is a convergent subsequence of (x

n

), and since (x
n

) is a Cauchy
sequence, (x

n

) is convergent. Since (x
n

) was an arbitrary Cauchy sequence, X is
complete.
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9. Show that in a Banach space, an absolutely convergent series is convergent.

Solution: Let
1
X

k=1

kx
k

k be any absolutely convergent series in a Banach space

X. Since a Banach space is a complete normed space, it su�ces to show that the
sequence (s

n

) of partial sums s
n

= x1+x2+ . . .+x
n

is Cauchy. Given any " > 0,
there exists an N 2 N such that

1
X

k=N+1

kx
k

k < ".

For any m > n > N ,

ks
m

� s
n

k = kx
n+1 + x

n+2 + . . .+ x
m

k
 kx

n+1k+ kx
n+2k+ . . .+ kx

m

k

=
m

X

k=n+1

kx
k

k


1
X

k=n+1

kx
k

k


1
X

k=N+1

kx
k

k < ".

This shows that (s
n

) is Cauchy and the desired result follows from completeness
of X.

10. (Schauder basis) Show that if a normed space has a Schauder basis, it is separable.

Solution: Suppose X has a Schauder basis (e
n

). Given any x 2 X, there exists
a unique sequence of scalars (�

n

) 2 K such that

kx� (�1e1 + . . .+ �
n

e
n

)k �! 0 as n �! 1.

Consider the sequence (f
n

) ⇢ X defined by f
n

=
e
n

ke
n

k . Note that kfnk = 1 for all

n � 1 and (f
n

) is a Schauder basis for X; indeed, if we choose µ
j

= �
j

ke
j

k 2 K,
then

�

�

�

�

�

x�
n

X

j=1

µ
j

f
j

�

�

�

�

�

=

�

�

�

�

�

x�
n

X

j=1

�
j

e
j

�

�

�

�

�

�! 0 as n �! 1.

In particular, for any x 2 X, given any " > 0, there exists an N 2 N such that
�

�

�

�

�

x�
n

X

j=1

µ
j

f
j

�

�

�

�

�

<
"

2
for all n > N.
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Define M to be the set

M =

(

n

X

j=1

✓
j

f
j

: ✓
j

2 K̃, n 2 N
)

.

where K̃ is a countable dense subset of K. Since µ
j

2 K, given any " > 0, there

exists an ✓
j

2 K̃ such that |µ
j

� ✓
j

| < "

2n
for all j = 1, . . . , n. Then

�

�

�

�

�

x�
n

X

j=1

✓
j

f
j

�

�

�

�

�



�

�

�

�

�

x�
n

X

j=1

µ
j

f
j

�

�

�

�

�

+

�

�

�

�

�

n

X

j=1

µ
j

f
j

�
n

X

j=1

✓
j

f
j

�

�

�

�

�

<
"

2
+

n

X

j=1

|µ
j

� ✓
j

|kf
j

k

<
"

2
+

"

2⇢n
◆
◆
◆
◆n

X

j=1

1

=
"

2
+
"

2
= ".

This shows that there exists an y 2 M in any "-neighbourhood of x. Since x 2 X
was arbitrary, M is a countable dense subset of X and X is separable.

11. Show that (e
n

), where e
n

= (�
nj

), is a Schauder basis for lp, where 1  p < +1.

Solution: Let x = (⇠
j

) be any sequence in lp, we have

 1
X

j=n+1

|⇠
j

|p
!

1
p

�! 0 as n �! 1.

Now choose a sequence of scalars (�
n

) 2 C defined by �
j

= ⇠
j

,

kx� (�1e1 + . . .+ �
n

e
n

)k =

 1
X

j=n+1

|⇠
j

|p
!

1
p

�! 0 as n �! 1.

This shows that (e
n

) = (�
nj

) is a Schauder basis for lp. Uniqueness?

12. (Seminorm) A seminorm on a vector space X is a mapping p : X �! R satisfying
(N1), (N3), (N4). (Some authors call this a pseudonorm.) Show that

p(0) = 0, |p(y)� p(x)|  p(y � x).

(Hence if p(x) = 0 =) x = 0, then p is a norm.)
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Solution: Using (N3),

p(0) = p(0x) = 0p(x) = 0.

Using (N4), for any x, y 2 X,

p(y)  p(y � x) + p(x).

p(x)  p(x� y) + p(y) = p(y � x) + p(y).

=) |p(y)� p(x)|  p(y � x).

13. Show that in Problem 12, the elements x 2 X such that p(x) = 0 form a subspace
N of X and a norm on X/N is defined by kx̂k0 = p(x), where x 2 x̂ and x̂ 2 X/N .

Solution: Let N be the set consisting of all elements x 2 X such that p(x) = 0.
For any x, y 2 N and scalars ↵, �,

0  p(↵x+ �y)  p(↵x) + p(�y) = |↵|���p(x) + |�|���p(y) = 0.

This shows that N is a subspace of X. Consider kx̂k0 = p(x), where x 2 x̂ and
x̂ 2 X/N . We start by showing k · k0 is well-defined. Indeed, for any u, v 2 x̂,
there exists n

u

, n
v

2 N such that u = x + n
u

and v = x + n
v

. Since N is a
subspace of X,

0  |p(u)� p(v)|  |p(u� v)| = |p(n
u

� n
v

)| = 0.

• kx̂k0 = p(x) � 0.

• Suppose x̂ = 0̂ = N , then kx̂k0 = p(x) = 0. Now suppose kx̂k0 = 0, then
p(x) = 0 =) x 2 N =) x̂ = 0̂. Thus, (N2) is satisfied.

• For any nonzero scalars ↵, any y 2 ↵x̂ can be written y = ↵x+ n for some
n 2 N . Thus,

k↵x̂k0 = p(↵x+ n) = |↵|p
⇣

x+
n

↵

⌘

= |↵|kx̂k0.

If ↵ = 0, then 0x̂ = N and k0x̂k0 = 0 by definition of N .

• Lastly, for any x̂, ŷ 2 X/N ,

kx̂+ ŷk0 = p(x+ y)  p(x) + p(y)

= kx̂k0 + kŷk0.

Thus, (N4) is satisfied.
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14. (Quotient space) Let Y be a closed subspace of a normed space (X, k · k). Show
that a norm k · k0 on X/Y is defined by

kx̂k0 = inf
x2x̂

kxk.

where x̂ 2 X/Y , that is, x̂ is any coset of Y .

Solution: Define kx̂k0 as above. Also, recall that X/Y = {x̂ = x + Y : x 2 X}
and its algebraic operations are defined by

û+ v̂ = (u+ Y ) + (v + Y ) = (u+ v) + Y = [u+ v.

↵û = ↵(u+ Y ) = ↵u+ Y = c↵u.

• (N1) is obvious.

• If x̂ = 0̂ = Y , then kx̂k0=0 since 0 2 Y . Conversely, suppose kx̂k0 =
inf
x2x̂

kxk = 0. Properties of infimum gives that there exists a minimising

sequence (x
n

) 2 x̂ such that kx
n

k0 �! 0, with limit x = 0. Since Y is
closed, any x̂ 2 X/Y is closed, this implies that 0 2 x̂, and x̂ = 0̂. Thus,
(N2) is satisfied.

• For any nonzero scalars ↵,

k↵x̂k0 = inf
y2Y

k↵x+ yk

= |↵| inf
y2Y

�

�

�

x+
y

↵

�

�

�

= |↵| inf
y2Y

kx+ yk

= |↵|kx̂k0.

If ↵ = 0, then k0x̂k0 = kc0xk0 = k0̂k0 = 0 = 0kx̂k0. Thus, (N3) is satisfie.d

• For any û, v̂ 2 X/Y ,

kû+ v̂k0 = inf
y1,y22Y

ku+ y1 + v + y2k

 inf
y1,y22Y

ku+ y1k+ kv + y2k

= inf
y12Y

ku+ y1k+ inf
y22Y

kv + y2k

= kûk0 + kv̂k0.
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15. (Product of normed spaces) If (X1, k ·k1) and (X2, k ·k2) are normed spaces, show
that the product vector space X = X1 ⇥X2 becomes a normed space if we define

kxk = max
n

kx1k1, kx2k2
o

, where x = (x1, x2).

Solution: (N1) to (N3) are obvious. To verify (N4), for x = (x1, x2), y =
(y1, y2) 2 X1 ⇥X2,

kx+ yk = max
n

kx1 + y1k1, kx2 + y2k2
o

 max
n

kx1k1 + ky1k1, kx2k2 + ky2k2
o

 max
n

kx1k1, kx2k2
o

+max
n

ky1k1, ky2k2
o

= kxk+ kyk.

where we use the inequality |a|  max{|a|, |b|} for any a, b 2 R.
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1.4 Finite Dimensional Normed Spaces and Subspaces.

Lemma 1.9. Let {x1, . . . , xn

} be a linearly independent set of vectors in a normed space
X (of any dimension). There exists a number c > 0 such that for every choice of scalars
↵1, . . . ,↵n

we have

k↵1x1 + . . .+ ↵
n

x
n

k � c
⇣

|↵1|+ . . .+ |↵
n

|
⌘

.

• Roughly speaking, it states that in the case of linear independence of vectors, we
cannot find a linear combination that involves large scalars but represents a small
vector.

Theorem 1.10. Every finite dimensional subspace Y of a normed space X is complete.
In particular, every finite dimensional normed space is complete.

Theorem 1.11. Every finite dimensional subspace Y of a normed space X is closed in X.

Definition 1.12. A norm k · k on a vector space X is said to be equivalent to a norm
k · k0 on X if there are positive constants a and b such that for all x 2 X we have

akxk0  kxk  bkxk0.

• Equivalent norms on X define the same topology for X.

Theorem 1.13. On a finite dimensional vector space X, any norm k · k is equivalent to
any other norm k · k0.

1. Given examples of subspaces of l1 and l2 which are not closed.

Solution:

2. What is the largest possible c in (1) if

(a) X = R2 and x1 = (1, 0), x2 = (0, 1),

Solution:

(b) X = R3 and x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1).

Solution:

3. Show that in the definition of equivalance of norms, the axioms of an equivalence
relation hold.
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Solution: We say that k·k onX is equivalent to k·k0 onX, denoted by k·k ⇠ k·k0
if there exists positive constants a, b > 0 such that for all x 2 X we have

akxk0  kxk  bkxk0.

• Reflexivity is immediate.

• Suppose k · k ⇠ k · k0. There exists a, b > 0 such that for all x 2 X we have

akxk0  kxk  bkxk0 =) 1

b
kxk  kxk0 

1

a
kxk.

This shows that k · k0 ⇠ k · k, and symmetry is shown.

• Suppose k · k ⇠ k · k0 and k · k0 ⇠ k · k1. There exists a, b, c, d > 0 such that
for all x 2 X we have

akxk0  kxk  bkxk0.
ckxk1  kxk0  dkxk1.

On one hand,
kxk  bkxk0  bdkxk1.

On the other hand,
kxk � akxk0 � ackxk1.

Combining them yields for all x 2 X

ackxk1  kxk0  bdkxk1.

This shows tht k · k ⇠ k · k1, and transitivity is shown.

4. Show that equivalent norms on a vector space X induce the same topology for X.

Solution: Suppose k · k and k · k0 are equivalent norms on a vector space X.
There exists positive constants a, b > 0 such that for all x 2 X we have

akxk0  kxk  bkxk0.

To show that they induce the same topology for X, we want to show that the
open sets in (X, k · k) and (X, k · k0) are the same. Consider the identity map

I : (X, k · k) �! (X, k · k0).

Let x0 be any point in X. Given any " > 0, choose � = a" > 0. For all x satisfying
kx� x0k < �, we have

kx� x0k0 
1

a
kx� x0k <

⇢a"

⇢a
= ".
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Since x0 2 X is arbitrary, this shows that I is continuous. Hence, if M ⇢ X
is open in (X, k · k0), its preimage M again is also open in (X, k · k). Similarly,
consider the identity map

Ĩ : (X, k · k0) �! (X, k · k).

Let x0 be any point in X. Given any " > 0, choose � =
"

b
> 0. For all x satisfying

kx� x0k0 < �, we have

kx� x0k  bkx� x0k0 <
��b"

��b
= ".

Since x0 2 X is arbitrary, this shows that Ĩ is continuous. Hence, if M ⇢ X is
open in (X, k · k), its preimage M is also open in (X, k · k0).

Remark : The converse is also true, i.e. if two norms k · k and k · k0 on X give
the same topology, then they are equivalent norms on X.

5. If k · k and k · k0 are equivalent norms on X, show that the Cauchy sequences in
(X, k · k) and (X, k · k0) are the same.

Solution: Suppose k · k on X is equivalent to k · k0 on X. There exists positive
constants a, b > 0 such that for all x 2 X we have

akxk0  kxk  bkxk0.

Let (x
n

) be any Cauchy sequence in (X, k · k). Given any " > 0, there exists
N1 2 N such that

kx
m

� x
n

k < a" for all m,n > N1.

which implies

kx
m

� x
n

k0 
1

a
kx

m

� x
n

k <
⇢a"

⇢a
= ". for all m,n > N1.

This shows that (x
n

) is also a Cauchy sequence in (X, k · k0). Conversely, let (xn

)
be any Cauchy sequence in (X, k · k0). Given any " > 0, there exists N2 2 N such
that

kx
m

� x
n

k0 <
"

b
for all m,n > N1.

which implies

kx
m

� x
n

k  bkx
m

� x
n

k0 <
��b"

��b
= " for all m,n > N2.

This shows that (x
n

) is also a Cauchy sequence in (X, k · k).
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6. Theorem 2.4.5 implies that k ·k2 and k ·k1 are equivalent. Give a direct proof of this
fact.

Solution: Let X = Rn, and x = (⇠
j

) be any element of X. On one hand,

kxk21 =
⇣

max
j=1,...,n

|⇠
j

|
⌘2

 |⇠1|2 + . . .+ |⇠
n

|2 = kxk22.

Taking square roots of both sides yields kxk1  kxk2. On the other hand,

kxk22 = |⇠1|2 + . . .+ |⇠
n

|2  n
⇣

max
j=1,...,n

|⇠
j

|2
⌘

= nkxk21.

Taking square roots of both sides yields kxk2 
p
nkxk1. Hence, combining these

inequalities gives for all x 2 X

kxk1  kxk2 
p
nkxk1.

7. Let k · k2 be as in Problem 8, section 2.2, and let k · k be any norm on that vector
space, call it X. Show directly that there is a b > 0 such that kxk  bkxk2 for all x.

Solution: Let X = Rn, and {e1, . . . , en} be the standard basis of X defined by
⇠n
j

= �
jn

. Any x = (⇠
j

) in X has a unique representation x = ⇠1e1 + . . . + ⇠2e2.
Thus,

kxk = k⇠1e1 + . . .+ ⇠
n

e
n

k  |⇠1|ke1k+ . . .+ |⇠
n

|ke
n

k

=
n

X

j=1

|⇠
j

|ke
j

k


 

n

X

j=1

|⇠
j

|2
!

1
2
 

n

X

j=1

ke
j

k2
!

1
2

= bkxk2.

where we use Cauchy-Schwarz inequality for sums in the last inequality.
Since x 2 X was arbitrary, the result follows.

8. Show that the norms k · k1 and k · k2 satisfy

1p
n
kxk1  kxk2  kxk1.
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Solution: Let X = Rn, and x = (⇠
j

) be any element of X. Note that if x = 0,
the inequality is trivial since kxk1 = kxk2 = 0 by definition of a norm. So, pick
any nonzero x 2 Rn. Using Cauchy-Schwarz inequality for sums,

kxk1 =
n

X

j=1

|⇠
j

| 
 

n

X

j=1

12
!

1
2
 

n

X

j=1

|⇠
j

|2
!

1
2

=
p
nkxk2.

On the other hand, since kxk2 6= 0, define y = (⌘
j

), where ⌘
j

=
⇠
j

kxk2
. Then

kyk2 =
 

n

X

j=1

|⌘
j

|2
!

1
2

=

 

1

kxk22

n

X

j=1

|⇠
j

|2
!

1
2

=
1

kxk2
kxk2 = 1.

kyk1 =
 

n

X

j=1

|⌘
j

|
!

=
1

kxk2

n

X

j=1

|⇠
j

|

=
kxk1
kxk2

.

and

kyk22 =
n

X

j=1

|⌘
j

|2 


max
i=1,...,n

|⌘
i

|
�

n

X

j=1

|⌘
j

|  kyk1

=) 1  kyk1 =
kxk1
kxk2

=) kxk2  kxk1.

To justfiy the second inequality on the first line, note that it su�ces to prove that
|⌘

i

|  1 for all i = 1, . . . , n, or equivalently, |⇠
i

|  kxk2 for all i = 1, . . . , n. From
the definition of k · k2,

kxk22 =
n

X

j=1

|⇠
j

|2 � |⇠
i

|2 for all i = 1, . . . , n.

Taking square roots of both sides yields kxk2 � |⇠
i

| for all i = 1, . . . , n.

Remark : Alternatively,

kxk21 =
 

n

X

j=1

|⇠
j

|
!2

=

 

n

X

j=1

|⇠
j

|2
!

+

 

n

X

i 6=j

|⇠
i

||⇠
j

|
!

�
 

n

X

j=1

|⇠
j

|2
!

= kxk22.
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9. If two norms k · k and k · k0 on a vector space X are equivalent, show that

kx
n

� xk �! 0 () kx
n

� xk0 �! 0.

Solution: Suppose two norms k · k and k · k0 on a vector space X are equivalent,
there exists positive constant a, b > 0 such that for all x 2 X we have

akxk0  kxk  bkxk0.

If kx
n

� xk �! 0, then

kx
n

� xk0 
1

a
kx

n

� xk �! 0 as n �! 0.

Conversely, if kx
n

� xk0 �! 0, then

kx
n

� xk  bkx
n

� xk0 �! 0 as n �! 0.

10. Show that all complex m ⇥ n matrices A = (↵
jk

) with fixed m and n constitute an
mn-dimensional vector space Z. Show that all norms on Z are equivalent. What
would be the analogues of k · k1, k · k2 and k · k1 for the present space Z?

Solution:
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1.5 Linear Operators.

Definition 1.14. A linear operator T is an operator such that
(a) the domain D(T ) of T is a vector space and the range R(T ) lies in a vector space

over the same field,

(b) for all x, y 2 D(T ) and scalars ↵, �,

T (↵x+ �y) = ↵T (x) + �T (y).

• Note that the above formula expresses the fact that a linear operator T is a ho-
momorphism of a vector space (its domain) into another vector space, that is, T
preserves the two operations of a vector space.

• On the LHS, we first apply a vector space operation (addition or scalar multiplica-
tion) and then map the resulting vector into Y , whereas on the RHS we first map
x and y into Y and then perform the vector space operations in Y , the outcome
being the same.

Theorem 1.15. Let T be a linear operator. Then:
(a) The range R(T ) is a vector space.

(b) If dim D(T ) = n < 1, then dim R(T )  n.

(c) The null space N (T ) is a vector space.

• An immediate consequence of part (b) is worth noting: Linear operators preserve
linear dependence.

Theorem 1.16. Let X, Y be a vector spaces, both real or both complex. Let T : D(T ) �!
Y be a linear operator with domain D(T ) ⇢ X and range R(T ) ⇢ Y . Then:
(a) The inverse T�1 : R(T ) �! D(T ) exists if and only if Tx = 0 =) x = 0.

(b) If T�1 exists, it is a linear operator.

(c) If dim D(T ) = n < 1 and T�1 exists, then dim R(T ) = dim D(T ).

Theorem 1.17. Let T : X �! Y and S : Y �! Z be bijective linear operators, where
X, Y, Z are vector spaces. Then the inverse (ST )�1 : Z �! X of the composition ST
exists, and

(ST )�1 = T�1S�1.
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1. Show that the identity operator, the zero operator and the di↵erentiation operator
(on polynomials) are linear.

Solution: For any scalars ↵, � and x, y 2 X,

I
X

(↵x+ �y) = ↵x+ �y = ↵I
X

x+ �I
X

y.

0(↵x+ �y) = 0 = ↵0x+ �0y.

T (↵x(t) + �y(t)) = (↵x(t) + �y(t))0

= ↵x0(t) + �y0(t) = ↵Tx(t) + �Ty(t).

2. Show that the operators T1, . . . , T4 from R2 into R2 defined by

T1 : (⇠1, ⇠2) 7! (⇠1, 0)

T2 : (⇠1, ⇠2) 7! (0, ⇠2)

T3 : (⇠1, ⇠2) 7! (⇠2, ⇠1)

T4 : (⇠1, ⇠2) 7! (�⇠1, �⇠2)

respectively, are linear, and interpret these operators geometrically.

Solution: Denote x = (⇠1, ⇠2) and y = (⌘1, ⌘2). For any scalars ↵, �,

T1(↵x+ �y) = (↵⇠1 + �⌘1, 0)

= ↵(⇠1, 0) + �(⌘1, 0) = ↵T1(x) + �T1(y).

T2(↵x+ �y) = (0,↵⇠2 + �⌘2)

= ↵(0, ⇠2) + �(0, ⌘2) = ↵T2(x) + �T2(y).

T3(↵x+ �y) = (↵⇠2 + �⌘2,↵⇠1 + �⌘1)

= (↵⇠2,↵⇠1) + (�⌘2, �⌘1)

= ↵(⇠2, ⇠1) + �(⌘2, ⌘1) = ↵T3(x) + �T3(y).

T4(↵x+ �y) =
⇣

�(↵⇠1 + �⌘1), �(↵⇠2 + �⌘2)
⌘

= (↵�⇠1,↵�⇠2) + (��⌘1, ��⌘2)

= ↵(�⇠1, �⇠2) + �(�⌘1, �⌘2) = ↵T4(x) + �T4(y).

T1 and T2 are both projection to x-axis and y-axis respectively, while T4 is a
scaling transformation. T3 first rotates the vector 90� anti-clockwise about the
origin, then reflects across the y-axis.

3. What are the domain, range and null space of T1, T2, T3 in Problem 2?

Solution: The domain of T1, T2, T3 is R2, and the range is the x-axis for T1, the
y-axis for T2 and R2 for T3. The null space is the line ⇠1 = 0 for T1, the line ⇠2 = 0
for T2 and the origin (0, 0) for T3.
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4. What is the null space of T4 in Problem 2? Of T1 and T2 in 2.6-7? Of T in 2.6-4?

Solution: The null space of T4 is R2 if � = 0 and the origin (0, 0) if � 6= 0. Fix
a vector a = (a1, a2, a3) 2 R3. Consider the linear operators T1 and T2 defined by

T1x = x⇥ a =

2

4

⇠1
⇠2
⇠3

3

5⇥

2

4

a1
a2
a3

3

5 =

2

4

⇠2a3 � ⇠3a2
⇠3a1 � ⇠1a3
⇠1a2 � ⇠2a1

3

5 .

T2x = x · a = ⇠1a1 + ⇠2a2 + ⇠3a3.

i.e. T1 and T2 are the cross product and the dot product with the fixed vector a
respectively. The null space of T1 is any scalar multiple of the vector a, while the
null space of T2 is the plane ⇠1a1 + ⇠2a2 + ⇠3a3 = 0 in R3. For the di↵erentiation
operator, the null space is any constant functions x(t) for t 2 [a, b].

5. Let T : X �! Y be a linear operator.

(a) Show that the image of a subspace V of X is a vector space.

Solution: Denote the image of a subspace V of X under T by Im(V ), it
su�ces to show that Im(V ) is a subspace of X. Choose any y1, y2 2 Im(V ),
there exists x1, x2 2 V such that Tx1 = y1 and Tx2 = y2. For any scalars
↵, �,

↵y1 + �y2 = ↵Tx1 + �Tx2 = T (↵x1 + �x2).

This shows that ↵y1 + �y2 2 Im(V ) since ↵x1 + �x2 2 V due to V being a
subspace of X.

(b) Show that the inverse image of a subspace W of Y is a vector space.

Solution: Denote the inverse image of a subspace W of Y under T by
PIm(W ), it su�ces to show that PIm(W ) is a subspace of Y . Choose any
x1, x2 2 PIm(W ), there exists y1, y2 2 W such that Tx1 = y1 and Tx2 = y2.
For any scalars ↵, �,

T (↵x1 + �x2) = ↵Tx1 + �Tx2 = ↵y1 + �y2.

This shows that ↵x1 + �x2 2 PIm(W ) since ↵y1 + �y2 2 W due to W being
a subspace of Y .

6. If the composition of two linear operators exists, show that it is linear.

Solution: Consider any two linear operators T : X �! Y , S : Y �! Z. For any
x, y 2 X and scalars ↵, �,

ST (↵x+ �y) = S(↵Tx+ �Ty)
h

by linearity of T.
i
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= ↵(ST )x+ �(ST )y
h

by linearity of S.
i

7. (Commutativity) Let X be any vector space and S : X �! X and T : X �! X
any operators. S and T are said to commute if ST = TS, that is, (ST )x = (TS)x
for all x 2 X. Do T1 and T3 in Problem 2 commute?

Solution: No. Choose x = (1, 2), then

(T1T3)(1, 2) = T1(2, 1) = (2, 0).

(T3T1)(1, 2) = T3(1, 0) = (0, 1).

8. Write the operators in Problem 2 using 2⇥ 2 matrices.

Solution:

T1 =



1 0
0 0

�

T2 =



0 0
0 1

�

T3 =



0 1
1 0

�

T4 =



� 0
0 �

�

.

9. In 2.6-8, write y = Ax in terms of components, show that T is linear and give
examples.

Solution: For any j = 1, . . . , r, we have that ⌘
j

=
n

X

k=1

a
jk

⇠
k

= a
j1⇠1+ . . .+a

jn

⇠
n

.

To see that T is linear, for any j = 1, . . . , r,

⇣

A(↵x+ �y)
⌘

j

=
n

X

k=1

a
jk

(↵⇠
k

+ �⌘
k

)

= ↵

n

X

k=1

a
jk

⇠
k

+ �

n

X

k=1

a
jk

⌘
k

= ↵(Ax)
j

+ �(Ay)
j

.

10. Formulate the condition in 2.6-10(a) in terms of the null space of T .

Solution: LetX, Y be vector spaces, both real or both complex. Let T : D(T ) �!
Y be a linear operator with domain D(T ) ⇢ X and R(T ) ⇢ Y . The inverse
T�1 : R(T ) �! D(T ) exists if and only if the null space of T , N (T ) = {0}.
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11. Let X be the vector space of all complex 2⇥ 2 matrices and define T : X �! X by
Tx = bx, where b 2 X is fixed and bx denotes the usual product of matrices. Show
that T is linear. Under what condition does T�1 exists?

Solution: For any x, y 2 X and scalars ↵, �,

T (↵x+ �y) =



b1 b2
b3 b4

� 

↵⇠1 + �⌘1 ↵⇠2 + �⌘2
↵⇠3 + �⌘3 ↵⇠4 + �⌘4

�

=



b1 b2
b3 b4

�⇢

↵



⇠1 ⇠2
⇠3 ⇠4

�

+ �



⌘1 ⌘2
⌘3 ⌘4

��

= ↵bx+ �by = ↵Tx+ �Ty.

This shows that T is linear. T�1 exists if and only if b is a non-singular 2 ⇥ 2
complex matrix.

12. Does the inverse of T in 2.6-4 exist?

Solution: The inverse of the di↵erentiation operator T does not exist because
N (T ) 6= {0}, the zero function.

13. Let T : D(T ) �! Y be a linear operator whose inverse exists. If {x1, . . . , xn

} is
a linearly independent set in D(T ), show that the set {Tx1, . . . , Txn

} is linearly
independent.

Solution: Let T : D(T ) �! Y be a linear operator whose inverse exists. Suppose

↵1Tx1 + . . .+ ↵
n

Tx
n

= 0
Y

.

By linearity of T , the equation above is equivalent to

T (↵1x1 + . . .+ ↵
n

x
n

) = 0
Y

.

Since T�1 exists, we must have “ Tx = 0
Y

=) x = 0
X

”. Thus,

↵1x1 + . . .+ ↵
n

x
n

= 0
X

.

but {x1, . . . , xn

} is a linearly independent set in D(T ), so this gives ↵1 = . . . =
↵
n

= 0.

14. Let T : X �! Y be a linear operator and dim X = dim Y = n < 1. Show that
R(T ) = Y if and only if T�1 exists.
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Solution: Suppose R(T ) = Y , by definition, for all y 2 Y , there exists x 2 X
such that Tx = y, i.e. T is surjective. We now show that T is injective. Since
dim (X) = dim (Y ) = n < 1, the Rank-Nullity Theorem gives us

dim(R(T )) + dim(N (T )) = dim(X).

but by assumption, R(T ) = Y , so

dim(Y ) + dim(N (T )) = dim(X).

=) dim(N (T )) = dim(X)� dim(Y ) = 0.

=) N (T ) = {0
X

}.

This shows that T is injective. Indeed, suppose for any x1, x2, we have Tx1 = Tx2.
By linearity of T , Tx1�Tx2 = T (x1�x2) = 0

Y

=) x1�x2 = 0
X

=) x1 = x2.
Since T is both injective and surjective, we conclude that the inverse of T , T�1,
exists.

Conversely, suppose T�1 exists. From Problem 10, this means that N (T ) =
{0

X

} =) dim(N (T )) = 0. Invoking the Rank-Nullity Theorem gives

dim(R(T )) + dim(N (T )) = dim(X).

=) dim(R(T )) = dim(X) = n.

This implies that R(T ) = Y since any proper subspace W of Y has dimension
less than n.

15. Consider the vector space X of all real-valued functions which are defined on R and
have derivatives of all orders everywhere on R. Define T : X �! X by y(t) = Tx(t) =
x0(t). Show that R(T ) is all of X but T�1 does not exist. Compare with Problem 14
and comment.

Solution: For any y(t) 2 R(T ), define x(t) =
R

t

�1 y(s) ds 2 X; Fundamental
Theorem of Calculus gives that x0(t) = Tx(t) = y(t). On the other hand, T�1

does not exist since the null space of T consists of every constant functions on
R. However, it doesn’t contradict Problem 14 since X is an infinite-dimensional
vector space.
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1.6 Bounded and Continuous Linear Operators.

Definition 1.18.

1. Let X and Y be normed spaces and T : D(T ) �! Y a linear operator, where D(T ) ⇢
X. The operator T is said to be bounded if there is a nonnegative number C such
that for all x 2 D(T ), kTxk  Ckxk.

• This also shows that a bounded linear operator maps bounded sets in D(T )
onto bounded sets in Y .

2. The norm of a bounded linear operator T is defined as

kTk = sup
x2D(T )
x 6=0

kTxk
kxk .

• This is the smallest possible C for all nonzero x 2 D(T ).

• With C = kTk, we have the inequality kTxk  kTkkxk.
• If D(T ) = {0}, we define kTk = 0.

Lemma 1.19. Let T be a bounded linear operator. Then:
(a) An alternative formula for the norm of T is

kTk = sup
x2D(T )
kxk=1

kTxk.

(b) kTk is a norm.

Theorem 1.20. If a normed space X is finite dimensional, then every linear operator
on X is bounded.

Theorem 1.21. Let T : D(T ) �! Y be a linear operator, where D(T ) ⇢ X and X, Y
are normed spaces.
(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.

Corollary 1.22. Let T be a bounded linear operator. Then:
(a) x

n

�! x [where x
n

, x 2 D(T )] implies Tx
n

�! Tx.

(b) The null space N (T ) is closed.

• It is worth noting that the range of a bounded linear operator may not be closed.
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Definition 1.23.

1. Two operators T1 and T2 are defined to be equal, written T1 = T2 if they have the
same domain D(T1) = D(T2) and if T1x = T2x for all x 2 D(T1) = D(T2).

2. The restriction of an operator T : D(T ) �! Y to a subset B ⇢ D(T ) is denoted
by T |

B

and is the operator defined by T |
B

: B �! Y , satisfying

T |
B

x = Tx for all x 2 B.

3. The extension of an operator T : D(T ) �! Y to a superset M � D(T ) is an
operator T̃ : M �! Y such that T̃ |D(T ) = T , that is, T̃ x = Tx for all x 2 D(T ).
[Hence T is the restriction of T̃ to D(T ).]

• If D(T ) is a proper subset of M , then a given T has many extensions; of prac-
tical interest are those extensions which preserve linearity or boundedness.

Theorem 1.24 (Bounded linear extension).
Let T : D(T ) �! Y be a bounded linear operator, where D(T ) lies in a normed space
X and Y is a Banach space. Then T has an extension T̃ : D(T ) �! Y , where T̃ is a
bounded linear operator with norm kT̃k = kTk.

• The theorem concerns an extension of a bounded linear operator T to the closure
D(T ) of the domain such that the extended operator is again bounded and linear,
and even has the same norm.

• This includes the case of an extension from a dense set in a normed space X to all
of X.

• It also includes the case of an extension from a normed space X to its completion.

1. Prove kT1T2k  kT1kkT2k and kT nk  kTkn (n 2 N) for bounded linear operators
T2 : X �! Y , T1 : Y �! Z and T : X �! X, where X, Y, Z are normed spaces.

Solution: Using boundedness of T1 and T2,

k(T1T2)xk = kT1(T2x)k  kT1kkT2xk  kT1kkT2kkxk.

The first inequality follows by taking supremum over all x of norm 1. A similar
argument also shows the second inequality.

2. Let X and Y be normed spaces. Show that a linear operator T : X �! Y is bounded
if and only if T maps bounded sets in X into bounded sets in Y .
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Solution: Suppose T : X �! Y is bounded, there exists an C > 0 such that
kTxk  Ckxk for all x 2 X. Take any bounded subset A of X, there exists
M

A

> 0 such that kxk  M
A

for all x 2 A. For any x 2 A,

kTxk  Ckxk  CM
A

.

This shows that T maps bounded sets in X into bounded sets in Y .

Conversely, suppose a linear operator T : X �! Y maps bounded sets in X into
bounded sets in Y . This means that for any fixed R > 0, there exists a constant
M

R

> 0 such that kxk  R =) kTxk  M
R

. We now take any nonzero y 2 X
and set

x = R
y

kyk =) kxk = R.

Thus,

R

kykkTyk =

�

�

�

�

T

✓

R

kyky
◆

�

�

�

�

= kTzk  M
R

.

=) kTyk  M
R

R
kyk.

where we crucially used the linearity of T . Rearranging and taking supremum
over all y of norm 1 shows that T is bounded.

3. If T 6= 0 is a bounded linear operator, show that for any x 2 D(T ) such that kxk < 1
we have the strict inequality kTxk < kTk.

Solution: We have kTxk  kTkkxk < kTk.

4. Let T : D(T ) �! Y be a linear operator, where D(T ) ⇢ X and X, Y are normed
spaces. Show that if T is continuous at a single point, it is continuous on D(T ).

Solution: Suppose T is continuous at an arbitrary x0 2 D(T ). This means that
given any " > 0, there exists a � > 0 such that kTx� Tx0k  " for all x 2 D(T )
satisfying kx� x0k  �. Fix an y0 2 D(T ), and set

x� x0 = �
y � y0
ky � y0k

=) kx� x0k = �.

Since T is linear, for any y 2 D(T ) satisfying ky � y0k  �,

�

ky � y0k
kT (y � y0)k =

�

�

�

�

T

✓

�

ky � y0k
(y � y0)

◆

�

�

�

�

= kT (x� x0)k  "

=) kT (y � y0)k  "
ky � y0k

�
 "���

���
= ".

This shows that T is continuous at y0. Since y0 2 D(T ) is arbitrary, the statement
follows.
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5. Show that the operator T : l1 �! l1 defined by y = (⌘
j

) = Tx, ⌘
j

= ⇠
j

/j, x = (⇠
j

),
is linear and bounded.

Solution: For any x, z 2 l1 and scalars ↵, �,

T (↵x+ �z) =

✓

↵
⇠
j

j
+ �


j

j

◆

= ↵

✓

⇠
j

j

◆

+ �

✓


j

j

◆

= ↵Tx+ �Tz.

For any x = (⇠
j

) 2 l1,

�

�

�

�

⇠
j

j

�

�

�

�

 |⇠
j

|  sup
j2N

|⇠
j

| = kxk.

Taking supremum over j 2 N on both sides yields kTxk  kxk. We conclude that
T is a bounded linear operator.

6. (Range) Show that the range R(T ) of a bounded linear operator T : X �! Y need
not be closed in Y .

Solution: Define (x
n

) to be a sequence in the space l1, where x
n

= (⇠n
j

) and

⇠n
j

=

(p
j if j  n,

0 if j > n.

Consider the operator T : l1 �! l1 in Problem 5. Then Tx
n

= y
n

= (⌘n
j

), where

⌘n
j

=
⇠n
j

j
=

8

<

:

1p
j

if j  n,

0 if j > n.

We now have our sequence (y
n

) 2 R(T ) ⇢ l1. We claim that it converges to y in

l1, where y is a sequence in l1 defined as y = (⌘
j

), ⌘
j

=
1p
j
. Indeed,

ky
n

� yk
l

1 = sup
j2N

|⌘n
j

� ⌘
j

| = 1p
n+ 1

�! 0 as n �! 1.

However, y /2 R(T ). Indeed, if there exists an x 2 l1 such that Tx = y, then
x must be the sequence (⇠

j

), with ⇠
j

=
p
j, which is clearly not in the space l1.

Hence, R(T ) is not closed in l1.

7. (Inverse operator) Let T be a bounded linear operator from a normed space X
onto a normed space Y . If there is a positive b such that

kTxk � bkxk for all x 2 X,

show that then T�1 : Y �! X exists and is bounded.
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Solution: We first show that T is injective, and therefore the inverse T�1 exists
since T is bijective (T is surjective by assumption). Indeed, choose any x1, x2 2 X
and suppose x1 6= x2, then kx1 � x2k > 0. Since T is linear,

kTx1 � Tx2k = kT (x1 � x2)k  bkx1 � x2k > 0 =) Tx1 6= Tx2.

We are left to show there exists an C > 0 such that kT�1yk  Ckyk for all
y 2 Y . Since T is surjective, for any y 2 Y , there exists x 2 X such that y = Tx;
existence of T�1 then implies x = T�1y. Thus,

kT (T�1(y))k � bkT�1yk =) kT�1yk  1

b
kyk.

where C =
1

b
> 0.

8. Show that the inverse T�1 : R(T ) �! X of a bounded linear operator T : X �! Y
need not be bounded.

Solution: Consider the operator T : l1 �! l1 defined by y = Tx = (⌘
j

), ⌘
j

=
⇠
j

/j, x = (⇠
j

). We shown in Problem 6 that T is a bounded linear operator. We
first show that T is injective. For any x1, x2 2 l1, suppose Tx1 = Tx2. For any
j 2 N,

(Tx1)j = (Tx2)j =)
⇠1
j

j
=
⇠2
j

j
=) ⇠1

j

= ⇠2
j

since
1

j
6= 0.

This shows that x1 = x2 and T is injective. Thus, there exists an inverse
T�1 : R(T ) �! l1 defined by x = T�1y = (⇠

j

), ⇠
j

= j⌘
j

, y = (⌘
j

). Let’s
verify that this is indeed the inverse operator.

T�1(Tx) = T�1y = T�1

✓

⇠
j

j

◆

=

✓

j
⇠
j

j

◆

= (⇠
j

) = x.

T (T�1y) = Tx = T ((j⌘
j

)) =

✓

j⌘
j

j

◆

= (⌘
j

) = y.

We claim that T�1 is not bounded. Indeed, let y
n

= (�
jn

)1
j=1, where �jn is the

Kronecker delta function. Then ky
n

k = 1 and

kT�1y
n

k = k(j�
jn

)k = n =) kT�1y
n

k
ky

n

k = n.

Since n 2 N is arbitrary, this shows that there is no fixed number C > 0 such

that
kT�1y

n

k
ky

n

k  C, i.e. T�1 is not bounded.
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9. Let T : C[0, 1] �! C[0, 1] be defined by

y(t) =

Z

t

0

x(s) ds.

Find R(T ) and T�1 : R(T ) �! C[0, 1]. Is T�1 linear and bounded?

Solution: First, Fundamental Theorem of Calculus yields

R(T ) = {y(t) 2 C[0, 1] : y(t) 2 C1[0, 1], y(0) = 0} ⇢ C[0, 1].

Next, we show that T is injective and thus the inverse T�1 : R(T ) �! C[0, 1]
exists. Indeed, suppose for any x1, x2 2 C[0, 1], Tx1 = Tx2. Then

Tx1 = Tx2 =)
Z

t

0

x1(s) ds =

Z

t

0

x2(s) ds

=)
Z

t

0

h

x1(s)� x2(s)
i

ds = 0

=) x(s) = y(s) for all s 2 [0, t].

where the last implication follows from x � y being a continuous function in
[0, t] ⇢ [0, 1]. The inverse operator T�1 is defined by T�1y(t) = y0(t), i.e. T�1

is the di↵erentiation operator. Since di↵erentiation is a linear operation, so is
T�1. However, T�1 is not bounded. Indeed, let y

n

(t) = tn, where n 2 N. Then
ky

n

k = 1 and

kT�1y
n

k = kntn�1k = n =) kT�1y
n

k
ky

n

k = n.

Since n 2 N is arbitrary, this shows that there is no fixed number C > 0 such

that
kT�1y

n

k
ky

n

k  C, i.e. T�1 is not bounded.

10. On C[0, 1] define S and T

Sx(t) = y(t) = t

Z 1

0

x(s) ds Tx(t) = y(t) = tx(t).

respectively. Do S and T commute? Find kSk, kTk, kSTk and kTSk.

Solution: They do not commute. Take x(t) = t 2 C[0, 1]. Then

(ST )x(t) = S(t2) = t

Z 1

0

s2 ds =
t

3
.

(TS)x(t) = T

✓

t

2

◆

=
t2

2
.
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11. Let X be the normed space of all bounded real-valued functions on R with norm
defined by

kxk = sup
t2R

|x(t)|,

and let T : X �! X defined by

y(t) = Tx(t) = x(t��)

where � > 0 is a constant. (This ia model of a delay line, which is an electric device
whose output y is a delayed version of the input x, the time delay being �.) Is T
linear? Bounded?

Solution: For any x, z 2 X and scalars ↵, �,

T (↵x+ �z) = ↵x(t��) + �z(t��) = ↵Tx+ �Tz.

This shows that T is linear. T is bounded since

kTxk = sup
t2R

|x(t��)| = kxk.

12. (Matrices) We know that an r⇥ n matrix A = (↵
jk

) defines a linear operator from
the vector space X of all ordered n-tuples of numbers into the vector space Y of all
ordered r-tuples of numbers. Suppose that any norm k · k1 is given on X and any
norm k · k2 is given on Y . Remember from Problem 10, Section 2.4, that there are
various norms on the space Z of all those matrices (r and n fixed). A norm k · k on
Z is said to be compatible with k · k1 and k · k2 if

kAxk2  kAkkxk1.

Show that the norm defined by

kAk = sup
x2X
x 6=0

kAxk2
kxk1

is compatible with k ·k1 and k ·k2. This norm is often called the natural norm defined
by k · k1 and kcdotk2. IF we choose kxk1 = max

j

|⇠
j

| and kyk2 = max
j

|⌘
j

|, show that
the natural norm is

kAk = max
j

n

X

k=1

|↵
jk

|.

Solution:

13. Show that in 2.7-7 with r = n, a compatible norm is defined by

kAk =

 

n

X

j=1

n

X

k=1

↵2
jk

!

1
2

,
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but for n > 1 this is not the natural norm defined by the Euclidean norm on Rn.

Solution:

14. If in Problem 12, we choose

kxk1 =
n

X

k=1

|⇠
k

| kyk2 =
r

X

j=1

|⌘
j

|,

show that a compatible norm is defined by

kAk = max
k

r

X

j=1

|↵
jk

|.

Solution:

15. Show that for r = n, the norm in Problem 14 is the natural norm corresponding to
k · k1 and k · k2 as defined in that problem.

Solution:
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1.7 Linear Functionals.

Definition 1.25.

1. A linear functional f is a linear operator with domain in a vector space X and
range in the scalar field K of X; thus, f : D(f) �! K, where K = R if X is real
and K = C if X is complex.

2. A bounded linear functional f is a bounded linear operator with range in the
scalar field of the normed space X in which the domain D(f) lies. Thus there exists
a nonnegative number C such that for all x 2 D(f), |f(x)|  Ckxk. Furthermore,
the norm of f is

kfk = sup
x2D(f)
x6=0

|f(x)|
kxk = sup

x2D(f)
kxk=1

|f(x)|.

• As before, we have that |f(x)|  kfkkxk.

Theorem 1.26. A linear functional f with domain D(f) in a normed space X is con-
tinuous if and only if f is bounded.

Definition 1.27.

1. The set of all linear functionals defined on a vector space X can itself be made
into a vector space. This space is denoted by X⇤ and is called the algebraic dual
space of X. Its algebraic operations of vector space are defined in a natural way
as follows.

(a) The sum f1 + f2 of two functionals f1 and f2 is the functional s whose value
at every x 2 X is

s(x) = (f1 + f2)(x) = f1(x) + f2(x).

(b) The product ↵f of a scalar ↵ and a functional f is the functional p whose value
at every x 2 X is

p(x) = (↵f)(x) = ↵f(x).

2. We may also consider the algebraic dual (X⇤)⇤ of X⇤, whose elements are the lin-
ear functionals defined on X⇤. We denote (X⇤)⇤ by X⇤⇤ and call it the second
algebraic dual space of X.

• We can obtain an interesting and important relation between X and X⇤⇤, as
follows. We can obtain a g 2 X⇤⇤, which is a linear functional defined on X⇤,
by choosing a fixed x 2 X and setting

g(f) = g
x

(f) = f(x) where x 2 X fixed, f 2 X⇤ variable.

• g
x

is linear. Indeed,

g
x

(↵f1 + �f2) = (↵f1 + �f2)(x) = ↵f1(x) + �f2(x) = ↵g
x

(f1) + �g
x

(f2).

Hence, g
x

is an element of X⇤⇤, by the definition of X⇤⇤.
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• To each x 2 X there corresponds a g
x

2 X⇤⇤. This defines a mapping
C : X �! X⇤⇤, C : x 7! g

x

; C is called the canonical mapping of X into
X⇤⇤. C is linear since its domain is a vector space and we have

(C(↵x+ �y))(f) = g
↵x+�y

(f)

= f(↵x+ �y)

= ↵f(x) + �f(y)

= ↵g
x

(f) + �g
y

(f)

= ↵(Cx)(f) + �(Cy)(f).

C is also called the canonical embedding of X into X⇤⇤.

3. An metric space isomorphism T of a metric space X = (X, d) onto a metric
space X̃ = (X̃, d̃) is a bijective mapping which preserves distance, that is, for all
x, y 2 X, d̃(Tx, Ty) = d(x, y). X̃ is then called isomorphic with X.

4. An vector space isomorphism T of a vector space X onto a vector space X̃ over
the same field is a bijective mapping which preserves the two algebraic operations
of vector space; thus, for all x, y 2 X and scalars ↵,

T (x+ y) = Tx+ Ty and T (↵x) = ↵Tx,

that is, T : X �! X̃ is a bijective linear operator. X̃ is then called isomorphic
with X, and X and X̃ are called isomorphic vector spaces.

5. If X is isomorphic with a subspace of a vector space Y , we say that X is embed-
dable in Y .

• It can be shown that the canonical mapping C is injective. Since C is linear,
it is a vector space isomorphism of X onto the range R(C) ⇢ X⇤⇤.

• Since R(C) is a subspace of X⇤⇤, X is embeddable in X⇤⇤, and C is also called
the canonical embedding of X into X⇤⇤.

• If C is surjective (hence bijective), so that R(C) = X⇤⇤, then X is said to be
algebraically reflexive.

1. Show that the functionals in 2.8-7 and 2.8-8 are linear.

Solution: Choose a fixed t0 2 J = [a, b] and set f1(x) = x(t0), where x 2 C[a, b].
For any x, y 2 C[a, b] and scalars ↵, �,

f1(↵x+ �y) = (↵x+ �y)(t0) = ↵x(t0) + �y(t0) = ↵f1(x) + �f1(y).

Choose a fixed a = (a
j

) 2 l2 and set f(x) =
1
X

j=1

⇠
j

↵
j

, where x = (⇠
j

) 2 l2. For

any x = (⇠
j

), y = (⌘
j

) 2 l2 and scalars ↵, �,

f(↵x+ �y) =
1
X

j=1

(↵⇠
j

+ �⌘
j

)↵
j

= ↵
1
X

j=1

.⇠
j

↵
j

+ �
1
X

j=1

⌘
j

↵
j

= ↵f(x) + �f(y).
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Note we can split the infinite sum because the two infinite sums are convergent
by Cauchy-Schwarz inequality.

2. Show that the functionals defined on C[a, b] by

f1(x) =

Z

b

a

x(t)y0(t) dt (y0 2 C[a, b] fixed.)

f2(x) = ↵x(a) + �x(b) (↵, � fixed.)

are linear and bounded.

Solution: For any x, y 2 C[a, b] and scalars �, �,

f1(�x+ �y) =

Z

b

a

h

�x(t) + �y(t)
i

y0(t) dt

= �

Z

b

a

x(t)y0(t) dt+ �

Z

b

a

y(t)y0(t) dt.

= �f1(x) + �f1(y).

f2(�x+ �y) = ↵(�x+ �y)(a) + �(�x+ �y)(b)

= ↵(�x(a) + �y(a)) + �(�x(b) + �y(b))

= �(↵x(a) + �x(b)) + �(↵y(a) + �y(b))

= �f2(x) + �f2(y).

To show that f1 and f2 are bounded, for any x 2 C[a, b],

|f1(x)| =
�

�

�

�

Z

b

a

x(t)y0(t) dt

�

�

�

�

 max
t2[a,b]

|x(t)|
Z

b

a

y0(t) dt

=

✓

Z

b

a

y0(t) dt

◆

kxk.

|f2(x)| = |↵x(a) + �x(b)|  ↵ max
t2[a,b]

|x(t)|+ � max
t2[a,b]

|x(t)|

= (↵ + �)kxk.

3. Find the norm of the linear functional f defined on C[�1, 1] by

f(x) =

Z 0

�1

x(t) dt�
Z 1

0

x(t) dt.
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Solution:

|f(x)| =
�

�

�

�

Z 0

�1

x(t) dt�
Z 1

0

x(t) dt

�

�

�

�


�

�

�

�

Z 0

�1

x(t) dt

�

�

�

�

+

�

�

�

�

Z 1

0

x(t) dt

�

�

�

�

 kxk
�

�

�

�

Z 0

�1

dt

�

�

�

�

+ kxk
�

�

�

�

Z 1

0

dt

�

�

�

�

= 2kxk

Taking the supremum over all x of norm 1, we obtain kfk  2. To get kfk � 2,
we choose the particular x(t) 2 C[�1, 1] defined by

x(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�2t� 2 if � 1  t  �1

2
,

2t if � 1

2
 t  1

2
,

�2t+ 2 if
1

2
 t  1.

Note that kxk = 1 and

kfk  |f(x)|
kxk = |f(x)| = 2.

4. Show that for J = [a, b],

f1(x) = max
t2J

x(t) f2(x) = min
t2J

x(t)

define functionals on C[a, b]. Are they linear? Bounded?

Solution: Both f1 and f2 define functionals on C[a, b] since continuous func-
tions attains its maximum and minimum on closed interval. They are not linear.

Choose x(t) =
t� a

b� a
and y(t) =

�(t� a)

b� a
. Then

f1(x+ y) = 0 but f1(x) + f1(y) = 1 + 0 = 1.

f2(x+ y) = 0 but f2(x) + f2(y) = 0� 1 = �1.

They are, however, bounded, since for any x 2 C[a, b],

|f1(x)| = max
t2J

x(t)  max
t2J

|x(t)| = kxk.

|f2(x)| = min
t2J

x(t)  max
t2J

|x(t)| = kxk.
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5. Show that on any sequence space X we can define a linear functional f by setting
f(x) = ⇠

n

(n fixed), where x = (⇠
j

). Is f bounded if X = l1?

Solution: For any x = (⇠
j

), y = (⌘
j

) 2 X and scalars ↵, �,

f(↵x+ �y) = ↵⇠
n

+ �⌘
n

= ↵f(x) + �f(y).

f is bounded if X = l1. Indeed, for any x 2 l1,

|f(x)| = |⇠
n

|  sup
j2N

|⇠
j

| = kxk.

Remark : In fact, we can show that kfk = 1. Taking supremum over all x of
norm 1 on previous equation yields kfk  1. To get kfk � 1, we choose the
particular x = (⇠

j

) = (�
jn

), note that kxk = 1 and

kfk � |f(x)|
kxk = |f(x)| = 1.

6. (Space C1[a, b]) The space C1[a, b] is the normed space of all continuously di↵er-
entiable functions on J = [a, b] with norm defined by

kxk = max
t2J

|x(t)|+max
t2J

|x0(t)|.

(a) Show that the axioms of a norm are satisfied.

Solution: (N1) and (N3) are obvious. For (N2), if x(t) ⌘ 0, then kxk = 0.
On the other hand, if kxk = 0, since both max

t2J
|x(t)| and max

t2J
|x0(t)| are

nonnegative, we must have |x(t)| = 0 and |x0(t)| = 0 for all t 2 [a, b] which
implies x(t) ⌘ 0. Finally, (N4) follows from

kx+ yk = max
t2J

|x(t) + y(t)|+max
t2J

|x0(t) + y0(t)|

 max
t2J

|x(t)|+max
t2J

|y(t)|+max
t2J

|x0(t)|+max
t2J

|y0(t)|

= kxk+ kyk.

(b) Show that f(x) = x0(c), c =
a+ b

2
, defines a bounded linear functional on

C1[a, b].

Solution: For any x, y 2 C1[a, b] and scalars ↵, �,

f(↵x+ �y) = ↵x0(c) + �y0(c) = ↵f(x) + �f(y).

To see that f is bounded,

|f(x)| = |x0(c)|  max
t2J

|x0(t)|  kxk.
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(c) Show that f is not bounded, considered as functional on the subspace of C[a, b]
which consists of all continuously di↵erentiable functions.

Solution:

7. If f is a bounded linear functional on a complex normed space, is f̄ bounded? Linear?
(The bar denotes the complex conjugate.)

Solution: f̄ is bounded since |f(x)| = |f̄(x)|, but it is not linear since for any
x 2 X and complex numbers ↵, f(↵x) = ↵f(x) = ↵̄f(x) 6= ↵f(x).

8. (Null space) The null space N (M⇤) of a set M⇤ ⇢ X⇤ is defined to be the set of all
x 2 X such that f(x) = 0 for all f 2 M⇤. Show that N (M⇤) is a vector space.

Solution: Since X is a vector space, it su�ces to show that N (M⇤) is a subspace
of X. Note that all element of M⇤ are linear functionals. For any x, y 2 N (M⇤),
we have f(x) = f(y) = 0 for all f 2 M⇤. Then for any f 2 M⇤ and scalars ↵, �,

f(↵x+ �y) = ↵f(x) + �f(y) = 0.
h

by linearity of f 2 M⇤
i

This shows that ↵x+ �y 2 N (M⇤) and the statement follows.

9. Let f 6= 0 be any linear functional on a vector space X and x0 any fixed element of
X \ N (f), where N (f) is the null space of f . Show that any x 2 X has a unique
representation x = ↵x0 + y, where y 2 N (f).

Solution: Let f 6= 0 be any linear functional on X and x0 any fixed element
of X \ N (f). We claim that for any x 2 X, there exists a scalar ↵ such that
x = ↵x0 + y, where y 2 N (f). First, applying f on both sides yields

f(x) = f(↵x0 + y) = ↵f(x0) + f(y) =) f(y) = f(x)� ↵f(x0).

By choosing ↵ =
f(x)

f(x0)
(which is well-defined since f(x0) 6= 0), we see that

f(y) = f(x)� f(x)

���f(x0)
���f(x0) = 0 =) y 2 N (f).

To show uniqueness, suppose x has two representations x = ↵1x0+y1 = ↵2x0+y2,
where ↵1,↵2 are scalars and y1, y2 2 N (f). Subtracting both representations
yields

(↵1 � ↵2)x0 = y2 � y1.

Applying f on both sides gives

f((↵1 � ↵2)x0) = f(y2 � y1)
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(↵1 � ↵2)f(x0) = f(y2)� f(y1) = 0

by linearity of f and y1, y2 2 N (f). Since f(x0) 6= 0, we must have ↵1 � ↵2 = 0.
This also implies y1 � y2 = 0.

10. Show that in Problem 9, two elements x1, x2 2 X belong to the same element of the
quotient space X/N (f) if and only if f(x1) = f(x2). Show that codim N (f) = 1.

Solution: Suppose two elements x1, x2 2 X belong to the same element of the
quotient spaceX/N (f). This means that there exists an x 2 X and y1, y2 2 N (f)
such that

x1 = x+ y1 and x2 = x+ y2.

Substracting these equations and applying f yields

x1 � x2 = y1 � y2 =) f(x1 � x2) = f(y1 � y2)

=) f(x1)� f(x2) = f(y1)� f(y2) = 0.

where we use the linearity of f and y1, y2 2 N (f). Conversely, suppose f(x1) �
f(x2) = 0; linearity of f gives

f(x1 � x2) = 0 =) x1 � x2 2 N (f).

This means that there exists y 2 N (f) such that x1 � x2 = 0+ y, which implies
that x1, x2 2 X must belong to the same coset of X/N (f).

Codimension ofN (f) is defined to be the dimension of the quotient spaceX/N (f).
Choose any x̂ 2 X/N (f), there exists an x 2 X such that x̂ = x +N (f). Since
f 6= 0, there exists an x0 2 X \N (f) such that f(x0) 6= 0. Looking at Problem 9,
we deduce that x̂ has a unique representation x̂ = ↵x0 +N (f) = ↵(x0 +N (f)).
This shows that x0 +N (f) is a basis for X/N (f) and codim N (f) = 1.

11. Show that two linear functionals f1 6= 0 and f2 6= 0 which are defined on the same
vector space and have the same null space are proportional.

Solution: Let x, x0 2 X and consider z = xf1(x0) � x0f1(x). Clearly, f1(z) =
0 =) z 2 N (f1) = N (f2). Thus,

0 = f2(z) = f2(x)f1(x
0)� f2(x

0)f1(x).

Since f1 6= 0, there exists some x0 2 X \N (f1) such that f1(x0) 6= 0; we also have
f2(x0) 6= 0 since N (f1) = N (f2). Hence, for such an x0, we have

f2(x) =
f2(x0)

f1(x0)
f1(x).

Since x 2 X is arbitrary, the result follows.
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12. (Hyperplane) If Y is a subspace of a vector space X and codimY = 1, then every
element of X/Y is called a hyperplane parallel to Y . Show that for any linear func-
tional f 6= 0 on X, the set H1 = {x 2 X : f(x) = 1} is a hyperplane parallel to the
null space N (f) of f .

Solution: Since f 6= 0 on X, H1 is not empty. Fix an x0 2 H1, and consider
the coset x0+N (f). Note that this is well-defined irrespective of elements in H1.
Indeed, for any y 2 H1, y 6= x0, y � x0 2 N (f) since f(y � x0) = f(y)� f(x0) =
1� 1 = 0; this shows that x+N (f) = y +N (f) for any x, y 2 H1.

• For any x 2 x0 + N (f), there exists an y 2 N (f) such that x = x0 + y.
Since f is linear, f(x) = f(x0 + y) = f(x0) + f(y) = 1 =) x 2 H1. This
shows that x0 +N (f) ⇢ H1.

• For any x 2 H1, x = x+0 = x+ x0 � x0 = x0 + (x� x0) 2 x0 +N (f) since
f(x� x0) = f(x)� f(x0) = 1� 1 = 0. This shows that H1 ⇢ x0 +N (f).

Finally, combining the two set inequality gives H1 = x0+N (f) and the statement
follows.

13. If Y is a subspace of a vector space X and f is a linear functional on X such that
f(Y ) is not the whole scalar field of X, show that f(y) = 0 for all y 2 Y .

Solution: The statement is trivial if f is the zero functional, so suppose f 6= 0.
Suppose, by contradiction, that f(y) 6= 0 for all y 2 Y , then there exists an
y0 2 Y such that f(y0) = ↵ for some nonzero ↵ 2 K. Since Y is a subspace of a
vector space X, �y0 2 Y for all � 2 K. By linearity of f ,

f(�y0) = �f(y0) = �↵ 2 f(Y ).

Since � 2 K is arbitrary, this implies that f(Y ) = K; this is a contradiction to
the assumption that f(Y ) 6= K. Hence, by proof of contradiction, f(y) = 0 for
all y 2 Y .

14. Show that the norm kfk of a bounded linear functional f 6= 0 on a normed space X
can be interpreted geometrically as the reciprocal of the distance d̃ = inf{kxk : f(x) =
1k of the hyperplane H1 = {x 2 X : f(x) = 1} from the origin.

Solution:

15. (Half space) Let f 6= 0 be a bounded linear functional on a real normed space
X. Then for any scalar c we have a hyperplane H

c

= {x 2 X : f(x) = c}, and H
c

determines the two half spaces

X
c1 = {x 2 X : f(x)  c} and X

c2 = {x 2 X : f(x) � c}.
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Show that the closed unit ball lies in X
c1, where c = kfk, but for no " > 0, the half

space X
c1 with c = kfk � " contains that ball.

Solution:
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1.8 Linear Operators and Functionals on Finite Dimensional
Spaces.

• A linear operator T : X �! Y determines a unique matrix representing T with
respect to a given basis for X and a given basis for Y , where the vectors of each of
the bases are assumed to be arranged in a fixed order. Conversely, any matrix with
r rows and n columns determines a linear operator which it represents with respect
to given bases for X and Y .

• Let us now turn to linear functionals on X, where dim X = n and {e1, . . . , en}
is a basis for X. For every f 2 X⇤ and every x =

P

⇠
j

e
j

2 X, we have

f(x) = f

 

n

X

j=1

⇠
j

e
j

!

=
n

X

j=1

⇠
j

f(e
j

) =
n

X

j=1

⇠
j

↵
j

.

where ↵
j

= f(e
j

) for j = 1, . . . , n. We see that f is uniquely determined by its val-
ues ↵

j

ath the n basis vectors of X. Conversely, every n-tuple of scalars ↵1, . . . ,↵n

determines a linear functional on X.

Theorem 1.28. Let X be an n-dimensional vector space and E = {e1, . . . , en} a basis
for X. Then F = {f1, . . . , fn} given by f

k

(e
j

) = �
jk

is a basis for the algebraic dual X⇤

of X, and dim X⇤ = dim X = n.

• {f1, . . . , fn} is called the dual basis of the basis {e1, . . . , en} for X.

Lemma 1.29. Let X be a finite dimensional vector space. If x0 2 X has the property
that f(x0) = 0 for all f 2 X⇤, then x0 = 0.

Theorem 1.30. A finite dimensional vector space is algebraically reflexive.

1. Determine the null space of the operator T : R3 �! R2 represented by


1 3 2
2 1 0

�

.

Solution: Performing Gaussian elimination on the matrix yields


1 3 2 0
�2 1 0 0

�

�!


1 3 2 0
0 7 4 0

�

.

This yields a solution of the form (⇠1, ⇠2, ⇠3) = t(�2,�4, 7) where t 2 R is a free
variable. Hence, the null space of T is the span of (�2,�4, 7).
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2. Let T : R3 �! R3 be defined by (⇠1, ⇠2, ⇠3) 7! (⇠1, ⇠2,�⇠1 � ⇠2). Find R(T ),N (T )
and a matrix which represents T .

Solution: Consider the standard basis forX, given by e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1). The matrix representing T with respect to {e1, e2, e3} is

A =

2

4

1 0 0
0 1 0
�1 �1 0

3

5 .

The range of T , R(T ) is the plane ⇠1 + ⇠2 + ⇠3 = 0. The null space of T , N (T ) is
span of (0, 0, 1).

3. Find the dual basis of the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for R3.

Solution: Consider a basis {e1, e2, e3} of R3 defined by e
j

= (⇠j
n

) = �
jn

for

j = 1, 2, 3. Given any x = (⌘
j

) in R3, let f
k

(x) =
3
X

j=1

↵k

j

⌘
j

be the dual basis

of {e1, e2, e3}. From the definition of a dual basis, we require that f
k

(e
j

) = �
jk

.
More precisely, for f1, we require that

f1(e1) = ↵1
1 = 1.

f1(e2) = ↵1
2 = 0.

f1(e3) = ↵1
3 = 0.

which implies that f1(x) = ⌘1. Repeating the same computation for f2 and f3,
we find that f2(x) = ⌘2 and f3(x) = ⌘3. Hence,

f1 = (1, 0, 0) f2 = (0, 1, 0) f3 = (0, 0, 1).

4. Let {f1, f2, f3} be the dual basis of {e1, e2, e3} for R3, where e1 = (1, 1, 1), e2 =
(1, 1,�1), e3 = (1,�1,�1). Find f1(x), f2(x), f3(x), where x = (1, 0, 0).

Solution: Note that we can write x as

x =

2

4

1
0
0

3

5 =
1

2

2

4

1
1
1

3

5+ 0

2

4

1
1
�1

3

5+
1

2

2

4

1
�1
�1

3

5 =
1

2
e1 +

1

2
e3.

Thus, using the defintiion of a dual basis f
k

(e
j

) = �
jk

, we have

f1(x) =
1

2
f1(e1) +

1

2
f1(e3) =

1

2
.
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f2(x) =
1

2
f2(e1) +

1

2
f2(e3) = 0.

f3(x) =
1

2
f3(e1) +

1

2
f3(e3) =

1

2
.

where we use linearity of f1, f2, f3.

5. If f is a linear functional on an n-dimensional vector space X, what dimension can
the null space N (f) have?

Solution: The Rank-Nullity theorem states that

dim (N (f)) = dim (X)� dim (R(f)) = n� dim (R(f)).

If f is the zero functional, then N (f) = X and N (f) has dimension n; if f is
not the zero functional, then R(f) = K which has dimension 1, so N (f) has
dimension n� 1. Hence, N (f) has dimension n or n� 1.

6. Find a basis for the null space of the functional f defined on R3 by f(x) = ⇠1+⇠2�⇠3,
where x = (⇠1, ⇠2, ⇠3).

Solution: Let x = (⇠1, ⇠2, ⇠3) be any point in the null space of f , they must
satisfy the relation ⇠1 + ⇠2 � ⇠3 = 0. Thus,

x =

2

4

⇠1
⇠2
⇠3

3

5 =

2

4

⇠1
⇠2

⇠1 + ⇠2

3

5 = ⇠1

2

4

1
0
1

3

5+ ⇠2

2

4

0
1
1

3

5 .

Hence, a basis for N (f) is given by {(1, 0, 1), (0, 1, 1)}.

7. Same task as in Problem 6, if f(x) = ↵1⇠1 + ↵2⇠2 + ↵3⇠3, where ↵1 6= 0.

Solution: Let x = (⇠1, ⇠2, ⇠3) be any point inN (f), they must satisfy the relation

↵1⇠1 + ↵2⇠2 + ↵3⇠3 = 0 () ⇠1 = �↵2

↵1
⇠2 �

↵3

↵1
⇠3.

Rewriting x using this relation yields

x =

2

4

⇠1
⇠2
⇠3

3

5 =

2

6

4

�↵2

↵1
⇠2 �

↵3

↵1
⇠3

⇠2
⇠3

3

7

5

=
⇠2
↵1

2

4

�↵2

↵1

0

3

5+
⇠3
↵1

2

4

�↵3

0
↵1

3

5 .

Hence, a basis for N (f) is given by {(�↵2,↵1, 0), (�↵3, 0,↵1)}.
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8. If Z is an (n � 1)-dimensional subspace of an n-dimensional vector space X, show
that Z is the null space of a suitable linear functional f on X, which is uniquely
determined to within a scalar multiple.

Solution: Let X be an n-dimensional vector space, and Z an (n�1)-dimensional
subspace of X. Choose a basis A = {z1, . . . , zn�1} of Z, here we can obtain a basis
B = {z1, . . . , zn�1, zn} of X, where B is obtained by extending A using sifting
method. Any z 2 Z can be written uniquely as z = ↵1z1 + . . .+ ↵

n�1zn�1. If we
want to find f 2 X⇤ such that N (f) = Z, using linearity of f this translates to

f(z) = f(↵1z1 + . . .+ ↵
n�1zn�1) = ↵1f(z1) + . . .+ ↵

n�1f(zn�1) = 0.

Since this must be true for all z 2 Z, it enforces the condition f(z
j

) = 0 for all
j = 1, . . . , n � 1. A similar argument shows that f(z

n

) 6= 0, otherwise N (f) =
X 6= Z. Thus, the functional we are looking for must satisfy the following two
conditions:

(a) f(z
j

) = 0 for all j = 1, . . . , n� 1.

(b) f(z
n

) 6= 0.

Consider a linear functional f : X �! K defined by f(z
j

) = �
jn

for all j =
1, . . . , n. We claim that N (f) = Z. Indeed,

• Choose any z 2 Z, there exists a unique sequence of scalars (�
j

) such that
z = �1z1 + . . .+ �

n�1zn�1. Using linearity of f , we have

f(z) = f

 

n�1
X

j=1

�
j

z
j

!

=
n�1
X

j=1

�
j

f(z
j

) = 0.

This shows that Z ⇢ N (f).

• Choose any x 2 X \ Z, there exists a unique sequence of scalars (�
j

) such
that x = �1z1 + . . . + �

n

z
n

and �
n

6= 0. (otherwise x 2 Z.) Using linearity
of f , we have

f(x) = f

 

n

X

j=1

�
j

z
j

!

=
n

X

j=1

�
j

f(z
j

) = �
n

f(z
n

) 6= 0.

This shows that (X \ Z) 6⇢ N (f) or equivalently N (f) ⇢ Z.

Hence, Z ⇢ N (f) and N (f) ⇢ Z implies Z = N (f).

We are left to show that f is uniquely determined up to scalar multiple. Let �
be any nonzero scalars and consider the linear functional �f . Any x 2 X can be
written uniquely as x = ↵1z1 + . . .+ ↵

n

z
n

. Using linearity of �f , we have

(�f)(x) = �f(x) = �f

 

n

X

j=1

↵
j

z
j

!

= �

 

n

X

j=1

↵
j

f(z
j

)

!

= �↵
n

f(z
n

).

If ↵
n

= 0, then x 2 Z and (�f)(x) = 0; if ↵
n

6= 0, then x 2 X \ Z and
(�f)(x) = �↵

n

6= 0.
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9. Let X be the vector space of all real polynomials of a real variable and of degree less
than a given n, together with the polynomial x = 0 (whose degree is left undefined
in the usual discussion of degree). Let f(x) = x(k)(a), the value of the kth derivative
(k fixed) of x 2 X at a fixed a 2 R. Show that f is a linear functional on X.

Solution: This follows from the algebra rules of di↵erentiation. More precisely,
for any x, y 2 X and scalars ↵, �,

f(↵x+ �y) = (↵x+ �y)(k)(a) = ↵x(k)(a) + �y(k)(a) = ↵f(x) + �f(y).

10. Let Z be a proper subspace of an n-dimensional vector space X, and let x0 2 X \Z.
Show that there is a linear functional f on X such that f(x0) = 1 and f(x) = 0 for
all x 2 Z.

Solution: Fix an nonzero x0 2 X \ Z, note that x0 = 0 then such a functional
doesn’t exist since f(x0) = 0. Let X be an n-dimensional vector space, and Z be
anm-dimensional subspace ofX, withm < n. Choose a basis A = {z1, . . . , zm} of
Z, here we can obtain a basis B = {z1, . . . , zm, zm+1, . . . , zn} of X with z

m+1 = x0,
where B is obtained by extending A using sifting method. Any x 2 X can be
written uniquely as

x = ↵1z1 + . . .+ ↵
m

z
m

+ ↵
m+1x0 + ↵

m+2zm+2 + . . .+ ↵
n

z
n

.

Consider the linear functional f : X �! K defined by f(x) = ↵
m+1 + . . . + ↵

n

,
where ↵

j

is the j-th scalar of x with respect to the basis B for all j = m+1, . . . , n.
We claim that f(x0) = 1 and f(Z) = 0. Indeed,

• If x = x0, then ↵m+1 = 1 and ↵
j

= 0 for all j 6= m+ 1.

• If x 2 Z, then ↵
j

= 0 for all j = m+ 1, . . . , n.

• If x 2 X \ Z, at least one of {↵
m+1, . . . ,↵n

} is non-zero.

Remark : The functional f we constructed here is more tight, in the sense that
N (f) = Z. If we only require that Z ⇢ N (f), then f(x) = ↵

m+1 will do the job.

11. If x and y are di↵erent vectors in a finite dimensional vector space X, show that
there is a linear functional f on X such that f(x) 6= f(y).

Solution: Let X be an n-dimensional vector space and {e1, . . . , en} a basis of
X. Any x, y 2 X can be written uniquely as

x =
n

X

j=1

↵
j

e
j

and y =
n

X

j=1

�
j

e
j

.
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Since x 6= y, there exists at least one j0 2 {1, . . . , n} such that ↵
j0 6= �

j0 . Consider
the linear functional f : X �! K defined by f(e

j

) = �
jj0 . Using linearity of f ,

f(x) = f

 

n

X

j=1

↵
j

e
j

!

=
n

X

j=1

↵
j

f(e
j

) = ↵
j0 .

f(y) = f

 

n

X

j=1

�
j

e
j

!

=
n

X

j=1

�
j

f(e
j

) = �
j0 .

Clearly, f(x) 6= f(y).

12. If f1, . . . , fp are linear functionals on an n-dimensional vector space X, where p < n,
show that there is a vector x 6= 0 in X such that f1(x) = 0, . . . , f

p

(x) = 0. What
consequences does this result have with respect to linear equations?

Solution:

13. (Linear extension) Let Z be a proper subspace of an n-dimensional vector space
X, and let f be a linear functional on Z. Show that f can be extended linearly to
X, that is, there is a a linear functional f̃ on X such that f̃ |

Z

= f .

Solution:

14. Let the functional f on R2 be defined by f(x) = 4⇠1�3⇠2, where x = (⇠1, ⇠2). Regard
R2 as the subspace of R3 given by ⇠3 = 0. Determine all linear extensions f̃ of f from
R2 to R3.

Solution:

15. Let Z ⇢ R3 be the subspace represented by ⇠2 = 0 and let f on Z be defined by

f(x) =
⇠1 � ⇠3

2
. Find a linear extension f̃ of f to R3 such that f̃(x0) = k (a given

constant), where x0 = (1, 1, 1). Is f̃ unique?

Solution:
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