Contents

1 Metric Spaces 2
1.1 Metric Space. 2
1.2 Further Examples of Metric Spaces. 8
1.3 Open Set, Closed Set, Neighbourhood. 15
1.4 Convergence, Cauchy Sequence, Completeness, 22
1.5 Examples. Completeness Proofs. 27
1.6 Completion of Metric Spaces. 35

1 Metric Spaces

1.1 Metric Space.

Definition 1.1.1.

1. A metric, d on X is a function defined on $X \times X$ such that for all $x, y, z \in X$, we have:
(M1) d is real-valued, finite and nonnegative.
(M2) $d(x, y)=0$ if and only if $x=y$.
(M3) $d(x, y)=d(y, x)$.
(Symmetry).
(M4) $d(x, y) \leq d(x, z)+d(z, y)$.
(Triangle Inequality).
2. A metric subspace (Y, \tilde{d}) of (X, d) is obtained if we take a subset $Y \subset X$ and restrict d to $Y \times Y$; thus the metric on Y is the restriction

$$
\tilde{d}=\left.d\right|_{Y \times Y} .
$$

\tilde{d} is called the metric induced on Y by d.
3. We take any set X and on it the so-called discrete metric for X, defined by

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

This space (X, d) is called a discrete metric space.

- Discrete metric space is often used as (extremely useful) counterexamples to illustrate certain concepts.

1. Show that the real line is a metric space.

Solution: For any $x, y \in X=\mathbb{R}$, the function $d(x, y)=|x-y|$ defines a metric on $X=\mathbb{R}$. It can be easily verified that the absolute value function satisfies the axioms of a metric.
2. Does $d(x, y)=(x-y)^{2}$ define a metric on the set of all real numbers?

Solution: No, it doesn't satisfy the triangle inequality. Choose $x=3, y=1$ and $z=2$, then

$$
d(3,1)=(3-1)^{2}=2^{2}=4
$$

but

$$
d(3,2)+d(2,1)=(3-2)^{2}+(2-1)^{2}=2 .
$$

3. Show that $d(x, y)=\sqrt{|x-y|}$ defines a metric on the set of all real numbers.

Solution: Fix $x, y, z \in X=\mathbb{R}$, we need to verify the axioms of a metric. (M1) to (M3) follows easily from properties of absolute value. To verify (M4), for any $x, y, z \in \mathbb{R}$ we have

$$
\begin{aligned}
{[d(x, y)]^{2}=|x-y| } & \leq|x-z|+|z-y| \\
& \leq|x-z|+|z-y|+2 \sqrt{|x-z|} \sqrt{|z-y|} \\
& =(\sqrt{|x-z|}+\sqrt{|z-y|})^{2} \\
& =\left[[d(x, z)+d(z, y)]^{2} .\right.
\end{aligned}
$$

Taking square root on both sides yields the triangle inequality.
4. Find all metrics on a set X consisting of two points. Consisting of one point only.

Solution: If X has only two points, then the triangle inequality property is a consequence of (M1) to (M3). Thus, any functions satisfy (M1) to (M3) is a metric on X. If X has only one point, say, x_{0}, then the symmetry and triangle inequality property are both trivial. However, since we require $d\left(x_{0}, x_{0}\right)=0$, any nonnegative function $f(x, y)$ such that $f\left(x_{0}, x_{0}\right)=0$ is a metric on X.
5. Let d be a metric on X. Determine all constants k such that the following is a metric on X
(a) $k d$,

Solution: First, note that if X has more than one point, then the zero function cannot be a metric on X; this implies that $k \neq 0$. A simple calculation shows that any positive real numbers k lead to $k d$ being a metric on X.
(b) $d+k$.

Solution: For $d+k$ to be a metric on X, it must satisfy (M2). More precisely, if $x=y$, then $d(x, y)+k$ must equal to 0 ; but since d is a metric on X, we have that $d(x, y)=0$. This implies that $d(x, y)+k=k=0$. Thus, k must be 0 .
6. Show that $d(x, y)=\sup _{j \in \mathbb{N}}\left|\xi_{j}-\eta_{j}\right|$ satisfies the triangle inequality for any x, y in l^{∞}.

Solution: Fix $x=\left(\xi_{j}\right), y=\left(\eta_{j}\right)$ and $z=\left(\zeta_{j}\right)$ in l^{∞}. Usual triangle inequality on real numbers yields

$$
\begin{aligned}
\left|\xi_{j}-\eta_{j}\right| & \leq\left|\xi_{j}-\zeta_{j}\right|+\left|\zeta_{j}-\eta_{j}\right| \\
& \leq \sup _{j \in \mathbb{N}}\left|\xi_{j}-\zeta_{j}\right|+\sup _{j \in \mathbb{N}}\left|\zeta_{j}-\eta_{j}\right| \\
& =d(x, z)+d(z, y) .
\end{aligned}
$$

Taking supremum over $j \in \mathbb{N}$ on both sides gives the desired inequality.
7. If A is the subspace of l^{∞} consisting of all sequences of zeros and ones, what is the induced metric on A ?

Solution: For any distinct $x, y \in A, d(x, y)=1$ since they are sequences of zeros and ones. Thus, the induced metric on A is the discrete metric.
8. Show that another metric \tilde{d} on $C[a, b]$ is defined by

$$
\tilde{d}(x, y)=\int_{a}^{b}|x(t)-y(t)| d t .
$$

Solution: (M1) and (M3) are satisfied, as we readily see. For (M4),

$$
\begin{aligned}
d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t & \leq \int_{a}^{b}|x(t)-z(t)|+|z(t)-y(t)| d t \\
& =d(x, z)+d(z, y)
\end{aligned}
$$

For (M2), the if statement is obvious. For the only if statement, suppose $d(x, y)=$ 0 . Then

$$
\int_{a}^{b}|x(t)-y(t)| d t=0 \Longrightarrow|x(t)-y(t)|=0 \text { for all } t \in[a, b]
$$

since the integrand $|x-y|$ is a continuous function on $[a, b]$.
9. Show that the discrete metric is in fact a metric.

Solution: (M1) to (M4) can be checked easily using definition of the discrete metric.
10. (Hamming distance) Let X be the set of all ordered triples of zeros and ones. Show that X consists of eight elements and a metric d on X is defined by $d(x, y)=$
number of places where x and y have different entries. (This space and similar spaces of n-tuples play a role in switching and automata theory and coding. $d(x, y)$ is called the Hamming distance between x and y.

Solution: X has $2^{3}=8$ elements. Consider the function d defined above. (M1) to (M3) follows easily by definition. Verifying (M4) is a little tricky, but still doable.

- Note that (M4) is trivial if $x, y, z \in X$ are not distinct, so suppose they are distinct; this assumption together with definiton of d both imply that $d(x, y), d(x, z), d(z, y)$ has 1 as their mininum and 3 as their maximum.
- (M4) is trivial if $d(x, y)=1$ or $d(x, y)=2$, so consider the case when $d(x, y)=3$. It can then be shown that for any $z \neq x, y$, we have that $d(x, z)+d(z, y)=3$.

Thus, (M4) is satisfied for any $x, y, z \in X$ and we conclude that d is a metric on X.
11. Prove the generalised triangle inequality.

$$
d\left(x_{1}, x_{n}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right) .
$$

Solution: We prove the generalised triangle inequality by induction. The case $n=3$ follows from definition of a metric. Suppose the statement is true for $n=k$. For $n=k+1$,

$$
\begin{aligned}
d\left(x_{1}, x_{k+1}\right) & \leq d\left(x_{1}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right) \\
& \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{k-1}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right)
\end{aligned}
$$

where the last inequality follows from the induction hypothesis. Since $k \geq 3$ is arbitrary, the statement follows from induction.
12. (Triangle inequality) The triangle inequality has several useful consequences. For instance, using the generalised triangle inequality, show that

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w) .
$$

Solution: Suppose (X, d) is a metric space. For any x, y, z, w in X, the generalised triangle inequality yields

$$
\begin{aligned}
d(x, y) & \leq d(x, z)+d(z, w)+d(w, y) \\
\Longrightarrow d(x, y)-d(z, w) & \leq d(x, z)+d(w, y)
\end{aligned}
$$

$$
\begin{array}{rlr}
& =d(x, z)+d(y, w) & {[\text { by }(\mathrm{M} 3)] .} \\
d(z, w) & \leq d(z, x)+d(x, y)+d(y, w) & \\
\Longrightarrow d(z, w)-d(x, y) & \leq d(z, x)+d(y, w) & \\
& =d(x, z)+d(y, w) & {[\text { by }(\mathrm{M} 3)] .}
\end{array}
$$

Combining these two inequalities yields the desired statement.
13. Using the triangle inequality, show that

$$
|d(x, z)-d(y, z)| \leq d(x, y)
$$

Solution: Suppose (X, d) is a metric space. For any x, y, z in X, (M4) yields:

$$
\begin{aligned}
d(x, z) & \leq d(x, y)+d(y, z) \\
\Longrightarrow d(x, z)-d(y, z) & \leq d(x, y) \\
d(y, z) & \leq d(y, x)+d(x, z) \\
\Longrightarrow d(y, z)-d(x, z) & \leq d(y, x)=d(x, y) \quad \text { by (M3). }
\end{aligned}
$$

Combining these two inequalities yields the desired statement.
14. (Axioms of a metric) (M1) to (M4) could be replaced by other axioms without changing the definition. For instance, show that (M3) and (M4) could be obtained from (M2) and

$$
d(x, y) \leq d(z, x)+d(z, y) .
$$

Solution: We first prove (M3). Fix $x, y \in X$. Choose $z=y$, then

$$
\begin{aligned}
d(x, y)-d(y, x) & \leq d(z, x)+d(z, y)-d(y, x) \\
& =d(y, x)+d(y, y)-d(y, x)=0 \text { from (M2). }
\end{aligned}
$$

Choose $z=x$, then

$$
\begin{aligned}
d(y, x)-d(x, y) & \leq d(z, y)+d(z, x)-d(x, y) \\
& =d(x, y)+d(x, x)-d(x, y)=0 \text { from (M2). }
\end{aligned}
$$

Combining these two inequalities gives $|d(x, y)-d(y, x)| \leq 0 \Longrightarrow d(x, y)=$ $d(y, x)$ for any $x, y \in X$.

To prove (M4), we apply (\dagger) twice. More precisely, for any $x, y, z \in X$,

$$
\begin{aligned}
d(x, y) & \leq d(z, x)+d(z, y) \\
& \leq d(w, z)+d(w, x)+d(z, y)
\end{aligned}
$$

(M4) follows from (M2) and choosing $w=x$.
15. Show that the nonnegativity of a metric follows from (M2) to (M4).

Solution: The only inequality we have is (M4), so we start from (M4). Choose any $x \in X$. If $z=x$, then for any $y \in X$,

$$
\begin{aligned}
d(x, z) & \leq d(x, y)+d(y, z) & & {[\text { from (M4) }] } \\
\Longrightarrow d(x, x) & \leq d(x, y)+d(y, x)=2 d(x, y) & & {[\text { from (M3) }] } \\
\Longrightarrow d(x, y) & \geq 0 & & {[\text { from (M2) }] }
\end{aligned}
$$

Since $x, y \in X$ were arbitrary, this shows the nonnegativity of a metric.

1.2 Further Examples of Metric Spaces.

We begin by stating three important inequalities that are indispensable in various theoretical and practical problems.

$$
\begin{gathered}
\text { Holder inequality: } \sum_{j=1}^{\infty}\left|\xi_{j} \eta_{j}\right| \leq\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{m=1}^{\infty}\left|\eta_{m}\right|^{q}\right)^{\frac{1}{q}} \\
\text { where } p>1 \text { and } \frac{1}{p}+\frac{1}{q}=1
\end{gathered}
$$

Cauchy-Schwarz inequality: $\sum_{j=1}^{\infty}\left|\xi_{j} \eta_{j}\right| \leq\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{m=1}^{\infty}\left|\eta_{m}\right|^{2}\right)^{\frac{1}{2}}$.
Minkowski inequality: $\left(\sum_{j=1}^{\infty}\left|\xi_{j}+\eta_{j}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{m=1}^{\infty}\left|\eta_{m}\right|^{p}\right)^{\frac{1}{p}}$, where $p>1$.

1. For $x=\left(\xi_{j}\right)$ and $y=\left(\eta_{j}\right)$, the function

$$
d(x, y)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\left|\xi_{j}-\eta_{j}\right|}{1+\left|\xi_{j}-\eta_{j}\right|}
$$

defines a metric on the sequence space s. Show that we can obtain another metric by replacing $1 / 2^{j}$ with $\mu_{j}>0$ such that $\sum \mu_{j}$ converges.

Solution: The proof for triangle inequality is identical. To ensure finiteness of d, we require that $\sum \mu_{j}$ converges since

$$
d(x, y)=\sum_{j=1}^{\infty} \mu_{j} \frac{\left|\xi_{j}-\eta_{j}\right|}{1+\left|\xi_{j}-\eta_{j}\right|}<\sum_{j=1}^{\infty} \mu_{j}<\infty
$$

2. Suppose we have that for any α, β positive numbers,

$$
\alpha \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q} .
$$

where p, q are conjugate exponents. Show that the geometric mean of two positive numbers does not exceed the arithmetic mean.

Solution: Choose $p=q=2$, which are conjugate exponents since $\frac{1}{2}+\frac{1}{2}=1$; we then have $a b \leq \frac{a^{2}}{2}+\frac{b^{2}}{2}$. Multiplying by 2 and adding $2 a b$ to both sides yield:

$$
2 a b+2 a b \leq a^{2}+b^{2}+2 a b
$$

$$
\begin{aligned}
4 a b & \leq(a+b)^{2} \\
a b & \leq\left(\frac{a+b}{2}\right)^{2}
\end{aligned}
$$

Since $a b$ is a positive quantity, the desired statement follows from taking square root of both sides.
3. Show that the Cauchy-Schwarz inequality for sums implies

$$
\left(\left|\xi_{1}\right|+\cdots+\left|\xi_{n}\right|\right)^{2} \leq n\left(\left|\xi_{1}\right|^{2}+\ldots+\left|\xi_{n}\right|^{2}\right)
$$

Solution: An equivalent formulation of the Cauchy-Schwarz inequality for (finite) sums is

$$
\left(\sum_{j=1}^{n}\left|\xi_{j} \eta_{j}\right|\right)^{2} \leq\left(\sum_{k=1}^{n}\left|\xi_{k}\right|^{2}\right)\left(\sum_{m=1}^{n}\left|\eta_{m}\right|^{2}\right)
$$

Choosing $\eta_{j}=1$ for all $j \geq 1$ yields the desired inequality.
4. (Space l^{p}) Find a sequence which converges to 0 , but is not in any space l^{p}, where $1 \leq p<+\infty$.

Solution: Consider the sequence $\left(b_{j}\right)$ with numbers $a(k), N(k)$ times, where for $k \geq 1, a(k)=\frac{1}{k}$ and $N(k)=2^{k}$, i.e.

By construction, $\left(b_{j}\right) \longrightarrow 0$ as $j \longrightarrow \infty$ and $\sum_{j=1}^{\infty}\left|b_{j}\right|^{p}=\sum_{j=1}^{\infty} 2^{j}\left(\frac{1}{j}\right)^{p}$. However, since for all $p \geq 1, \frac{2^{j}}{j^{p}} \nrightarrow 0$ as $j \longrightarrow \infty$, Divergence Test for Series implies that the series $\sum_{j=1}^{\infty}\left|b_{j}\right|^{p}$ diverges for all $p \geq 1$. By definition, this means that $\left(b_{j}\right) \notin l^{p}$ for all $p \geq 1$.
5. Find a sequence x which is in l^{p} with $p>1$ but $x \notin l^{1}$.

Solution: The sequence $\left(a_{n}\right)=\left(\frac{1}{n}\right)$ belongs to l^{p} with $p>1$ but not l^{1}.
6. (Diameter, bounded set) The diameter $\delta(A)$ of a nonempty set A in a metric space (X, d) is defined to be

$$
\delta(A)=\sup _{x, y \in A} d(x, y)
$$

A is said to be bounded if $\delta(A)<\infty$. Show that $A \subset B$ implies $\delta(A) \leq \delta(B)$.

Solution: This follows from property of least upper bound.
7. Show that $\delta(A)=0$ if and only if A consists of a single point.

Solution: Suppose $\delta(A)=0$, this means that $d(x, y)=0$ for all $x, y \in A$; (M2) then implies $x=y$, i.e. A has only one element. Conversely, suppose that A consists of a single point, say x; (M2) implies that $\delta(A)=0$ since $d(x, x)=0$.
8. (Distance between sets) The distance $D(A, B)$ between two nonempty subsets A and B of a metric space (X, d) is defined to be

$$
D(A, B)=\inf _{\substack{a \in A \\ b \in B}} d(a, b) .
$$

Show that D does not define a metric on the power set of X. (For this reason we use another symbol, D, but one that still reminds us of d.)

Solution: Consider $X=\{1,2,3\}$ with d being the absolute value function, and consider its power set $A=\{1\}$ and $B=\{1,2\}$. By construction, $D(A, B)=0$ but $A \neq B$.
9. If $A \cap B \neq \varnothing$, show that $D(A, B)=0$ in Problem 8. What about the converse?

Solution: If $A \cap B \neq \varnothing$, then for any $x \in A \cap B$,

$$
0 \leq D(A, B) \leq d(x, x)=0 \Longrightarrow D(A, B)=0
$$

The converse does not hold. Consider $X=\mathbb{Q}$, with $A=\{0\}$ and $B=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$.
Then $D(A, B)=\lim _{n \rightarrow \infty} d(0,1 / n)=\lim _{n \rightarrow \infty} \frac{1}{n}=0$, but $A \cap B=\varnothing$.
10. The distance $D(x, B)$ from a point x to a non-empty subset B of (X, d) is defined to be

$$
D(x, B)=\inf _{b \in B} d(x, b)
$$

in agreement with Problem 8. Show that for any $x, y \in X$,

$$
|D(x, B)-D(y, B)| \leq d(x, y)
$$

Solution: Let $x, y \in X$. For any $z \in B$, we have

$$
\begin{aligned}
& D(x, B) \leq d(x, z) \leq d(x, y)+d(y, z) . \\
& D(y, B) \leq d(y, z) \leq d(y, x)+d(x, z) .
\end{aligned}
$$

Taking infimum over all $z \in B$ on the RHS of both inequalities yields

$$
\begin{aligned}
& D(x, B) \leq d(x, y)+D(y, B) \\
& D(y, B) \leq d(x, y)+D(x, B)
\end{aligned}
$$

Rearranging and combining these two together gives the desired inequality.

Remark: This result says that for any nonempty set $B \subset X$, the function $x \mapsto$ $D(x, B)$ is Lipschitz with Lipschitz constant 1.
11. If (X, d) is any metric space, show that another metric on X is defined by

$$
\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

and X is bounded in the metric \tilde{d}.

Solution: Note that X is bounded in the metric \tilde{d} since $\tilde{d}(x, y) \leq 1<\infty$. (M1) to (M3) are satisfied, as we readily see. To show that \tilde{d} satisfies (M4), consider the auxiliary function f defined on \mathbb{R} by $f(t)=\frac{t}{1+t}$. Differentiation gives $f^{\prime}(t)=\frac{1}{(1+t)^{2}}$, which is positive for $t>0$. Hence f is monotone increasing. Consequently, $d(x, y) \leq d(x, z)+d(z, y)$ implies

$$
\begin{aligned}
\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)} & \leq \frac{d(x, z)+d(z, y)}{1+d(x, z)+d(z, y)} \\
& =\frac{d(x, z)}{1+d(x, z)+d(z, y)}+\frac{d(z, y)}{1+d(x, z)+d(z, y)} \\
& \leq \frac{d(x, z)}{1+d(x, z)}+\frac{d(z, y)}{1+d(z, y)} \\
& =\tilde{d}(x, z)+\tilde{d}(z, y) .
\end{aligned}
$$

12. Show that the union of two bounded sets A and B in a metric space is a bounded set. (Definition in Problem 6.)

Solution: Let $X=A \cup B$, we need to show $\delta(X)=\sup _{x, y \in X} d(x, y)<\infty$. Observe that if x, y are both in A or B, then $d(x, y)<\infty$ by assumption, so WLOG it suffices to prove that $\sup _{x \in A, y \in B} d(x, y)<\infty$.

- Consider the first case where $A \cap B \neq \varnothing$. For any fixed $z \in A \cap B$,

$$
d(x, y) \leq d(x, z)+d(z, y) \leq \delta(A)+\delta(B)<\infty .
$$

The claim follows by taking supremum over $x \in A, y \in B$ in both sides of the inequality.

- Consider the second case where $A \cap B=\varnothing$. For every $\varepsilon>0$, there exists $x^{*} \in A$ and $y^{*} \in B$ such that $d\left(x^{*}, y^{*}\right) \leq D(A, B)+\varepsilon$. For any $x \in A$ and $y \in B$,

$$
\begin{aligned}
d(x, y) & \leq d\left(x, x^{*}\right)+d\left(x^{*}, y^{*}\right)+d\left(y^{*}, y\right) \\
& \leq \delta(A)+D(A, B)+\varepsilon+\delta(B) .
\end{aligned}
$$

Letting $\varepsilon \longrightarrow 0$, and taking supremum over $x \in A, y \in B$, we obtain the desired result.
13. (Product of metric spaces) The Cartesian product $X=X_{1} \times X_{2}$ of two metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ can be made into a metric space (X, d) in many ways. For instance, show that a metric d is defined by

$$
d(x, y)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)
$$

where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$.

Solution:

- (M1) is satisfied since we are summing two real-valued, finite and nonnegative functions.
- Suppose $d(x, y)=0$, this is equivalent to $d_{1}\left(x_{1}, y_{1}\right)=d_{2}\left(x_{2}, y_{2}\right)=0$ since d_{1} and d_{2} are both nonnegative functions. This implies $x_{1}=y_{1}$ and $x_{2}=y_{2}$ or equivalently $x=y$. Conversely, suppose $x=y$, then

$$
x_{1}=y_{1} \Longrightarrow d_{1}\left(x_{1}, y_{1}\right)=0 \quad \text { and } \quad x_{2}=y_{2} \Longrightarrow d_{2}\left(x_{2}, y_{2}\right)=0
$$

Consequently, $d(x, y)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)=0$.

- (M3) is satisfied since for any $x, y \in X_{1} \times X_{2}$,

$$
d(x, y)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)=d_{1}\left(y_{1}, x_{1}\right)+d_{2}\left(y_{2}, x_{2}\right)=d(y, x) .
$$

- (M4) follows from combining triangle inequalities of d_{1} and d_{2}. More precisely, let $z=\left(z_{1}, z_{2}\right) \in X_{1} \times X_{2}$, then we have from (M4) of d_{1} and d_{2} :

$$
\begin{aligned}
d_{1}\left(x_{1}, y_{1}\right) & \leq d_{1}\left(x_{1}, z_{1}\right)+d_{1}\left(z_{1}, y_{1}\right) . \\
d_{2}\left(x_{2}, y_{2}\right) & \leq d_{2}\left(x_{2}, z_{2}\right)+d_{2}\left(z_{2}, y_{2}\right) . \\
\Longrightarrow d(x, y) & =d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right) \\
& \leq d_{1}\left(x_{1}, z_{1}\right)+d_{1}\left(z_{1}, y_{1}\right)+d_{2}\left(x_{2}, z_{2}\right)+d_{2}\left(z_{2}, y_{2}\right) \\
& =\left[d_{1}\left(x_{1}, z_{1}\right)+d_{2}\left(x_{2}, z_{2}\right)\right]+\left[d_{1}\left(z_{1}, y_{1}\right)+d_{2}\left(z_{2}, y_{2}\right)\right] \\
& =d(x, z)+d(z, y) .
\end{aligned}
$$

14. Show that another metric on X in Problem 13 is defined by

$$
\tilde{d}(x, y)=\sqrt{d_{1}\left(x_{1}, y_{1}\right)^{2}+d_{2}\left(x_{2}, y_{2}\right)^{2}} .
$$

Solution: A similar argument in Problem 13 shows that (M1) to (M3) are satisfied. Let $z=\left(z_{1}, z_{2}\right) \in X_{1} \times X_{2}$, then we have from (M4) of d_{1} and d_{2} :

$$
\begin{aligned}
& d_{1}\left(x_{1}, y_{1}\right) \leq d_{1}\left(x_{1}, z_{1}\right)+d_{1}\left(z_{1}, y_{1}\right) . \\
& d_{2}\left(x_{2}, y_{2}\right) \leq d_{2}\left(x_{2}, z_{2}\right)+d_{2}\left(z_{2}, y_{2}\right) .
\end{aligned}
$$

Squaring both sides yields:

$$
\begin{aligned}
d_{1}\left(x_{1}, y_{1}\right)^{2} & \leq d_{1}\left(x_{1}, z_{1}\right)^{2}+d_{1}\left(z_{1}, y_{1}\right)^{2}+2 d_{1}\left(x_{1}, z_{1}\right) d_{1}\left(z_{1}, y_{1}\right) \\
d_{2}\left(x_{2}, y_{2}\right)^{2} & \leq d_{2}\left(x_{2}, z_{2}\right)^{2}+d_{2}\left(z_{2}, y_{2}\right)^{2}+2 d_{2}\left(x_{2}, z_{2}\right) d_{2}\left(z_{2}, y_{2}\right)
\end{aligned}
$$

Summing these two inequalities and applying definition of \tilde{d}, we obtain:

$$
\begin{aligned}
\tilde{d}(x, y)^{2} & \leq \tilde{d}(x, z)^{2}+\tilde{d}(z, y)^{2}+2\left[d_{1}\left(x_{1}, z_{1}\right) d_{1}\left(z_{1}, y_{1}\right)+d_{2}\left(x_{2}, z_{2}\right) d_{2}\left(z_{2}, y_{2}\right)\right] \\
& =\tilde{d}(x, z)^{2}+\tilde{d}(z, y)^{2}+2 \sum_{j=1}^{2} d_{j}\left(x_{j}, z_{j}\right) d_{j}\left(z_{j}, y_{j}\right) \\
& \leq \tilde{d}(x, z)^{2}+\tilde{d}(z, y)^{2}+2\left(\sum_{j=1}^{2} d_{j}\left(x_{j}, z_{j}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{2} d_{j}\left(z_{j}, y_{j}\right)^{2}\right)^{\frac{1}{2}} \\
& =\tilde{d}(x, z)^{2}+\tilde{d}(z, y)^{2}+2 \tilde{d}(x, z) \tilde{d}(z, y) \\
& =[\tilde{d}(x, z)+\tilde{d}(z, y)]^{2}
\end{aligned}
$$

where the inequality follows from Cauchy-Schwarz inequality for sums. (M4) follows from taking square root of both sides.
15. Show that a third metric on X in Problem 13 is defined by

$$
\hat{d}(x, y)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\} .
$$

Solution: A similar argument in Problem 13 shows that (M1) to (M3) are satisfied. Let $z=\left(z_{1}, z_{2}\right) \in X_{1} \times X_{2}$, then

$$
\begin{aligned}
\hat{d}(x, y) & =\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\} \\
& \leq \max \left\{d_{1}\left(x_{1}, z_{1}\right)+d_{1}\left(z_{1}, y_{1}\right), d_{2}\left(x_{2}, z_{2}\right)+d_{2}\left(z_{2}, y_{2}\right)\right\} \\
& \leq \max \left\{d_{1}\left(x_{1}, z_{1}\right), d_{2}\left(z_{2}, z_{2}\right)\right\}+\max \left\{d_{1}\left(z_{1}, y_{1}\right), d_{2}\left(z_{2}, y_{2}\right)\right\} \\
& =\hat{d}(x, z)+\hat{d}(z, y) .
\end{aligned}
$$

where we repeatedly used the fact that $|a| \leq \max \{|a|,|b|\}$ for any $a, b \in \mathbb{R}$.
(The metrics in Problem 13 to 15 are of practical importance, and other metrics on X are possible.)

1.3 Open Set, Closed Set, Neighbourhood.

Definition 1.3.1.

1. Given a point $x_{0} \in X$ and a real number $r>0$, we define three types of sets:

$$
\begin{array}{ll}
B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\} & \text { (Open ball). } \\
\tilde{B}_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right) \leq r\right\} & \text { (Closed ball). } \\
S_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)=r\right\} & \text { (Sphere). }
\end{array}
$$

In all three cases, x_{0} is called the center and r the radius.
2. A subset M of a metric space X is said to be open if it contains a ball about each of its points. A subset K of X is said to be closed if its complement (in X) is open, that is, $K^{C}=X \backslash K$ is open.
3. We call x_{0} an interior point of a set $M \subset X$ if M is a neighbourhood of x_{0}. The interior of M is the set of all interior points of M and may be denoted by $\operatorname{Int}(M)$.

- By neighbourhood of x_{0} we mean any subset of X which contains an ε-neighbourhood of x_{0}.
- $\operatorname{Int}(M)$ is open and is the largest open set contained in M.

Definition 1.3.2. A topological space (X, τ) is a set X together with a collection τ of subsets of X such that τ satisfies the following properties:
(a) $\varnothing \in \tau, X \in \tau$.
(b) The union of any members of τ is a member of τ.
(c) The intersection of finitely many members of τ is a member of τ.

- From this definition, we have that a metric space is a topological space.

Definition 1.3.3 (Continuous mapping). Let $X=(X, d)$ and $Y=(Y, \tilde{d})$ be metric spaces. A mapping $T: X \longrightarrow Y$ is said to be continuous at a point $x_{0} \in X$ if for every $\varepsilon>0$, there is a $\delta>0$ such that

$$
\tilde{d}\left(T x, T x_{0}\right)<\varepsilon \quad \text { for all } x \text { satisfying } d\left(x, x_{0}\right)<\delta .
$$

T is said to be continuous if it is continuous at every point of X.

Theorem 1.3.4 (Continuous mapping). A mapping T of a metric space X into a metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X.

Definition 1.3.5. Let M be a subset of a metric space X. A point x_{0} of X (which may or may not be a point of M) is called an accumulation point of M (or limit point of $M)$ if every neighbourhood of x_{0} contains at least one point $y \in M$ distinct from x_{0}. The set consisting of the points of M and the accumulation points of M is called the closure of M and is denoted by \bar{M}. It is the smallest closed set containing M.

Definition 1.3.6 (Dense set, separable space).

1. A subset M of a metric space X is said to be dense in X if $\bar{M}=X$.

- Hence, if M is dense in X, then every ball in X, no matter how small, will contain points of M; in other words, in this case there is no point $x \in X$ which has a neighbourhood that does not contain points of M.

2. X is said to be separable if it has a countable dense subset of X.
3. Justify the terms "open ball" and "closed ball" by proving that
(a) any open ball is an open set.

Solution: Let (X, d) be a metric space. Consider an open ball $B_{r}\left(x_{0}\right)$ with both center $x_{0} \in X$ and radius $r>0$ fixed. For any $x \in B_{r}\left(x_{0}\right)$, we have $d\left(x, x_{0}\right)<r$. We claim that $B_{\varepsilon}(x)$ with $\varepsilon=r-d\left(x, x_{0}\right)>0$ is contained in $B_{r}\left(x_{0}\right)$. Indeed, for any $y \in B_{\varepsilon}(x)$,

$$
\begin{aligned}
d\left(y, x_{0}\right) & \leq d(y, x)+d\left(x, x_{0}\right) \\
& <\varepsilon+d\left(x, x_{0}\right) \\
& =\varepsilon+r-\varepsilon=r .
\end{aligned}
$$

Since $x \in B_{r}\left(x_{0}\right)$ was arbitrary, this shows that $B_{r}\left(x_{0}\right)$ contains a ball about each of its points, and thus is an open set in X. Since $x_{0} \in X$ and $r>0$ were arbitrary, this shows that any open ball in X is an open set in X.
(b) any closed ball is a closed set.

Solution: Let (X, d) be a metric space. Consider a closed ball $\tilde{B}_{r}\left(x_{0}\right)$ with both center $x_{0} \in X$ and radius $r>0$ fixed. To show that it is closed in X, we need to show that $\tilde{B}_{r}\left(x_{0}\right)^{C}=X \backslash \tilde{B}_{r}\left(x_{0}\right)$ is open in X. For any $x \in \tilde{B}_{r}\left(x_{0}\right)^{C}$, we have $d\left(x, x_{0}\right)>r$. We claim that $B_{\varepsilon}(x)$ with $\varepsilon=d\left(x, x_{0}\right)-r>0$ is contained in $\tilde{B}_{r}\left(x_{0}\right)^{C}$. Indeed, for any $y \in B_{\varepsilon}(x)$, triangle inequality of a metric gives:

$$
\begin{aligned}
d\left(x, x_{0}\right) & \leq d(x, y)+d\left(y, x_{0}\right) \\
\Longrightarrow d\left(y, x_{0}\right) & \geq d\left(x, x_{0}\right)-d(x, y) \\
& =d\left(x, x_{0}\right)-d(y, x) \\
& >d\left(x, x_{0}\right)-\varepsilon=r .
\end{aligned}
$$

Since $x \in \tilde{B}_{r}\left(x_{0}\right)^{C}$ was arbitrary, this shows that $\tilde{B}_{r}\left(x_{0}\right)^{C}$ contains a ball about each of its points, and thus is an open set in X or equivalently $\tilde{B}_{r}\left(x_{0}\right)$ is a closed set in X. Since $x_{0} \in X$ and $r>0$ were arbitrary, this shows that any closed ball in X is a closed set in X.
2. What is an open ball $B_{1}\left(x_{0}\right)$ in \mathbb{R} ? In \mathbb{C} ? In $C[a, b]$?

Solution:

- An open ball $B_{1}\left(x_{0}\right)$ in \mathbb{R} is the open interval $\left(x_{0}-1, x_{0}+1\right)$.
- An open ball $B_{1}\left(x_{0}\right)$ in \mathbb{C} is the open disk $\mathcal{D}=\left\{z \in \mathbb{C}:\left|z-x_{0}\right|<1\right\}$.
- Given $x_{0} \in C[a, b]$, an open ball $B_{1}\left(x_{0}\right)$ in $C[a, b]$ is any continuous function $x \in C[a, b]$ satisfying $\sup _{t \in[a, b]}\left|x(t)-x_{0}(t)\right|<1$.

3. Consider $C[0,2 \pi]$ and determine the smallest r such that $y \in \tilde{B}(x ; r)$, where $x(t)=$ $\sin (t)$ and $y(t)=\cos (t)$.

Solution: We want to maximise $y(t)-x(t)$ over $t \in[0,2 \pi]$. Consider $z(t)=$ $\cos (t)-\sin (t)$, differentiating gives $z^{\prime}(t)=-\sin (t)-\cos (t)$, which is equal to 0 if and only if $\sin (t)+\cos (t)=0$, or

$$
\tan (t)=-1 \Longrightarrow t_{c}=\frac{3 \pi}{4}, \frac{7 \pi}{4} .
$$

Evaluating $z(t)$ at t_{c} gives $z\left(t_{c}\right)= \pm \sqrt{2}$. Thus, the smallest $r>0$ such that $y \in \tilde{B}_{r}(x)$ is $r=\sqrt{2}$.
4. Show that any nonempty set $A \subset(X, d)$ is open if and only if it is a union of open balls.

Solution: Suppose A is a nonempty open subset of X. For any $x \in A$, there exists $\varepsilon_{x}>0$ such that $B_{\varepsilon_{x}}(x) \subset A$. We claim that $\bigcup_{x \in A} B_{\varepsilon_{x}}(x)=A$. It is clear that $A \subset \bigcup_{x \in A} B_{\varepsilon_{x}}(x)$. Suppose $x_{0} \in \bigcup_{x \in A} B_{\varepsilon_{x}}(x)$, then $x_{0} \in B_{\varepsilon_{x_{0}}}\left(x_{0}\right) \subset A \Longrightarrow$ $\bigcup_{x \in A} B_{\varepsilon_{x}}(x) \subset A$. Consequently, A is a union of open balls.

Conversely, suppose $A \subset(X, d)$ is a union of open balls, which is also a union of open sets since open balls are open in X. Let Λ be an indexing set (which might be uncountable), we can write A as $A=\bigcup_{n \in \Lambda} U_{n}$, where U_{n} is open. Fix any $x \in A$, there exists an $j \in \Lambda$ such that $x \in U_{j}$. Since U_{j} is open, there exists an $\varepsilon>0$ such that

$$
x \in B_{\varepsilon}(x) \subset U_{j} \subset \bigcup_{n>0} U_{n}=A .
$$

Since $x \in A$ is arbitrary, $A \subset(X, d)$ is open.
5. It is important to realise that certain sets may be open and closed at the same time.
(a) Show that this is always the case for X and \varnothing.

Solution: \varnothing is open since \varnothing contains no elements. For any $x \in X$, choose $\varepsilon=1>0$, then $B_{\varepsilon}(x) \subset X$ by definition. This immediately implies that \varnothing and X are both closed since $\varnothing^{C}=X$ and $X^{C}=\varnothing$ are both open.
(b) Show that in a discrete metric space X, every subset is open and closed.

Solution: Consider any subset A in X. For any $x \in A$, there exists an open ball around x that is contained in A by the structure of the discrete metric. Indeed, with $0<\varepsilon<1, B_{\varepsilon}(x)=\{x\} \subset A$. Similarly, A is closed by the same argument. Indeed, for any $y \in A^{C}$, with $0<\varepsilon<1, B_{\varepsilon}(y)=\{y\} \subset A^{C}$.
6. If x_{0} is an accumulation point of a set $A \subset(X, d)$, show that any neighbourhood of x_{0} contains infinitely many points of A.

Solution: Denote by N a neighbourhood of x_{0}, by definition it contains an ε neighbourhood of x_{0}. Observe that for $\varepsilon_{j}=\varepsilon / 2^{j},\left\{B_{\varepsilon_{j}}\left(x_{0}\right)\right\}_{j=0}^{\infty}$ are also neighbourhoods of x_{0}. Since x_{0} is an accumulation point of a set $A \subset(X, d)$, by definition each $B_{\varepsilon_{j}}\left(x_{0}\right)$ contains at least one point $y_{j} \in A$ distinct from x_{0}. By construction, $\left\{y_{j}\right\}_{j=0}^{\infty} \subset \bigcup_{j=0}^{\infty} B_{\varepsilon_{j}}\left(x_{0}\right)=B_{\varepsilon}\left(x_{0}\right) \subset N$. Since N was an arbitrary neighbourhood of x_{0}, the statement follows.
7. Describe the closure of each of the following subsets.
(a) The integers on \mathbb{R},
(b) the rational numbers on \mathbb{R},
(c) the complex numbers with rational real and imaginary parts in \mathbb{C},
(d) the disk $\{z||z|<1\} \subset \mathbb{C}$.

Solution: (a) $\mathbb{Z}(b) \mathbb{R}(c) \mathbb{C}(d)$ The closed unit disk $\mathcal{D}=\{z \in C:|z| \leq 1\}$. Note that (b) and (c) follows from the fact that \mathbb{Q} are dense in \mathbb{R}.
8. Show that the closure $\overline{B\left(x_{0} ; r\right)}$ of an open ball $B\left(x_{0} ; r\right)$ in a metric space can differ from the closed ball $\tilde{B}\left(x_{0} ; r\right)$.

Solution: Consider a discrete metric space (X, d), and an open ball $B_{1}(x)=\{x\}$ with $x \in X$. Then $\overline{B_{1}(x)}=\{x\}$ but $\tilde{B}_{1}(x)=X$.
9. Show that
(a) $A \subset \bar{A}$,

Solution: This follows immediately from definition of \bar{A}.
(b) $\overline{\bar{A}}=\bar{A}$,

Solution: It is clear from definition of closure that $\bar{A} \subset \overline{\bar{A}}$. Now suppose $x \in \overline{\bar{A}}$. Either $x \in \bar{A}$ or x is an accumulation point of \bar{A}, but accumulation points of \bar{A} are precisely those of A. Thus in both cases $x \in \bar{A}$ and $\overline{\bar{A}} \subset \bar{A}$. Combining these two set inequalities yields the desired set equality.
(c) $\overline{A \cup B}=\bar{A} \cup \bar{B}$,

Solution: Suppose $x \in \overline{A \cup B}$. Either $x \in A \cup B$, and either

- $x \in A \subset \bar{A} \subset \bar{A} \cup \bar{B}$, or
- $x \in B \subset \bar{B} \subset \bar{A} \cup \bar{B}$, or
- $x \in A \cap B \subset \bar{A} \cap \bar{B} \subset \bar{A} \cup \bar{B}$, since $A \subset \bar{A} \& B \subset \bar{B} \Longrightarrow A \cap B \subset \bar{A} \cap \bar{B}$.
or x is an accumulation point of $A \cup B$, but it is contained in $\bar{A} \cup \bar{B}$ by the same reasoning as above. Thus, $\overline{A \cup B} \subset \bar{A} \cup \bar{B}$.

Now suppose $x \in \bar{A} \cup \bar{B}$. Either

- $x \in \bar{A} \subset \overline{A \cup B}$, since $A \subset A \cup B$, or
- $x \in \bar{B} \subset \overline{A \cup B}$, since $B \subset A \cup B$, or
- $x \in \bar{A} \cap \bar{B} \subset \overline{A \cup B}$, since $A \cap B \subset A \cup B$.

Thus, $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$. Combining these two set inequalities yields the desired set equality.
(d) $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$.

Solution: Suppose $x \in \overline{A \cap B}$. Either $x \in A \cap B \Longrightarrow x \in A \subset \bar{A}$ and $x \in$ $B \subset \bar{B} \Longrightarrow x \in \bar{A} \cap \bar{B}$, or x is an accumulation point of $A \cap B$. This means that x is an accumulation point of both A and B or equivalently $x \in \bar{A} \cap \bar{B}$.
10. A point x not belonging to a closed set $M \subset(X, d)$ always has a nonzero distance from M. To prove this, show that $x \in \bar{A}$ if and only if $D(x, A)=0$; here A is any nonempty subset of X.

Solution: If $x \in A \subset \bar{A}$, then $D(x, A)=0$ since $\inf _{y \in A} d(x, y)$ is attained at $y=x$, so suppose $x \in \bar{A} \backslash A$. By definition x is an accumulation point, so each neighbourhood $B_{\varepsilon}(x)$ of x contains at least one point $y_{\varepsilon} \in A$ distinct from x, with $d\left(y_{\varepsilon}, x\right)<\varepsilon$. Taking $\varepsilon \longrightarrow 0$ gives $D(x, A)=0$.

Conversely, suppose $D(x, A)=\inf _{y \in A} d(x, y)=0$. If this infimum is attained, then $x \in A \subset \bar{A}$, so suppose not. One property of infimum states that for every $\varepsilon>0$, there exists an $y_{\varepsilon} \in A$ such that $d\left(y_{\varepsilon}, x\right)<0+\varepsilon=\varepsilon$. But this implies that x is an accumulation point of A.
11. (Boundary) A boundary point x of a set $A \subset(X, d)$ is a point of X (which may or may not belong to A) such that every neighbourhood of x contains points of A as well as points not belonging to A; and the boundary (or frontier) of A is the set of all boundary points of A. Describe the boundary of
(a) the intervals $(-1,1),[-1,1),[-1,1]$ on \mathbb{R};
(b) the set of all rational numbers \mathbb{Q} on \mathbb{R};
(c) the disks $\{z \in \mathbb{C}:|z|<1\} \subset \mathbb{C}$ and $\{z \in \mathbb{C}:|z| \leq 1\} \subset \mathbb{C}$.

Solution: (a) $\{-1,1\}$. (c) The unit circle on the complex plane \mathbb{C}, $\{z \in \mathbb{C}:|z|=$ $1\}$. (b) Note that the interior of $\mathbb{Q} \subset \mathbb{R}$ is empty since for any $\varepsilon>0$, the open ball $B_{\varepsilon}(x)$ with $x \in \mathbb{Q}$ is not contained in \mathbb{Q}; indeed, $B_{\varepsilon}(x)$ contains at least one irrational number. Since the closure of \mathbb{Q} in $(\mathbb{R},|\cdot|)$ is \mathbb{R}, it follows that the boundary of \mathbb{Q} on \mathbb{R} is \mathbb{R}.
12. (Space $\boldsymbol{B}[\boldsymbol{a}, \boldsymbol{b}]$) Show that $B[a, b], a<b$, is not separable.

Solution: Motivated by the proof of non-separability for the space l^{∞}, consider a subset A of $B[a, b]$ consisting of functions that are defined as follows: for every $c \in[a, b]$, define f_{c} as

$$
f_{c}(t)= \begin{cases}1 & \text { if } t=c \\ 0 & \text { if } t \neq c\end{cases}
$$

It is clear that A is uncountable. Moreover, the metric on $B[a, b]$ shows that any distinct $f, g \in A$ must be of distance 1 apart. If we let each of these functions $f \in A$ be the center of a small ball, say, of radius $\frac{1}{3}$, these balls do not intersect and we have uncountably many of them. If M is any dense set in $B[a, b]$, each of these nonintersecting balls must contain an element of M. Hence M cannot
be countable. Since M was an arbitrary dense subset of $B[a, b]$, this conclude that $B[a, b]$ cannot have countable dense subsets. Consequently, $B[a, b]$ is not separable by definition.

Remark: A general approach to show non-separability is to construct an uncountable family of pairwise disjoint open balls.
13. Show that a metric space X is separable if and only if X has a countable subset Y with the following property: For every $\varepsilon>0$ and every $x \in X$ there is a $y \in Y$ such that $d(x, y)<\varepsilon$.

Solution: Suppose X is separable, by definition X has a countable dense subset Y, with $\bar{Y}=X$. Let $\varepsilon>0$ and fix an $x \in X=\bar{Y}$. Definition of \bar{Y} says that any ε neighbourhood of x contains at least one $y \in Y$ distinct from x, with $d(y, x)<\varepsilon$. Since $x \in X$ was arbitrary, the statement follows.

Conversely, suppose X has a countable subset Y with the property given above. Then any $x \in X$ with that given property is either a point of Y (since then $d(x, x)=0<\varepsilon)$ or an accumulation point of Y. Hence, $\bar{Y}=X$ and since Y is countable, X is separable by definition.
14. (Continuous mapping) Show that a mapping $T: X \longrightarrow Y$ is continuous if and only if the inverse image of any closed set $M \subset Y$ is a closed set in X.

Solution: The statement is a simple application of Theorem 1.5. It is useful to observe that if M is any subset of Y, and M_{0} is the preimage (inverse image) of M under T, then the preimage of $Y \backslash M$ is precisely $X \backslash M_{0}$. More precisely,

$$
\begin{aligned}
M_{0} & =\{x \in X: f(x) \in M\} . \\
X \backslash M_{0}=M_{0}^{C} & =\{x \in X: f(x) \notin M\}=\{x \in X: f(x) \in Y \backslash M\} .
\end{aligned}
$$

Suppose T is continuous. Let $M \subset Y$ be closed and M_{0} be the preimage of M under T. Since $Y \backslash M$ is open in Y, theorem above implies that its preimage $X \backslash M_{0}$ is open in X, or equivalently M_{0} is closed in X. Conversely, suppose the preimage of any closed set $M \subset U$ is a closed set in X. This is equivalent to saying that the preimage of any open set $N \subset U$ is an open set in X (refer to observation above). Thus, theorem above implies that T is continuous.
15. Show that the image of an open set under a continuous mapping need not be open.

Solution: Consider $x(t)=\sin (t)$, then x maps $(0,2 \pi)$ to $[-1,1]$.

1.4 Convergence, Cauchy Sequence, Completeness.

Definition 1.4.1. A sequence $\left(x_{n}\right)$ in a metric space $X=(X, d)$ is said to converge or to be convergent if there exists an $x \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0
$$

x is called the limit of $\left(x_{n}\right)$.

Lemma 1.4.2 (Boundedness, limit). Let $X=(X, d)$ be a metric space.
(a) A convergent sequence in X is bounded and its limit is unique.
(b) If $x_{n} \longrightarrow x$ and $y_{n} \longrightarrow y$ in X, then $d\left(x_{n}, y_{n}\right) \longrightarrow d(x, y)$.

Definition 1.4.3 (Cauchy sequence, completeness). A sequence $\left(x_{n}\right)$ in a metric space $X=(X, d)$ is said to be Cauchy if for every $\varepsilon>0$, there is an $N=N(\varepsilon)$ such that

$$
d\left(x_{m}, x_{n}\right)<\varepsilon \quad \text { for every } m, n>N .
$$

The space X is said to be complete if every Cauchy sequence in X converges, that is, has a limit which is an element of X.

Theorem 1.4.4. Every convergent sequence in a metric space is a Cauchy sequence.

Theorem 1.4.5 (Closure, closed set). Let M be a non-empty subset of a metric space (X, d) and \bar{M} its closure.
(a) $x \in \bar{M}$ if and only if there is a sequence $\left(x_{n}\right)$ in M such that $x_{n} \longrightarrow x$.
(b) M is closed if and only if the situation $x_{n} \in M, x_{n} \longrightarrow x$ implies that $x \in M$.

Theorem 1.4.6 (Complete subspace). A subspace M of a complete metric space X is itself complete if and only if the set M is closed in X.

Theorem 1.4.7 (Continuous mapping). A mapping $T: X \longrightarrow Y$ of a metric space (X, d) into a metric space (Y, \tilde{d}) is continuous at a point $x_{0} \in X$ if and only if

$$
x_{n} \longrightarrow x_{0} \Longrightarrow T x_{n} \longrightarrow T x_{0}
$$

- The only if direction is proved using $\varepsilon-\delta$ definition of continuity, whereas the if direction is a proof by contradiction.

1. (Subsequence) If a sequence $\left(x_{n}\right)$ in a metric space X is convergent and has limit x, show that every subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ is convergent and has the same limit x.

Solution: Suppose we have a convergent sequence $\left(x_{n}\right)$ in a metric space (X, d), with limit $x \in X$. By definition, for any given $\varepsilon>0$, there exists an $N_{1}=N_{1}(\varepsilon)$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>N_{1}$. For any subsequence $\left(x_{n_{k}}\right) \subset\left(x_{n}\right)$ choose $N=N_{1}$, then for all $k>N$ (which implies that $n_{k} \geq k>N$ by definition of a subsequence), we have $d\left(x_{n_{k}}, x\right)<\varepsilon$. The statement follows.
2. If $\left(x_{n}\right)$ is Cauchy and has a convergent subsequence, say, $x_{n_{k}} \longrightarrow x$, show that $\left(x_{n}\right)$ is convergent with the limit x.

Solution: Chhose any $\varepsilon>0$. Since $\left(x_{n}\right)$ is Cauchy, there exists an N_{1} such that $d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}$ for all $m, n>N_{1}$. Since $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ (with limit $x \in X$), there exists an N_{2} such that $d\left(x_{n_{k}}, x\right)<\frac{\varepsilon}{2}$ for all $k>N_{2}$. Choose $N=\max \left\{N_{1}, N_{2}\right\}$, then for all $n>N$ we have (by triangle inequality)

$$
d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

where we implicitly use the fact that $n_{k} \geq m>N_{1}$ for the first bound and $n_{k} \geq k>N_{2}$ for the second bound. Since $\varepsilon>0$ was arbitrary, this shows that $\left(x_{n}\right)$ is convergent with the limit $x \in X$.
3. Show that $x_{n} \longrightarrow x$ if and only if for every neighbourhood V of x there is an integer n_{0} such that $x_{n} \in V$ for all $n>n_{0}$.

Solution: Suppose $x_{n} \longrightarrow x$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} a_{n}=0$, where $\left(a_{n}\right)$ is a sequence of real numbers. Thus, given any $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that $\left|a_{n}-0\right|=d\left(x_{n}, x\right)<\varepsilon$ for all $n>N$. In particular, we have that $x_{n} \in B_{\varepsilon}(x)$ for all $n>N$. Since $\varepsilon>0$ was arbitrary, the statement follows by setting $V=B_{\varepsilon}(x)$ and $n_{0}=N=N(\varepsilon)$. Conversely, suppose $\left(x_{n}\right)$ is a sequence with the given property in the problem. For a fixed $\varepsilon>0$, if we set $V=B_{\varepsilon}(x)$, there exists an $n_{0} \in \mathbb{N}$ such that $x_{n} \in V$ for all $n>n_{0}$. In particular, we have that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>n_{0}$. This shows that $x_{n} \longrightarrow x$ since $\varepsilon>0$ was arbitrary.
4. (Boundedness) Show that a Cauchy sequence is bounded.

Solution: Choose any Cauchy sequence $\left(x_{n}\right)$ in a metric space (X, d). Given any $\varepsilon>0$, there exists an N such that $d\left(x_{m}, x_{n}\right)<\varepsilon$ for all $m, n>N$. Choose $\varepsilon=1>0$, there exists N_{ε} such that $d\left(x_{m}, x_{n}\right)<1$ for all $m, n>N_{\varepsilon}$. Let $\alpha=\max _{j, k=1, \ldots, N_{\varepsilon}} d\left(x_{j}, x_{k}\right)$, and choose $A=\max \{\alpha, 1\}$. We see that $d\left(x_{m}, x_{n}\right)<A$ for all $m, n \geq 1$. This shows that $\left(x_{n}\right)$ is bounded.
5. Is boundedness of a sequence in a metric space sufficient for the sequence to be Cauchy? Convergent?

Solution: It turns out that boundedness of a sequence in a metric space does not imply Cauchy or convergent. Consider the sequence $\left(x_{n}\right)$, where $x_{n}=(-1)^{n}$; it is clear that $\left(x_{n}\right)$ is bounded in (\mathbb{R}, d), where $d\left(x_{m}, x_{n}\right)=\left|x_{m}-x_{n}\right|$.

- $\left(x_{n}\right)$ is not Cauchy in \mathbb{R} since if we pick $\varepsilon=\frac{1}{2}>0$, then for all N, there exists $m, n>N$ (we could choose $m=N+1, n=N+2$ for example) such that $d\left(x_{m}, x_{n}\right)=d\left(x_{N+1}, x_{N+2}\right)=1>\frac{1}{2}$.
- $\left(x_{n}\right)$ is not convergent in \mathbb{R} since it is not Cauchy.

6. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in a metric space (X, d), show that $\left(a_{n}\right)$, where $a_{n}=d\left(x_{n}, y_{n}\right)$, converges. Give illustrative examples.

Solution: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be Cauchy sequences in a metric space (X, d) and fix an $\varepsilon>0$. By definition, there exists N_{1}, N_{2} such that

$$
\begin{array}{ll}
d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2} & \text { for all } m, n>N_{1} . \\
d\left(y_{m}, y_{n}\right)<\frac{\varepsilon}{2} & \text { for all } m, n>N_{2} .
\end{array}
$$

Define a sequence $\left(a_{n}\right)$, with $a_{n}=d\left(x_{n}, y_{n}\right)$; observe that $\left(a_{n}\right)$ is a sequence in \mathbb{R}. Thus to show that $\left(a_{n}\right)$ converges, an alternative way is to show that $\left(a_{n}\right)$ is a Cauchy sequence. First, generalised triangle inequality of d yields the following two inequalities:

$$
\begin{aligned}
a_{m}=d\left(x_{m}, y_{m}\right) & \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right) \\
& =d\left(x_{m}, x_{n}\right)+a_{n}+d\left(y_{m}, y_{n}\right) \\
\Longrightarrow a_{m}-a_{n} & \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right) . \\
a_{n}=d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right) \\
& =d\left(x_{m}, x_{n}\right)+a_{m}+d\left(y_{m}, y_{n}\right) \\
\Longrightarrow a_{n}-a_{m} & \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right) .
\end{aligned}
$$

Choose $N=\max \left\{N_{1}, N_{2}\right\}$. Combining these inequalities yields:

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text { for all } m, n>N .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, this shows that the sequence $\left(a_{n}\right)$ is Cauchy in \mathbb{R}. Consequently, $\left(a_{n}\right)$ must converge.
7. Give an indirect proof of Lemma 1.4-2(b).

Solution: We want to prove that if $x_{n} \longrightarrow x$ and $y_{n} \longrightarrow y$ in a metric space (X, d), then $d\left(x_{n}, y_{n}\right) \longrightarrow d(x, y)$. Choose any $\varepsilon>0$. By definition, there exists N_{1}, N_{2} such that

$$
\begin{array}{ll}
d\left(x_{n}, x\right)<\frac{\varepsilon}{2} & \text { for all } n>N_{1} \\
d\left(y_{n}, x\right)<\frac{\varepsilon}{2} & \text { for all } n>N_{2}
\end{array}
$$

Generalised triangle inequality of d yields the following two inequalities:

$$
\begin{aligned}
d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n}, x\right)+d(x, y)+d\left(y, y_{n}\right) \\
\Longrightarrow d\left(x_{n}, y_{n}\right)-d(x, y) & \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right) . \\
d(x, y) & \leq d\left(x, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y\right) \\
\Longrightarrow d(x, y)-d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right) .
\end{aligned}
$$

Now choose $N=\max \left\{N_{1}, N_{2}\right\}$. Combining these inequalities yields:

$$
\begin{aligned}
\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| & \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text { for all } n>N .
\end{aligned}
$$

This proves the statement since $\varepsilon>0$ was arbitrary.
8. If d_{1} and d_{2} are metrics on the same set X and there are positive numbers a and b such that for all $x, y \in X$,

$$
a d_{1}(x, y) \leq d_{2}(x, y) \leq b d_{1}(x, y)
$$

show that the Cauchy sequences in $\left(X, d_{1}\right)$ and $\left(X, d_{2}\right)$ are the same.

Solution: Suppose $\left(x_{n}\right)$ is any Cauchy sequence in $\left(X, d_{1}\right)$. Given $\varepsilon>0$, there exists an N_{1} such that $d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{b}$ for all $m, n>N_{1}$. Using the second inequality in (\dagger),

$$
d_{2}\left(x_{m}, x_{n}\right) \leq b d_{1}\left(x_{m}, x_{n}\right)<b\left(\frac{\varepsilon}{\not b}\right)=\varepsilon \quad \text { for all } m, n>N_{1} .
$$

Thus, $\left(x_{n}\right)$ is also a Cauchy sequence in $\left(X, d_{2}\right)$.

Now suppose $\left(y_{n}\right)$ is any Cauchy sequence in $\left(X, d_{2}\right)$. Given $\varepsilon>0$, there exists an $N_{2} \in \mathbb{N}$ such that $d\left(y_{m}, y_{n}\right)<a \varepsilon$ for all $m, n>N_{2}$. Using the first inequality in (\dagger),

$$
d_{1}\left(y_{m}, y_{n}\right) \leq \frac{1}{a} d_{1}\left(y_{m}, y_{n}\right)<\frac{1}{\alpha}(\rho \varepsilon)=\varepsilon \quad \text { for all } m, n>N_{2} .
$$

Thus, $\left(y_{n}\right)$ is also a Cauchy sequence in $\left(X, d_{1}\right)$.
9. The Cartesian product $X=X_{1} \times X_{2}$ of two metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ can be made into a metric space (X, d) in many ways. For instance, for $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, we proved previously that the following are metrics for X.

$$
\begin{aligned}
d_{a}(x, y) & =d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right) . \\
d_{b}(x, y) & =\sqrt{d_{1}\left(x_{1}, y_{1}\right)^{2}+d_{2}\left(x_{2}, y_{2}\right)^{2}} \\
d_{c}(x, y) & =\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\} .
\end{aligned}
$$

Using Problem 8 , show that $\left(X, d_{a}\right),\left(X, d_{b}\right)$ and $\left(X, d_{c}\right)$ all have the same Cauchy sequences.

Solution: We simply need to establish a few related inequalities.

$$
\begin{aligned}
d_{a}=d_{1}+d_{2} \leq 2 \max \left\{d_{1}, d_{2}\right\}=2 d_{c} & \Longrightarrow d_{a} \leq 2 d_{c} . \\
d_{c}=\max \left\{d_{1}, d_{2}\right\} \leq d_{1}+d_{2}=d_{a} & \Longrightarrow d_{c} \leq d_{a} . \\
d_{b}^{2}=d_{1}^{2}+d_{2}^{2} \leq d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2}=\left(d_{1}+d_{2}\right)^{2}=d_{a}^{2} & \Longrightarrow d_{b} \leq d_{a} . \\
d_{c}=\max \left\{d_{1}, d_{2}\right\}=\max \left\{\sqrt{d_{1}^{2}}, \sqrt{d_{2}^{2}}\right\} \leq \sqrt{d_{1}^{2}+d_{2}^{2}}=d_{b} & \Longrightarrow d_{c} \leq d_{b} . \\
d_{a} \leq 2 d_{c} \leq 2 d_{b} & \Longrightarrow d_{a} \leq 2 d_{b} . \\
d_{b} \leq d_{a} \leq 2 d_{c} & \Longrightarrow d_{b} \leq 2 d_{c} .
\end{aligned}
$$

Consequently, we have the following inequality:

$$
d_{a} \leq 2 d_{c} \leq 2 d_{b} \leq 2 d_{a}
$$

10 . Using the completeness of \mathbb{R}, prove completeness of \mathbb{C}.

Solution: Let $\left(z_{n}\right)$ be any Cauchy sequence in \mathbb{C}, where $z_{n}=x_{n}+i y_{n}$. For any $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that for all $m, n>N$,

$$
\begin{aligned}
d_{\mathbb{C}}\left(z_{m}, z_{n}\right)=\left|z_{m}-z_{n}\right| & =\sqrt{\left(x_{m}-x_{n}\right)^{2}+\left(y_{m}-y_{n}\right)^{2}} \leq \varepsilon \\
& \Longrightarrow\left(x_{m}-x_{n}\right)^{2}+\left(y_{m}-y_{n}\right)^{2} \leq \varepsilon^{2} .
\end{aligned}
$$

The last inequality implies that for all $m, n>N$,

$$
\begin{aligned}
\left(x_{m}-x_{n}\right)^{2} \leq \varepsilon^{2} & \Longrightarrow\left|x_{m}-x_{n}\right| \leq \varepsilon . \\
\left(y_{m}-y_{n}\right)^{2} \leq \varepsilon^{2} & \Longrightarrow\left|y_{m}-y_{n}\right| \leq \varepsilon .
\end{aligned}
$$

Thus, both sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy in \mathbb{R}, which converges to, say, x and y respectively as $n \longrightarrow \infty$ by completeness of \mathbb{R}. Define $z=x+i y \in \mathbb{C}$, then convergence of $\left(x_{n}\right)$ and $\left(y_{n}\right)$ implies that $d_{\mathbb{R}}\left(x_{n}, x\right)$ and $d_{\mathbb{R}}\left(y_{n}, y\right)$ both converge to 0 as $n \longrightarrow \infty$. Expanding the definition of $d_{\mathbb{C}}\left(z_{n}, z\right)$ gives

$$
\begin{aligned}
d_{\mathbb{C}}\left(z_{n}, z\right)=\left|z_{n}-z\right| & =\sqrt{\left(x_{n}-x\right)^{2}+\left(y_{n}-y\right)^{2}} \\
& =\sqrt{d_{\mathbb{R}}\left(x_{n}, x\right)^{2}+d_{\mathbb{R}}\left(y_{n}, y\right)^{2}} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
\end{aligned}
$$

This shows that $z \in \mathbb{C}$ is the limit of $\left(z_{n}\right)$. Since $\left(z_{n}\right)$ was an arbitrary Cauchy sequence in \mathbb{C}, this proves completeness of \mathbb{C}.

1.5 Examples. Completeness Proofs.

To prove completeness, we take an arbitrary Cauchy sequence $\left(x_{n}\right)$ in X and show that it converges in X. For different spaces, such proofs may vary in complexity, but they have approximately the same general pattern:

1. Construct an element x (to be used as a limit).
2. Prove that x is an element of the space considered.
3. Prove convergence $x_{n} \longrightarrow x$ (in the sense of the metric).
4. Let $a, b \in \mathbb{R}$ and $a<b$. Show that the open interval (a, b) is an incomplete subspace of \mathbb{R}, whereas the closed interval $[a, b]$ is complete.

Solution: Consider a sequence $\left(x_{n}\right)$ in the metric space $((a, b),|\cdot|)$, where $x_{n}=$ $a+\frac{1}{n}$. Given any $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $N>\frac{2}{\varepsilon}$, then for any $m, n>$ $N>\frac{2}{\varepsilon}$,

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right)=\left|\frac{1}{m}-\frac{1}{n}\right| & \leq\left|\frac{1}{m}\right|+\left|\frac{1}{n}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

This shows that $\left(x_{n}\right)$ is a Cauchy sequence in (a, b). However, $\left(x_{n}\right) \longrightarrow a \notin(a, b)$ as $n \longrightarrow \infty$. This shows that (a, b) is an incomplete subspace of \mathbb{R}. Since $[a, b]$ is a closed (metric) subspace of \mathbb{R} (which is a complete metric space), it follows that the closed interval $[a, b]$ is complete.
2. Let X be the space of all ordered n-tuples $x=\left(\xi_{1}, \ldots, \xi_{n}\right)$ of real numbers and $d(x, y)=\max _{j}\left|\xi_{j}-\eta_{j}\right|$, where $y=\left(\eta_{j}\right)$. Show that (X, d) is complete.

Solution: Consider any Cauchy sequence $\left(x_{m}\right)$ in \mathbb{R}^{n}, where $x_{m}=\left(\xi_{1}^{(m)}, \ldots, \xi_{n}^{(m)}\right)$. Since $\left(x_{m}\right)$ is Cauchy, given any $\varepsilon>0$, there exists an N such that for all $m, r>N$,

$$
d\left(x_{m}, x_{r}\right)=\max _{j=1, \ldots, n}\left|\xi_{j}^{(m)}-\xi_{j}^{(r)}\right|<\varepsilon
$$

In particular, for every fixed $j=1, \ldots, n$,

$$
\left|\xi_{j}^{(m)}-\xi_{j}^{(r)}\right|<\varepsilon \quad \text { for all } m, r>N
$$

Hence, for every fixed j, the sequence $\left(\xi_{j}^{(1)}, \xi_{j}^{(2)}, \ldots\right)$ is a Cauchy sequence of real numbers. It converges by completeness of \mathbb{R}, say, $\xi_{j}^{(m)} \longrightarrow \xi_{j}$ as $m \longrightarrow \infty$.

Using these n limits, we define $x=\left(\xi_{1}, \ldots, \xi_{n}\right)$. Clearly, $x \in \mathbb{R}^{n}$. From (\dagger), with $r \longrightarrow \infty$,

$$
\left|\xi_{j}^{(m)}-\xi_{j}\right|<\varepsilon \quad \text { for all } m>N .
$$

Since the RHS is independent of j, taking maximum over $j=1, \ldots, n$ in both sides yields

$$
d\left(x_{m}, x\right)=\max _{j=1, \ldots, n}\left|\xi_{j}^{(m)}-\xi_{j}\right|<\varepsilon \quad \text { for all } m>N
$$

This shows that $x_{m} \longrightarrow x$. Since $\left(x_{m}\right)$ was an arbitrary Cauchy sequence, \mathbb{R}^{n} with the metric $d(x, y)=\max \left|\xi_{j}-\eta_{j}\right|$ is complete.
3. Let $M \subset l^{\infty}$ be the subpace consisting of all sequences $x=\left(\xi_{j}\right)$ with at most finitely many nonzero terms. Find a Cauchy sequence in M which does not converge in M, so that M is not complete.

Solution: Let $\left(x_{n}\right)$ be a sequence in $M \subset l^{\infty}$, where

$$
\xi_{j}^{(n)}= \begin{cases}\frac{1}{j} & \text { if } j \leq n \\ 0 & \text { if } j>n\end{cases}
$$

i.e. $x_{n}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0, \ldots \ldots\right)$. Given any $\varepsilon>0$, choose N such that $N+1>\frac{1}{\varepsilon}$, then for any $m>n>N$,

$$
d\left(x_{m}, x_{n}\right)=\sup _{j \in \mathbb{N}}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|=\frac{1}{n+1} \leq \frac{1}{N+1}<\varepsilon .
$$

This shows that $\left(x_{n}\right)$ is Cauchy in M. However, it is clear that $x_{n} \longrightarrow x=\left(\frac{1}{n}\right)$ as $n \longrightarrow \infty$, but since $x \notin M,\left(x_{n}\right)$ does not converge in M.
4. Show that M in Problem 3 is not complete by applying Theorem 1.4-7.

Solution: It is easy to see that M is a subspace of l^{∞}. The sequence in Problem 3 shows that $x_{n} \longrightarrow x$ in l^{∞} since

$$
d\left(x_{n}, x\right)=\frac{1}{n+1} \longrightarrow 0 \text { as } n \longrightarrow \infty
$$

However, x doesn't belong to M since it has infinitely many nonzero terms. This shows that M is not a closed subspace of l^{∞}, and therefore not complete.
5. Show that the set X of all integers with metric d defined by $d(m, n)=|m-n|$ is a complete metric space.

Solution: Observe that for any two distinct integers $m, n, d(m, n) \geq 1$. This implies that the only Cauchy sequences in X are either constant sequences or sequences that are eventually constant. This shows that the set X of all integers with the given metric is complete.
6. Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y)=|\arctan x-\arctan y|$.

Solution: Consider the sequence $\left(x_{n}\right)$, where $x_{n}=n$. We claim that $\left(x_{n}\right)$ is Cauchy but not convergent in \mathbb{R}.

- Since $\arctan n \longrightarrow \frac{\pi}{2}$ as $n \longrightarrow \infty$, given any $\varepsilon>0$, there exists an N such that $\left|\arctan (n)-\frac{\pi}{2}\right|<\frac{\varepsilon}{2}$ for all $n>N$. Thus, for all $m, n>N$,

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right)=|\arctan (m)-\arctan (n)| & \leq\left|\arctan (m)-\frac{\pi}{2}\right|+\left|\frac{\pi}{2}-\arctan (n)\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

- Suppose, for contradiction, that $\left(x_{n}\right)$ converges in \mathbb{R} with the given metric. By definition, there exists an $x \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty}|\arctan (n)-\arctan (x)|=0 .
$$

which then implies that $\arctan (x)$ must equal to $\frac{\pi}{2}$, by uniqueness of limits. This contradicts the assumption that $x \in \mathbb{R}, \operatorname{since} \arctan (x)<\frac{\pi}{2}$ for any $x \in \mathbb{R}$.
7. Let X be the set of all positive integers and $d(m, n)=\left|m^{-1}-n^{-1}\right|$. Show that (X, d) is not complete.

Solution: Consider a sequence $\left(x_{n}\right) \in X$, where $x_{n}=n$. With the given metric,

$$
d\left(x_{m}, x_{n}\right)=\left|\frac{1}{m}-\frac{1}{n}\right|
$$

and similar argument in Problem 1 shows that $\left(x_{n}\right)$ is a Cauchy sequence. If $\left(x_{n}\right)$ were to converge to some positive integer x, then it must satisfy

$$
d\left(x_{n}, x\right)=\left|\frac{1}{n}-\frac{1}{x}\right| \longrightarrow 0 \text { as } n \longrightarrow \infty .
$$

Clearly, $\frac{1}{x}$ must be 0 , which is a contradiction since no positive integers x gives $\frac{1}{x}=0$.
8. (Space $\boldsymbol{C}[\boldsymbol{a}, \boldsymbol{b}]$) Show that the subspace $Y \subset C[a, b]$ consisting of all $x \in C[a, b]$ such that $x(a)=x(b)$ is complete.

Solution: Consider $Y \subset C[a, b]$ defined by $Y=\{x \in C[a, b]: x(a)=x(b)\}$. It suffices to show that Y is closed in $C[a, b]$, so that completeness follows from Theorem 1.4.7. Consider any $f \in \bar{Y}$, the closure of Y. There exists a sequence of functions $\left(f_{n}\right) \in Y$ such that $f_{n} \longrightarrow f$ in $C[a, b]$. By definition, given any $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that for all $n>N$, we have

$$
d\left(f_{n}, f\right)=\max _{t \in[a, b]}\left|f_{n}(t)-f(t)\right|<\varepsilon .
$$

In particular, for every $t \in[a, b],\left|f_{n}(t)-f(t)\right|<\varepsilon$ for all $n>N$. This shows that $\left(f_{n}(t)\right)$ converges to $f(t)$ uniformly on $[a, b]$. Since the $f_{n}^{\prime} s$ are continuous function on $[a, b]$ and the convergence is uniform, the limit function f is continuous on $[a, b]$. We are left with showing $f(a)=f(b)$ to conclude that $f \in Y$. Indeed, triangle inequality for real numbers gives:

$$
\begin{aligned}
|f(a)-f(b)| & \leq\left|f(a)-f_{n}(a)\right|+\left|f_{n}(a)-f_{n}(b)\right|+\left|f_{n}(b)-f(b)\right| \\
& =\left|f(a)-f_{n}(a)\right|+\left|f_{n}(b)-f(b)\right| \\
& \leq 2 \max _{t \in[a, b]}\left|f_{n}(t)-f(t)\right| \\
& =2 d\left(f_{n}, f\right) \longrightarrow 0 \text { as } n \longrightarrow \infty .
\end{aligned}
$$

9. In 1.5-5 we referred to the following theorem of calculus. If a sequence $\left(x_{m}\right)$ of a continuous functions on $[a, b]$ converges on $[a, b]$ and the convergence is uniform on $[a, b]$, then the limit function x is continuous on $[a, b]$. Prove this theorem.

Solution: The proof employs the so called $\varepsilon / 3$ proof, which is widely used in proofs concerning uniform continuity. Choose any $t_{0} \in[a, b]$ and $\varepsilon>0$.

- Since $\left(f_{n}\right)$ converges to f uniformly, there exists an $N \in \mathbb{N}$ such that for all $t \in[a, b]$ and for all $n>N$, we have $\left|f_{n}(t)-f(t)\right|<\frac{\varepsilon}{3}$.
- Since f_{N+1} is continuous at $t_{0} \in[a, b]$, there exists an $\delta>0$ such that $\left|f_{N+1}(t)-f_{N+1}\left(t_{0}\right)\right|<\frac{\varepsilon}{3}$ for all $t \in[a, b]$ satisfying $\left|t-t_{0}\right|<\delta$.
- Thus, if $\left|t-t_{0}\right|<\delta$, triangle inequality gives:

$$
\left|f(t)-f\left(t_{0}\right)\right| \leq\left|f(t)-f_{N+1}(t)\right|+\left|f_{N+1}(t)-f_{N+1}\left(t_{0}\right)\right|+\left|f_{N+1}\left(t_{0}\right)-f\left(t_{0}\right)\right|
$$

$$
<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
$$

This shows that f is continuous at t_{0}.
Since $t_{0} \in[a, b]$ was arbitrary, f is continuous on $[a, b]$ or $f \in C[a, b]$.
10. (Discrete metric) Show that a discrete metric space is complete.

Solution: Let (X, d) be a discrete metric space, for any two distinct $x, y \in X$, $d(x, y)=1$. This implies that the only Cauchy sequences in X are either constant sequences or sequences that are eventually constant. This shows that a discrete metric space is complete.
11. (Space s) Show that in the space s, we have $x_{n} \longrightarrow x$ if and only if $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ for all $j=1,2, \ldots$, where $x_{n}=\left(\xi_{j}^{(n)}\right)$ and $x=\left(\xi_{j}\right)$.

Solution: The sequence space s consists of the set of all (bounded or unbounded) sequences of complex numbers and the metric d defined by

$$
d(x, y)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\left|\xi_{j}-\eta_{j}\right|}{1+\left|\xi_{j}-\eta_{j}\right|}
$$

where $x=\left(\xi_{j}\right)$ and $y=\left(\eta_{j}\right)$.
Suppose $x_{n} \longrightarrow x$ in s, where $x_{n}=\left(\xi_{j}^{(n)}\right)$. For every $j \geq 1$, given any $\varepsilon>0$, there exists an N such that for all $n>N$ we have:

$$
\begin{aligned}
\frac{1}{2^{j}} \frac{\left|\xi_{j}^{(n)}-\xi_{j}\right|}{1+\left|\xi_{j}^{(n)}-\xi_{j}\right|} & \leq d\left(x_{n}, x\right)<\frac{1}{2^{j}} \frac{\varepsilon}{1+\varepsilon} \\
\frac{\left|\xi_{j}^{(n)}-\xi_{j}\right|}{1+\left|\xi_{j}^{(n)}-\xi_{j}\right|} & <\frac{\varepsilon}{1+\varepsilon} \\
\left|\xi_{j}^{(n)}-\xi_{j}\right|(1+\varepsilon) & <\varepsilon\left[1+\left|\xi_{j}^{(n)}-\xi_{j}\right|\right] \\
\left|\xi_{j}^{(n)}-\xi_{j}\right| & <\varepsilon
\end{aligned}
$$

This shows that $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ as $n \longrightarrow \infty$. Since $j \geq 1$ was arbitrary, the result follows.

Conversely, suppose $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ for all $j \geq 1$, where $x_{n}=\left(\xi_{j}^{(n)}\right)$ and $x=\left(\xi_{j}\right)$. This implies that for every fixed $j \geq 1$,

$$
\frac{1}{2^{j}} \frac{\left|\xi_{j}^{(n)}-\xi_{j}\right|}{1+\left|\xi_{j}^{(n)}-\xi_{j}\right|} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty .
$$

This shows that $d\left(x_{n}, x\right) \longrightarrow 0$ as $n \longrightarrow \infty$.
12. Using Problem 11, show that the sequence space s is complete.

Solution: Consider any Cauchy sequence $\left(x_{n}\right)$ in s, where $x_{n}=\left(\xi_{j}^{(n)}\right)$. Since $\left(x_{n}\right)$ is Cauchy, for every $j \geq 1$, given any $\varepsilon>0$, there exists an N such that for all $m, n>N$ we have

$$
\frac{1}{2^{j}} \frac{\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|}{1+\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|} \leq d\left(x_{m}, x_{n}\right)<\frac{1}{2^{j}} \frac{\varepsilon}{1+\varepsilon} .
$$

In particular, for every $j \geq 1,\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\varepsilon$ for all $m, n>N$. Hence, for every $j \geq 1$, the sequence $\left(\xi_{j}^{(1)}, \xi_{j}^{(2)}, \ldots\right)$ is a Cauchy sequence of real numbers. It converges by completeness of \mathbb{R}, say, $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ as $n \longrightarrow \infty$. Since $j \geq 1$ was arbitrary, this shows that $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ as $n \longrightarrow \infty$ for all $j \geq 1$. Identifying $x=\left(\xi_{j}\right)$, we have $x_{n} \longrightarrow x$ as $n \longrightarrow \infty$ from Problem 11. Since $\left(x_{n}\right)$ was an arbitrary Cauchy sequence in s, this proves completeness of s.
13. Let X be the set of all continuous real-valued functions on $J=[0,1]$, and let

$$
d(x, y)=\int_{0}^{1}|x(t)-y(t)| d t .
$$

Show that the sequence $\left(x_{n}\right)$ is Cauchy in X, where

$$
x_{n}(t)= \begin{cases}n & \text { if } 0 \leq t \leq \frac{1}{n^{2}} \\ \frac{1}{\sqrt{t}} & \text { if } \frac{1}{n^{2}} \leq t \leq 1\end{cases}
$$

Solution: WLOG, take $m>n$. Sketching out $\left|x_{m}(t)-x_{n}(t)\right|$, we deduce that

$$
d\left(x_{m}, x_{n}\right)=\int_{0}^{\frac{1}{m^{2}}}(m-n) d t+\int_{\frac{1}{m^{2}}}^{\frac{1}{n^{2}}}\left(\frac{1}{\sqrt{t}}-n\right) d t
$$

$$
=(m-n) \frac{1}{m^{2}}+2\left(\frac{1}{n}-\frac{1}{m}\right)-n\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)=\frac{1}{n}-\frac{1}{m} .
$$

Similar argument in Problem 1 shows that $\left(x_{n}\right)$ is a Cauchy sequence in $C[0,1]$.
14. Show that the Cauchy sequence in Problem 13 does not converge.

Solution: For every $x \in C[0,1]$,

$$
\begin{aligned}
d\left(x_{n}, x\right) & =\int_{0}^{1}\left|x_{n}(t)-x(t)\right| d t \\
& =\int_{0}^{\frac{1}{n^{2}}}|n-x(t)| d t+\int_{\frac{1}{n^{2}}}^{1}\left|\frac{1}{\sqrt{t}}-x(t)\right| d t
\end{aligned}
$$

Since the integrands are nonnegative, so is each integral on the right. Hence, $d\left(x_{n}, x\right) \longrightarrow 0$ would imply that each integral approaches zero and, since x is continuous, we should have $x(t)=\frac{1}{\sqrt{t}}$ if $t \in(0,1]$. But this is impossible for a continuous function, otherwise we would have discontinuity at $t=0$. Hence, $\left(x_{n}\right)$ does not converge, that is, does not have a limit in $C[0,1]$.
15. Let X be the metric space of all real sequences $x=\left(\xi_{j}\right)$ each of which has only finitely many nonzero terms, and $d(x, y)=\sum\left|\xi_{j}-\eta_{j}\right|$, where $y=\left(\eta_{j}\right)$. Note that this is a finite sum but the number of terms depends on x and y. Show that (x_{n}) with $x_{n}=\left(\xi_{j}^{(n)}\right)$,

$$
\xi_{j}^{(n)}= \begin{cases}\frac{1}{j^{2}} & \text { for } j=1, \ldots, n \\ 0 & \text { for } j>n\end{cases}
$$

is Cauchy but does not converge.

Solution: Since $\sum_{j=1}^{\infty} \frac{1}{j^{2}}$ is convergent and it is a sum of positive terms, given any $\varepsilon>0$, there exists an N_{1} such that $\sum_{j=n}^{\infty} \frac{1}{j^{2}}<\varepsilon$ for all $n>N_{1}$. Choose $N=N_{1}$, then for all $m>n>N$,

$$
d\left(x_{m}, x_{n}\right)=\sum_{j=n+1}^{m} \frac{1}{j^{2}} \leq \sum_{j=n+1}^{\infty} \frac{1}{j^{2}} \leq \sum_{j=N+1}^{\infty} \frac{1}{j^{2}}<\varepsilon .
$$

This shows that $\left(x_{n}\right)$ is a Cauchy sequence. For every $x=\left(\xi_{j}\right) \in X$, there exists an $N=N_{x}$ such that $\xi_{j}=0$ for all $j>N$. Then for all $n>N$,

$$
d\left(x_{n}, x\right)=\left|1-\xi_{1}\right|+\left|\frac{1}{4}-\xi_{2}\right|+\ldots+\left|\frac{1}{N^{2}}-\xi_{N}\right|+\frac{1}{(N+1)^{2}}+\ldots+\frac{1}{n^{2}} .
$$

We can clearly see that, even if $\xi_{j}=\frac{1}{j^{2}}$ for all $j \leq N, d\left(x_{n}, x\right)$ does not converge to 0 as $n \longrightarrow \infty$.

1.6 Completion of Metric Spaces.

1. Show that if a subspace Y of a metric space consists of finitely many points, then Y is complete.

Solution:

2. What is the completion of (X, d), where X is the set of all rational numbers \mathbb{Q} and $d(x, y)=|x-y|$?

Solution:

3. What is the completion of a discrete metric space X ?

Solution:

4. If X_{1} and X_{2} are isometric and X_{1} is complete, show that X_{2} is complete.

Solution:

5. (Homeomorphism) A homeomorphism is a continuous bijective mapping $T: X \longrightarrow$ Y whose inverse is continuous; the metric spaces X and Y are then said to be homeomorphic.
(a) Show that if X and Y are isometric, they are homeomorphic.

Solution:

(b) Illustrate with an example that a complete and an incomplete metric space may be homeomorphic.

Solution:

6. Show that $C[0,1]$ and $C[a, b]$ are isometric.

Solution: Consider the mapping T defined by

$$
T: C[0,1] \longrightarrow C[a, b]: f \mapsto g(s)=f\left(\frac{s-a}{b-1}\right) .
$$

(a) T is an isometry. Indeed, for any $f_{1}, f_{2} \in C[0,1]$ we have

$$
\begin{aligned}
d\left(T f_{1}, T f_{2}\right) & =\max _{t \in[a, b]}\left|T f_{1}(t)-T f_{2}(t)\right| \\
& =\max _{t \in[a, b]}\left|f_{1}\left(\frac{t-a}{b-a}\right)-f_{2}\left(\frac{t-a}{b-1}\right)\right| \\
& =\max _{s \in[0,1]}\left|f_{1}(s)-f_{2}(s)\right| \\
& =d\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

(b) T is injective. Indeed, suppose $T f_{1}=T f_{2}$, then $0=d\left(T f_{1}, T f_{2}\right)=d\left(f_{1}, f_{2}\right)$ since T is an isometry. This implies that $d\left(f_{1}, f_{2}\right)=0 \Longrightarrow f_{1}=f_{2}$.
(c) T is surjective by construction. Indeed, for any $g \in C[a, b]$, define f such that $g(s)=f\left(\frac{s-a}{b-a}\right)$. Note that $f \in C[0,1]$ since $\frac{s-a}{b-a} \in[0,1]$ for all $s \in[a, b]$, and g is continuous on $[a, b]$.
7. If (X, d) is complete, show that (X, \tilde{d}), where $\tilde{d}=\frac{d}{1+d}$, is complete.

Solution:

8. Show that in Problem 7, completeness of (X, \tilde{d}) implies completeness of (X, d).

Solution:

9. If $\left(x_{n}\right)$ and $\left(x_{n}^{\prime}\right)$ in (X, d) are such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$ holds and $x_{n} \longrightarrow l$, show that $\left(x_{n}^{\prime}\right)$ converges and has the limit l.

Solution:

10. If $\left(x_{n}\right)$ and $\left(x_{n}^{\prime}\right)$ are convergent sequences in a metric space (X, d) and have the same limit l, show that they satisfy $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$.

Solution:

11. Show that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$ defines an equivalence relation on the set of all Cauchy sequences of elements of X.

Solution:

12. If $\left(x_{n}\right)$ is Cauchy in (X, d) and $\left(x_{n}^{\prime}\right)$ in X satisfies $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$, show that $\left(x_{n}^{\prime}\right)$ is Cauchy in X.

Solution:

13. (Pseudometric) A finite pseudometric on a set X is a function $d: X \times X \longrightarrow \mathbb{R}$ satisfying (M1), (M3), (M4) and

$$
\begin{equation*}
d(x, x)=0 \tag{M2*}
\end{equation*}
$$

What is the difference between a metric and a pseudometric? Show that $d(x, y)=$ $\left|\xi_{1}-\eta_{1}\right|$ defines a pseudometric on the set of all ordered pairs of real numbers, where $x=\left(\xi_{1}, \xi_{2}\right)$ and $y=\left(\eta_{1}, \eta_{2}\right)$. (We mention that some authors use the term semimetric instead of pseudometric.)

Solution:

14. Does

$$
d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t
$$

define a metric or pseudometric on X if X is
(a) the set of all real-valued continuous function on $[a, b]$,

Solution:

(b) the set of all real-valued Riemann integrable functions on $[a, b]$?

Solution:

15. If (X, d) is a pseudometric space, we call a set

$$
B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}
$$

an open ball in X with center $x_{0} \in X$ and radius $r>0$. What are open balls of radius 1 in Problem 13?

Solution:

