Contents

1	Met	Metric Spaces	
	1.1	Metric Space.	2
	1.2	Further Examples of Metric Spaces.	8
	1.3	Open Set, Closed Set, Neighbourhood.	15
	1.4	Convergence, Cauchy Sequence, Completeness	22
	1.5	Examples. Completeness Proofs	27
	1.6	Completion of Metric Spaces.	35

1 Metric Spaces

1.1 Metric Space.

Definition 1.1.1.

- 1. A metric, d on X is a function defined on $X \times X$ such that for all $x, y, z \in X$, we have:
 - (M1) d is real-valued, finite and nonnegative.
 - (M2) d(x,y) = 0 if and only if x = y.
 - $(M3) \ d(x,y) = d(y,x). \tag{Symmetry}.$
 - $(M4) \ d(x,y) \le d(x,z) + d(z,y).$ (Triangle Inequality).
- 2. A metric subspace (Y, \tilde{d}) of (X, d) is obtained if we take a subset $Y \subset X$ and restrict d to $Y \times Y$; thus the metric on Y is the restriction

$$\tilde{d} = d|_{Y \times Y}.$$

 \tilde{d} is called the metric **induced** on Y by d.

3. We take any set X and on it the so-called **discrete metric** for X, defined by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

This space (X, d) is called a **discrete metric space**.

- Discrete metric space is often used as (extremely useful) counterexamples to illustrate certain concepts.
- 1. Show that the real line is a metric space.

Solution: For any $x, y \in X = \mathbb{R}$, the function d(x, y) = |x - y| defines a metric on $X = \mathbb{R}$. It can be easily verified that the absolute value function satisfies the axioms of a metric.

2. Does $d(x,y) = (x - y)^2$ define a metric on the set of all real numbers?

Solution: No, it doesn't satisfy the triangle inequality. Choose x = 3, y = 1 and z = 2, then

 $d(3,1) = (3-1)^2 = 2^2 = 4$

but

$$d(3,2) + d(2,1) = (3-2)^2 + (2-1)^2 = 2.$$

3. Show that $d(x,y) = \sqrt{|x-y|}$ defines a metric on the set of all real numbers.

Solution: Fix $x, y, z \in X = \mathbb{R}$, we need to verify the axioms of a metric. (M1) to (M3) follows easily from properties of absolute value. To verify (M4), for any $x, y, z \in \mathbb{R}$ we have

$$\left[d(x,y) \right]^2 = |x-y| \le |x-z| + |z-y|$$

$$\le |x-z| + |z-y| + 2\sqrt{|x-z|}\sqrt{|z-y|}$$

$$= (\sqrt{|x-z|} + \sqrt{|z-y|})^2$$

$$= \left[\left[d(x,z) + d(z,y) \right]^2 .$$

Taking square root on both sides yields the triangle inequality.

4. Find all metrics on a set X consisting of two points. Consisting of one point only.

Solution: If X has only two points, then the triangle inequality property is a consequence of (M1) to (M3). Thus, any functions satisfy (M1) to (M3) is a metric on X. If X has only one point, say, x_0 , then the symmetry and triangle inequality property are both trivial. However, since we require $d(x_0, x_0) = 0$, any nonnegative function f(x, y) such that $f(x_0, x_0) = 0$ is a metric on X.

- 5. Let d be a metric on X. Determine all constants k such that the following is a metric on X
 - (a) kd,

Solution: First, note that if X has more than one point, then the zero function cannot be a metric on X; this implies that $k \neq 0$. A simple calculation shows that any positive real numbers k lead to kd being a metric on X.

(b) d + k.

Solution: For d + k to be a metric on X, it must satisfy (M2). More precisely, if x = y, then d(x, y) + k must equal to 0; but since d is a metric on X, we have that d(x, y) = 0. This implies that d(x, y) + k = k = 0. Thus, k must be 0.

6. Show that $d(x,y) = \sup_{j \in \mathbb{N}} |\xi_j - \eta_j|$ satisfies the triangle inequality for any x, y in l^{∞} .

Solution: Fix $x = (\xi_j)$, $y = (\eta_j)$ and $z = (\zeta_j)$ in l^{∞} . Usual triangle inequality on real numbers yields

$$\begin{aligned} |\xi_j - \eta_j| &\leq |\xi_j - \zeta_j| + |\zeta_j - \eta_j| \\ &\leq \sup_{j \in \mathbb{N}} |\xi_j - \zeta_j| + \sup_{j \in \mathbb{N}} |\zeta_j - \eta_j| \\ &= d(x, z) + d(z, y). \end{aligned}$$

Taking supremum over $j \in \mathbb{N}$ on both sides gives the desired inequality.

7. If A is the subspace of l^{∞} consisting of all sequences of zeros and ones, what is the induced metric on A?

Solution: For any distinct $x, y \in A$, d(x, y) = 1 since they are sequences of zeros and ones. Thus, the induced metric on A is the discrete metric.

8. Show that another metric \tilde{d} on C[a, b] is defined by

$$\tilde{d}(x,y) = \int_a^b |x(t) - y(t)| \, dt.$$

Solution: (M1) and (M3) are satisfied, as we readily see. For (M4),

$$d(x,y) = \int_{a}^{b} |x(t) - y(t)| dt \le \int_{a}^{b} |x(t) - z(t)| + |z(t) - y(t)| dt$$
$$= d(x,z) + d(z,y)$$

For (M2), the if statement is obvious. For the only if statement, suppose d(x, y) = 0. Then

$$\int_{a}^{b} |x(t) - y(t)| dt = 0 \implies |x(t) - y(t)| = 0 \text{ for all } t \in [a, b]$$

since the integrand |x - y| is a continuous function on [a, b].

9. Show that the **discrete metric** is in fact a metric.

Solution: (M1) to (M4) can be checked easily using definition of the discrete metric.

10. (Hamming distance) Let X be the set of all ordered triples of zeros and ones. Show that X consists of eight elements and a metric d on X is defined by d(x, y) = number of places where x and y have different entries. (This space and similar spaces of *n*-tuples play a role in switching and automata theory and coding. d(x, y) is called the *Hamming distance* between x and y.

Solution: X has $2^3 = 8$ elements. Consider the function d defined above. (M1) to (M3) follows easily by definition. Verifying (M4) is a little tricky, but still doable.

- Note that (M4) is trivial if $x, y, z \in X$ are not distinct, so suppose they are distinct; this assumption together with definiton of d both imply that d(x, y), d(x, z), d(z, y) has 1 as their minimum and 3 as their maximum.
- (M4) is trivial if d(x,y) = 1 or d(x,y) = 2, so consider the case when d(x,y) = 3. It can then be shown that for any $z \neq x, y$, we have that d(x,z) + d(z,y) = 3.

Thus, (M4) is satisfied for any $x, y, z \in X$ and we conclude that d is a metric on X.

11. Prove the generalised triangle inequality.

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \ldots + d(x_{n-1}, x_n).$$

Solution: We prove the generalised triangle inequality by induction. The case n = 3 follows from definition of a metric. Suppose the statement is true for n = k. For n = k + 1,

$$d(x_1, x_{k+1}) \le d(x_1, x_k) + d(x_k, x_{k+1})$$

$$\le d(x_1, x_2) + d(x_2, x_3) + \ldots + d(x_{k-1}, x_k) + d(x_k, x_{k+1})$$

where the last inequality follows from the induction hypothesis. Since $k \ge 3$ is arbitrary, the statement follows from induction.

12. (Triangle inequality) The triangle inequality has several useful consequences. For instance, using the generalised triangle inequality, show that

$$|d(x,y) - d(z,w)| \le d(x,z) + d(y,w).$$

Solution: Suppose (X, d) is a metric space. For any x, y, z, w in X, the generalised triangle inequality yields

$$\begin{aligned} d(x,y) &\leq d(x,z) + d(z,w) + d(w,y) \\ \implies d(x,y) - d(z,w) &\leq d(x,z) + d(w,y) \end{aligned}$$

$$= d(x, z) + d(y, w) \qquad \left[\text{ by (M3)} \right].$$

$$d(z, w) \le d(z, x) + d(x, y) + d(y, w)$$

$$\implies d(z, w) - d(x, y) \le d(z, x) + d(y, w)$$

$$= d(x, z) + d(y, w) \qquad \left[\text{ by (M3)} \right].$$

Combining these two inequalities yields the desired statement.

13. Using the triangle inequality, show that

$$|d(x,z) - d(y,z)| \le d(x,y).$$

Solution: Suppose (X, d) is a metric space. For any x, y, z in X, (M4) yields: $\begin{aligned} d(x, z) &\leq d(x, y) + d(y, z) \\ \implies d(x, z) - d(y, z) &\leq d(x, y) \\ d(y, z) &\leq d(y, x) + d(x, z) \\ \implies d(y, z) - d(x, z) &\leq d(y, x) = d(x, y) \quad \text{by (M3)}. \end{aligned}$

Combining these two inequalities yields the desired statement.

14. (Axioms of a metric) (M1) to (M4) could be replaced by other axioms without changing the definition. For instance, show that (M3) and (M4) could be obtained from (M2) and

$$d(x,y) \le d(z,x) + d(z,y). \tag{(†)}$$

Solution: We first prove (M3). Fix $x, y \in X$. Choose z = y, then $d(x, y) - d(y, x) \leq d(z, x) + d(z, y) - d(y, x)$ = d(y, x) + d(y, y) - d(y, x) = 0 from (M2).

Choose z = x, then

$$\begin{aligned} d(y,x) - d(x,y) &\leq d(z,y) + d(z,x) - d(x,y) \\ &= d(x,y) + d(x,x) - d(x,y) = 0 \text{ from (M2)}. \end{aligned}$$

Combining these two inequalities gives $|d(x,y) - d(y,x)| \leq 0 \implies d(x,y) = d(y,x)$ for any $x, y \in X$.

To prove (M4), we apply (†) twice. More precisely, for any $x, y, z \in X$,

$$d(x,y) \le d(z,x) + d(z,y)$$

$$\le d(w,z) + d(w,x) + d(z,y)$$

(M4) follows from (M2) and choosing w = x.

15. Show that the nonnegativity of a metric follows from (M2) to (M4).

Solution: The only inequality we have is (M4), so we start from (M4). Choose any $x \in X$. If z = x, then for any $y \in X$,

$d(x,z) \le d(x,y) + d(y,z)$	$\left[\text{ from (M4)} \right]$
$\implies d(x,x) \leq d(x,y) + d(y,x) = 2d(x,y)$	$\left[\text{ from (M3)} \right]$
$\implies d(x,y) \ge 0$	$\left[\text{ from (M2)} \right]$

Since $x, y \in X$ were arbitrary, this shows the nonnegativity of a metric.

1.2 Further Examples of Metric Spaces.

We begin by stating three important inequalities that are indispensable in various theoretical and practical problems.

$$\begin{split} \text{Holder inequality: } \sum_{j=1}^{\infty} |\xi_j \eta_j| &\leq \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{\frac{1}{p}} \left(\sum_{m=1}^{\infty} |\eta_m|^q\right)^{\frac{1}{q}},\\ \text{where } p > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1.\\ \text{Cauchy-Schwarz inequality: } \sum_{j=1}^{\infty} |\xi_j \eta_j| &\leq \left(\sum_{k=1}^{\infty} |\xi_k|^2\right)^{\frac{1}{2}} \left(\sum_{m=1}^{\infty} |\eta_m|^2\right)^{\frac{1}{2}}.\\ \text{Minkowski inequality: } \left(\sum_{j=1}^{\infty} |\xi_j + \eta_j|^p\right)^{\frac{1}{p}} &\leq \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{\frac{1}{p}} + \left(\sum_{m=1}^{\infty} |\eta_m|^p\right)^{\frac{1}{p}},\\ \text{where } p > 1. \end{split}$$

1. For $x = (\xi_j)$ and $y = (\eta_j)$, the function

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|}$$

defines a metric on the sequence space s. Show that we can obtain another metric by replacing $1/2^j$ with $\mu_j > 0$ such that $\sum \mu_j$ converges.

Solution: The proof for triangle inequality is identical. To ensure finiteness of d, we require that $\sum \mu_j$ converges since

$$d(x,y) = \sum_{j=1}^{\infty} \mu_j \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} < \sum_{j=1}^{\infty} \mu_j < \infty.$$

2. Suppose we have that for any α, β positive numbers,

$$\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}.$$

where p, q are conjugate exponents. Show that the geometric mean of two positive numbers does not exceed the arithmetic mean.

Solution: Choose p = q = 2, which are conjugate exponents since $\frac{1}{2} + \frac{1}{2} = 1$; we then have $ab \le \frac{a^2}{2} + \frac{b^2}{2}$. Multiplying by 2 and adding 2ab to both sides yield: $2ab + 2ab \le a^2 + b^2 + 2ab$

$$4ab \le (a+b)^2$$
$$ab \le \left(\frac{a+b}{2}\right)^2$$

Since ab is a positive quantity, the desired statement follows from taking square root of both sides.

3. Show that the Cauchy-Schwarz inequality for sums implies

$$(|\xi_1| + \dots + |\xi_n|)^2 \le n(|\xi_1|^2 + \dots + |\xi_n|^2).$$

Solution: An equivalent formulation of the **Cauchy-Schwarz inequality** for (finite) sums is

$$\left(\sum_{j=1}^{n} |\xi_j \eta_j|\right)^2 \le \left(\sum_{k=1}^{n} |\xi_k|^2\right) \left(\sum_{m=1}^{n} |\eta_m|^2\right).$$

Choosing $\eta_j = 1$ for all $j \ge 1$ yields the desired inequality.

4. (Space l^p) Find a sequence which converges to 0, but is not in any space l^p , where $1 \le p < +\infty$.

Solution: Consider the sequence (b_j) with numbers a(k), N(k) times, where for $k \ge 1$, $a(k) = \frac{1}{k}$ and $N(k) = 2^k$, i.e. $(b_j) = \left(\underbrace{1, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac$ 5. Find a sequence x which is in l^p with p > 1 but $x \notin l^1$.

Solution: The sequence $(a_n) = \left(\frac{1}{n}\right)$ belongs to l^p with p > 1 but not l^1 .

6. (Diameter, bounded set) The diameter $\delta(A)$ of a nonempty set A in a metric space (X, d) is defined to be

$$\delta(A) = \sup_{x,y \in A} d(x,y).$$

A is said to be *bounded* if $\delta(A) < \infty$. Show that $A \subset B$ implies $\delta(A) \leq \delta(B)$.

Solution: This follows from property of least upper bound.

7. Show that $\delta(A) = 0$ if and only if A consists of a single point.

Solution: Suppose $\delta(A) = 0$, this means that d(x, y) = 0 for all $x, y \in A$; (M2) then implies x = y, i.e. A has only one element. Conversely, suppose that A consists of a single point, say x; (M2) implies that $\delta(A) = 0$ since d(x, x) = 0.

8. (Distance between sets) The distance D(A, B) between two nonempty subsets A and B of a metric space (X, d) is defined to be

$$D(A, B) = \inf_{\substack{a \in A \\ b \in B}} d(a, b).$$

Show that D does not define a metric on the power set of X. (For this reason we use another symbol, D, but one that still reminds us of d.)

Solution: Consider $X = \{1, 2, 3\}$ with d being the absolute value function, and consider its power set $A = \{1\}$ and $B = \{1, 2\}$. By construction, D(A, B) = 0 but $A \neq B$.

9. If $A \cap B \neq \emptyset$, show that D(A, B) = 0 in Problem 8. What about the converse?

Solution: If $A \cap B \neq \emptyset$, then for any $x \in A \cap B$, $0 \leq D(A, B) \leq d(x, x) = 0 \implies D(A, B) = 0.$ The converse does not hold. Consider $X = \mathbb{Q}$, with $A = \{0\}$ and $B = \left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ Then $D(A, B) = \lim_{n \to \infty} d(0, 1/n) = \lim_{n \to \infty} \frac{1}{n} = 0$, but $A \cap B = \emptyset$. 10. The distance D(x, B) from a point x to a non-empty subset B of (X, d) is defined to be

$$D(x,B) = \inf_{b \in B} d(x,b)$$

in agreement with Problem 8. Show that for any $x, y \in X$,

$$|D(x,B) - D(y,B)| \le d(x,y).$$

Solution: Let $x, y \in X$. For any $z \in B$, we have

$$D(x, B) \le d(x, z) \le d(x, y) + d(y, z).$$

$$D(y, B) \le d(y, z) \le d(y, x) + d(x, z).$$

Taking infimum over all $z \in B$ on the RHS of both inequalities yields

$$D(x,B) \le d(x,y) + D(y,B).$$

$$D(y,B) \le d(x,y) + D(x,B).$$

Rearranging and combining these two together gives the desired inequality.

<u>Remark</u>: This result says that for any nonempty set $B \subset X$, the function $x \mapsto D(x, B)$ is Lipschitz with Lipschitz constant 1.

11. If (X, d) is any metric space, show that another metric on X is defined by

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

and X is bounded in the metric d.

Solution: Note that X is bounded in the metric \tilde{d} since $\tilde{d}(x, y) \leq 1 < \infty$. (M1) to (M3) are satisfied, as we readily see. To show that \tilde{d} satisfies (M4), consider the auxiliary function f defined on \mathbb{R} by $f(t) = \frac{t}{1+t}$. Differentiation gives $f'(t) = \frac{1}{(1+t)^2}$, which is positive for t > 0. Hence f is monotone increasing. Consequently, $d(x, y) \leq d(x, z) + d(z, y)$ implies

$$\begin{split} \tilde{d}(x,y) &= \frac{d(x,y)}{1+d(x,y)} \leq \frac{d(x,z) + d(z,y)}{1+d(x,z) + d(z,y)} \\ &= \frac{d(x,z)}{1+d(x,z) + d(z,y)} + \frac{d(z,y)}{1+d(x,z) + d(z,y)} \\ &\leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} \\ &= \tilde{d}(x,z) + \tilde{d}(z,y). \end{split}$$

12. Show that the union of two bounded sets A and B in a metric space is a bounded set. (Definition in Problem 6.)

Solution: Let $X = A \cup B$, we need to show $\delta(X) = \sup_{x,y \in X} d(x,y) < \infty$. Observe that if x, y are both in A or B, then $d(x,y) < \infty$ by assumption, so WLOG it suffices to prove that $\sup_{x \in A, y \in B} d(x, y) < \infty$.

• Consider the first case where $A \cap B \neq \emptyset$. For any fixed $z \in A \cap B$,

 $d(x,y) \le d(x,z) + d(z,y) \le \delta(A) + \delta(B) < \infty.$

The claim follows by taking supremum over $x \in A, y \in B$ in both sides of the inequality.

• Consider the second case where $A \cap B = \emptyset$. For every $\varepsilon > 0$, there exists $x^* \in A$ and $y^* \in B$ such that $d(x^*, y^*) \leq D(A, B) + \varepsilon$. For any $x \in A$ and $y \in B$,

$$d(x,y) \le d(x,x^*) + d(x^*,y^*) + d(y^*,y)$$

$$\le \delta(A) + D(A,B) + \varepsilon + \delta(B).$$

Letting $\varepsilon \longrightarrow 0$, and taking supremum over $x \in A, y \in B$, we obtain the desired result.

13. (Product of metric spaces) The Cartesian product $X = X_1 \times X_2$ of two metric spaces (X_1, d_1) and (X_2, d_2) can be made into a metric space (X, d) in many ways. For instance, show that a metric d is defined by

$$d(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2),$$

where $x = (x_1, x_2), y = (y_1, y_2).$

Solution:

- (M1) is satisfied since we are summing two real-valued, finite and nonnegative functions.
- Suppose d(x, y) = 0, this is equivalent to $d_1(x_1, y_1) = d_2(x_2, y_2) = 0$ since d_1 and d_2 are both nonnegative functions. This implies $x_1 = y_1$ and $x_2 = y_2$ or equivalently x = y. Conversely, suppose x = y, then

 $x_1 = y_1 \implies d_1(x_1, y_1) = 0$ and $x_2 = y_2 \implies d_2(x_2, y_2) = 0.$

Consequently, $d(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2) = 0.$

• (M3) is satisfied since for any $x, y \in X_1 \times X_2$,

 $d(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2) = d_1(y_1, x_1) + d_2(y_2, x_2) = d(y, x).$

• (M4) follows from combining triangle inequalities of d_1 and d_2 . More precisely, let $z = (z_1, z_2) \in X_1 \times X_2$, then we have from (M4) of d_1 and d_2 :

$$\begin{aligned} d_1(x_1, y_1) &\leq d_1(x_1, z_1) + d_1(z_1, y_1). \\ d_2(x_2, y_2) &\leq d_2(x_2, z_2) + d_2(z_2, y_2). \\ \implies d(x, y) &= d_1(x_1, y_1) + d_2(x_2, y_2) \\ &\leq d_1(x_1, z_1) + d_1(z_1, y_1) + d_2(x_2, z_2) + d_2(z_2, y_2) \\ &= \left[d_1(x_1, z_1) + d_2(x_2, z_2) \right] + \left[d_1(z_1, y_1) + d_2(z_2, y_2) \right] \\ &= d(x, z) + d(z, y). \end{aligned}$$

14. Show that another metric on X in Problem 13 is defined by

$$\tilde{d}(x,y) = \sqrt{d_1(x_1,y_1)^2 + d_2(x_2,y_2)^2}.$$

Solution: A similar argument in Problem 13 shows that (M1) to (M3) are satisfied. Let $z = (z_1, z_2) \in X_1 \times X_2$, then we have from (M4) of d_1 and d_2 :

$$d_1(x_1, y_1) \le d_1(x_1, z_1) + d_1(z_1, y_1).$$

$$d_2(x_2, y_2) \le d_2(x_2, z_2) + d_2(z_2, y_2).$$

Squaring both sides yields:

$$d_1(x_1, y_1)^2 \le d_1(x_1, z_1)^2 + d_1(z_1, y_1)^2 + 2d_1(x_1, z_1)d_1(z_1, y_1)$$

$$d_2(x_2, y_2)^2 \le d_2(x_2, z_2)^2 + d_2(z_2, y_2)^2 + 2d_2(x_2, z_2)d_2(z_2, y_2)$$

Summing these two inequalities and applying definition of \tilde{d} , we obtain:

$$\begin{split} \tilde{d}(x,y)^2 &\leq \tilde{d}(x,z)^2 + \tilde{d}(z,y)^2 + 2 \left[d_1(x_1,z_1) d_1(z_1,y_1) + d_2(x_2,z_2) d_2(z_2,y_2) \right] \\ &= \tilde{d}(x,z)^2 + \tilde{d}(z,y)^2 + 2 \sum_{j=1}^2 d_j(x_j,z_j) d_j(z_j,y_j) \\ &\leq \tilde{d}(x,z)^2 + \tilde{d}(z,y)^2 + 2 \left(\sum_{j=1}^2 d_j(x_j,z_j)^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^2 d_j(z_j,y_j)^2 \right)^{\frac{1}{2}} \\ &= \tilde{d}(x,z)^2 + \tilde{d}(z,y)^2 + 2\tilde{d}(x,z)\tilde{d}(z,y) \\ &= \left[\tilde{d}(x,z) + \tilde{d}(z,y) \right]^2 \end{split}$$

where the inequality follows from **Cauchy-Schwarz inequality** for sums. (M4) follows from taking square root of both sides.

15. Show that a third metric on X in Problem 13 is defined by

$$\hat{d}(x,y) = \max\{d_1(x_1,y_1), d_2(x_2,y_2)\}$$

Solution: A similar argument in Problem 13 shows that (M1) to (M3) are satisfied. Let $z = (z_1, z_2) \in X_1 \times X_2$, then

$$\begin{aligned} \hat{d}(x,y) &= \max\{d_1(x_1,y_1), d_2(x_2,y_2)\} \\ &\leq \max\{d_1(x_1,z_1) + d_1(z_1,y_1), d_2(x_2,z_2) + d_2(z_2,y_2)\} \\ &\leq \max\{d_1(x_1,z_1), d_2(z_2,z_2)\} + \max\{d_1(z_1,y_1), d_2(z_2,y_2)\} \\ &= \hat{d}(x,z) + \hat{d}(z,y). \end{aligned}$$

where we repeatedly used the fact that $|a| \leq \max\{|a|, |b|\}$ for any $a, b \in \mathbb{R}$.

(The metrics in Problem 13 to 15 are of practical importance, and other metrics on X are possible.)

1.3 Open Set, Closed Set, Neighbourhood.

Definition 1.3.1.

1. Given a point $x_0 \in X$ and a real number r > 0, we define three types of sets:

$$B_r(x_0) = \{x \in X : d(x, x_0) < r\}$$
(Open ball).

$$\tilde{B}_r(x_0) = \{x \in X : d(x, x_0) \le r\}$$
(Closed ball).

$$S_r(x_0) = \{x \in X : d(x, x_0) = r\}$$
(Sphere).

In all three cases, x_0 is called the center and r the radius.

- 2. A subset M of a metric space X is said to be **open** if it contains a ball about each of its points. A subset K of X is said to be **closed** if its complement (in X) is open, that is, $K^C = X \setminus K$ is open.
- 3. We call x_0 an *interior point* of a set $M \subset X$ if M is a neighbourhood of x_0 . The *interior* of M is the set of all interior points of M and may be denoted by Int(M).
 - By neighbourhood of x_0 we mean any subset of X which contains an ε -neighbourhood of x_0 .
 - Int(M) is open and is the largest open set contained in M.

Definition 1.3.2. A topological space (X, τ) is a set X together with a collection τ of subsets of X such that τ satisfies the following properties: (a) $\emptyset \in \tau$, $X \in \tau$.

- (b) The union of any members of τ is a member of τ .
- (c) The intersection of finitely many members of τ is a member of τ .
 - From this definition, we have that a metric space is a topological space.

Definition 1.3.3 (Continuous mapping). Let X = (X, d) and $Y = (Y, \tilde{d})$ be metric spaces. A mapping $T: X \longrightarrow Y$ is said to be **continuous** at a point $x_0 \in X$ if for every $\varepsilon > 0$, there is a $\delta > 0$ such that

 $\tilde{d}(Tx, Tx_0) < \varepsilon$ for all x satisfying $d(x, x_0) < \delta$.

T is said to be **continuous** if it is continuous at every point of X.

Theorem 1.3.4 (Continuous mapping). A mapping T of a metric space X into a metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X.

Definition 1.3.5. Let M be a subset of a metric space X. A point x_0 of X (which may or may not be a point of M) is called an **accumulation point** of M (or **limit point** of M) if every neighbourhood of x_0 contains at least one point $y \in M$ distinct from x_0 . The set consisting of the points of M and the accumulation points of M is called the **closure** of M and is denoted by \overline{M} . It is the smallest closed set containing M. **Definition 1.3.6** (Dense set, separable space).

- 1. A subset M of a metric space X is said to be **dense** in X if $\overline{M} = X$.
 - Hence, if M is dense in X, then every ball in X, no matter how small, will contain points of M; in other words, in this case there is no point $x \in X$ which has a neighbourhood that does not contain points of M.
- 2. X is said to be **separable** if it has a countable dense subset of X.
- 1. Justify the terms "open ball" and "closed ball" by proving that
 - (a) any open ball is an open set.

Solution: Let (X, d) be a metric space. Consider an open ball $B_r(x_0)$ with both center $x_0 \in X$ and radius r > 0 fixed. For any $x \in B_r(x_0)$, we have $d(x, x_0) < r$. We claim that $B_{\varepsilon}(x)$ with $\varepsilon = r - d(x, x_0) > 0$ is contained in $B_r(x_0)$. Indeed, for any $y \in B_{\varepsilon}(x)$,

$$d(y, x_0) \le d(y, x) + d(x, x_0)$$

$$< \varepsilon + d(x, x_0)$$

$$= \varepsilon + r - \varepsilon = r$$

Since $x \in B_r(x_0)$ was arbitrary, this shows that $B_r(x_0)$ contains a ball about each of its points, and thus is an open set in X. Since $x_0 \in X$ and r > 0 were arbitrary, this shows that any open ball in X is an open set in X.

(b) any closed ball is a closed set.

Solution: Let (X, d) be a metric space. Consider a closed ball $\tilde{B}_r(x_0)$ with both center $x_0 \in X$ and radius r > 0 fixed. To show that it is closed in X, we need to show that $\tilde{B}_r(x_0)^C = X \setminus \tilde{B}_r(x_0)$ is open in X. For any $x \in \tilde{B}_r(x_0)^C$, we have $d(x, x_0) > r$. We claim that $B_{\varepsilon}(x)$ with $\varepsilon = d(x, x_0) - r > 0$ is contained in $\tilde{B}_r(x_0)^C$. Indeed, for any $y \in B_{\varepsilon}(x)$, triangle inequality of a metric gives:

$$d(x, x_0) \leq d(x, y) + d(y, x_0)$$

$$\implies d(y, x_0) \geq d(x, x_0) - d(x, y)$$

$$= d(x, x_0) - d(y, x)$$

$$> d(x, x_0) - \varepsilon = r.$$

Since $x \in \tilde{B}_r(x_0)^C$ was arbitrary, this shows that $\tilde{B}_r(x_0)^C$ contains a ball about each of its points, and thus is an open set in X or equivalently $\tilde{B}_r(x_0)$ is a closed set in X. Since $x_0 \in X$ and r > 0 were arbitrary, this shows that any closed ball in X is a closed set in X.

2. What is an open ball $B_1(x_0)$ in \mathbb{R} ? In \mathbb{C} ? In C[a, b]?

Solution:

- An open ball $B_1(x_0)$ in \mathbb{R} is the open interval $(x_0 1, x_0 + 1)$.
- An open ball $B_1(x_0)$ in \mathbb{C} is the open disk $\mathcal{D} = \{z \in \mathbb{C} : |z x_0| < 1\}.$
- Given $x_0 \in C[a, b]$, an open ball $B_1(x_0)$ in C[a, b] is any continuous function $x \in C[a, b]$ satisfying $\sup_{t \in [a, b]} |x(t) x_0(t)| < 1$.
- 3. Consider $C[0, 2\pi]$ and determine the smallest r such that $y \in \tilde{B}(x; r)$, where $x(t) = \sin(t)$ and $y(t) = \cos(t)$.

Solution: We want to maximise y(t) - x(t) over $t \in [0, 2\pi]$. Consider $z(t) = \cos(t) - \sin(t)$, differentiating gives $z'(t) = -\sin(t) - \cos(t)$, which is equal to 0 if and only if $\sin(t) + \cos(t) = 0$, or

$$\tan(t) = -1 \implies t_c = \frac{3\pi}{4}, \frac{7\pi}{4}.$$

Evaluating z(t) at t_c gives $z(t_c) = \pm \sqrt{2}$. Thus, the smallest r > 0 such that $y \in \tilde{B}_r(x)$ is $r = \sqrt{2}$.

4. Show that any nonempty set $A \subset (X, d)$ is open if and only if it is a union of open balls.

Solution: Suppose A is a nonempty open subset of X. For any $x \in A$, there exists $\varepsilon_x > 0$ such that $B_{\varepsilon_x}(x) \subset A$. We claim that $\bigcup_{x \in A} B_{\varepsilon_x}(x) = A$. It is clear that $A \subset \bigcup_{x \in A} B_{\varepsilon_x}(x)$. Suppose $x_0 \in \bigcup_{x \in A} B_{\varepsilon_x}(x)$, then $x_0 \in B_{\varepsilon_{x_0}}(x_0) \subset A \implies \bigcup_{x \in A} B_{\varepsilon_x}(x) \subset A$. Consequently, A is a union of open balls. Conversely, suppose $A \subset (X, d)$ is a union of open balls, which is also a union of open sets since open balls are open in X. Let Λ be an indexing set (which might be uncountable), we can write A as $A = \bigcup_{n \in \Lambda} U_n$, where U_n is open. Fix any $x \in A$, there exists an $j \in \Lambda$ such that $x \in U_j$. Since U_j is open, there exists an $\varepsilon > 0$ such that $x \in B_{\varepsilon}(x) \subset U_j \subset \bigcup_{n > 0} U_n = A$.

5. It is important to realise that certain sets may be open and closed at the same time.

(a) Show that this is always the case for X and \emptyset .

Solution: \emptyset is open since \emptyset contains no elements. For any $x \in X$, choose $\varepsilon = 1 > 0$, then $B_{\varepsilon}(x) \subset X$ by definition. This immediately implies that \emptyset and X are both closed since $\emptyset^{C} = X$ and $X^{C} = \emptyset$ are both open.

(b) Show that in a discrete metric space X, every subset is open and closed.

Solution: Consider any subset A in X. For any $x \in A$, there exists an open ball around x that is contained in A by the structure of the discrete metric. Indeed, with $0 < \varepsilon < 1$, $B_{\varepsilon}(x) = \{x\} \subset A$. Similarly, A is closed by the same argument. Indeed, for any $y \in A^C$, with $0 < \varepsilon < 1$, $B_{\varepsilon}(y) = \{y\} \subset A^C$.

6. If x_0 is an accumulation point of a set $A \subset (X, d)$, show that any neighbourhood of x_0 contains infinitely many points of A.

Solution: Denote by N a neighbourhood of x_0 , by definition it contains an ε neighbourhood of x_0 . Observe that for $\varepsilon_j = \varepsilon/2^j$, $\{B_{\varepsilon_j}(x_0)\}_{j=0}^{\infty}$ are also neighbourhoods of x_0 . Since x_0 is an accumulation point of a set $A \subset (X, d)$, by
definition each $B_{\varepsilon_j}(x_0)$ contains at least one point $y_j \in A$ distinct from x_0 . By
construction, $\{y_j\}_{j=0}^{\infty} \subset \bigcup_{j=0}^{\infty} B_{\varepsilon_j}(x_0) = B_{\varepsilon}(x_0) \subset N$. Since N was an arbitrary
neighbourhood of x_0 , the statement follows.

- 7. Describe the closure of each of the following subsets.
 - (a) The integers on \mathbb{R} ,
 - (b) the rational numbers on \mathbb{R} ,
 - (c) the complex numbers with rational real and imaginary parts in \mathbb{C} ,
 - (d) the disk $\{z \mid |z| < 1\} \subset \mathbb{C}$.

Solution: (a) \mathbb{Z} (b) \mathbb{R} (c) \mathbb{C} (d) The closed unit disk $\mathcal{D} = \{z \in C : |z| \le 1\}$. Note that (b) and (c) follows from the fact that \mathbb{Q} are dense in \mathbb{R} .

8. Show that the closure $\overline{B(x_0;r)}$ of an open ball $B(x_0;r)$ in a metric space can differ from the closed ball $\tilde{B}(x_0;r)$.

Solution: Consider a discrete metric space (X, d), and an open ball $B_1(x) = \{x\}$ with $x \in X$. Then $\overline{B_1(x)} = \{x\}$ but $\tilde{B}_1(x) = X$.

9. Show that

(a) $A \subset \overline{A}$,

Solution: This follows immediately from definition of \overline{A} .

(b) $\bar{A} = \bar{A}$,

Solution: It is clear from definition of closure that $\overline{A} \subset \overline{A}$. Now suppose $x \in \overline{A}$. Either $x \in \overline{A}$ or x is an accumulation point of \overline{A} , but accumulation points of \overline{A} are precisely those of A. Thus in both cases $x \in \overline{A}$ and $\overline{\overline{A}} \subset \overline{A}$. Combining these two set inequalities yields the desired set equality.

```
(c) \overline{A \cup B} = \overline{A} \cup \overline{B},
```

Solution: Suppose $x \in \overline{A \cup B}$. Either $x \in A \cup B$, and either

- $x \in A \subset \overline{A} \subset \overline{A} \cup \overline{B}$, or
- $x \in B \subset \overline{B} \subset \overline{A} \cup \overline{B}$, or
- $x \in A \cap B \subset \overline{A} \cap \overline{B} \subset \overline{A} \cup \overline{B}$, since $A \subset \overline{A} \& B \subset \overline{B} \implies A \cap B \subset \overline{A} \cap \overline{B}$.

or x is an accumulation point of $A \cup B$, but it is contained in $\overline{A} \cup \overline{B}$ by the same reasoning as above. Thus, $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

Now suppose $x \in \overline{A} \cup \overline{B}$. Either

- $x \in \overline{A} \subset \overline{A \cup B}$, since $A \subset A \cup B$, or
- $x \in \overline{B} \subset \overline{A \cup B}$, since $B \subset A \cup B$, or
- $x \in \overline{A} \cap \overline{B} \subset \overline{A \cup B}$, since $A \cap B \subset A \cup B$.

Thus, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Combining these two set inequalities yields the desired set equality.

(d) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Solution: Suppose $x \in \overline{A \cap B}$. Either $x \in A \cap B \implies x \in A \subset \overline{A}$ and $x \in B \subset \overline{B} \implies x \in \overline{A} \cap \overline{B}$, or x is an accumulation point of $A \cap B$. This means that x is an accumulation point of both A and B or equivalently $x \in \overline{A} \cap \overline{B}$.

10. A point x not belonging to a *closed* set $M \subset (X, d)$ always has a nonzero distance from M. To prove this, show that $x \in \overline{A}$ if and only if D(x, A) = 0; here A is any nonempty subset of X.

Solution: If $x \in A \subset \overline{A}$, then D(x, A) = 0 since $\inf_{y \in A} d(x, y)$ is attained at y = x, so suppose $x \in \overline{A} \setminus A$. By definition x is an accumulation point, so each neighbourhood $B_{\varepsilon}(x)$ of x contains at least one point $y_{\varepsilon} \in A$ distinct from x, with $d(y_{\varepsilon}, x) < \varepsilon$. Taking $\varepsilon \longrightarrow 0$ gives D(x, A) = 0.

Conversely, suppose $D(x, A) = \inf_{y \in A} d(x, y) = 0$. If this infimum is attained, then $x \in A \subset \overline{A}$, so suppose not. One property of infimum states that for every $\varepsilon > 0$, there exists an $y_{\varepsilon} \in A$ such that $d(y_{\varepsilon}, x) < 0 + \varepsilon = \varepsilon$. But this implies that x is an accumulation point of A.

- 11. (Boundary) A boundary point x of a set $A \subset (X, d)$ is a point of X (which may or may not belong to A) such that every neighbourhood of x contains points of A as well as points not belonging to A; and the boundary (or frontier) of A is the set of all boundary points of A. Describe the boundary of
 - (a) the intervals (-1,1), [-1,1), [-1,1] on \mathbb{R} ;
 - (b) the set of all rational numbers \mathbb{Q} on \mathbb{R} ;
 - (c) the disks $\{z \in \mathbb{C} : |z| < 1\} \subset \mathbb{C}$ and $\{z \in \mathbb{C} : |z| \le 1\} \subset \mathbb{C}$.

Solution: (a) $\{-1, 1\}$. (c) The unit circle on the complex plane \mathbb{C} , $\{z \in \mathbb{C} : |z| = 1\}$. (b) Note that the interior of $\mathbb{Q} \subset \mathbb{R}$ is empty since for any $\varepsilon > 0$, the open ball $B_{\varepsilon}(x)$ with $x \in \mathbb{Q}$ is not contained in \mathbb{Q} ; indeed, $B_{\varepsilon}(x)$ contains at least one irrational number. Since the closure of \mathbb{Q} in $(\mathbb{R}, |\cdot|)$ is \mathbb{R} , it follows that the boundary of \mathbb{Q} on \mathbb{R} is \mathbb{R} .

12. (Space B[a, b]) Show that B[a, b], a < b, is not separable.

Solution: Motivated by the proof of non-separability for the space l^{∞} , consider a subset A of B[a, b] consisting of functions that are defined as follows: for every $c \in [a, b]$, define f_c as

$$f_c(t) = \begin{cases} 1 & \text{if } t = c, \\ 0 & \text{if } t \neq c. \end{cases}$$

It is clear that A is uncountable. Moreover, the metric on B[a, b] shows that any distinct $f, g \in A$ must be of distance 1 apart. If we let each of these functions $f \in A$ be the center of a small ball, say, of radius $\frac{1}{3}$, these balls do not intersect and we have uncountably many of them. If M is any dense set in B[a, b], each of these nonintersecting balls must contain an element of M. Hence M cannot

be countable. Since M was an arbitrary dense subset of B[a, b], this conclude that B[a, b] cannot have countable dense subsets. Consequently, B[a, b] is not separable by definition.

<u>Remark</u>: A general approach to show non-separability is to construct an uncountable family of pairwise disjoint open balls.

13. Show that a metric space X is separable if and only if X has a countable subset Y with the following property: For every $\varepsilon > 0$ and every $x \in X$ there is a $y \in Y$ such that $d(x, y) < \varepsilon$.

Solution: Suppose X is separable, by definition X has a countable dense subset Y, with $\overline{Y} = X$. Let $\varepsilon > 0$ and fix an $x \in X = \overline{Y}$. Definition of \overline{Y} says that any ε -neighbourhood of x contains at least one $y \in Y$ distinct from x, with $d(y, x) < \varepsilon$. Since $x \in X$ was arbitrary, the statement follows.

Conversely, suppose X has a countable subset Y with the property given above. Then any $x \in X$ with that given property is either a point of Y (since then $d(x,x) = 0 < \varepsilon$) or an accumulation point of Y. Hence, $\overline{Y} = X$ and since Y is countable, X is separable by definition.

14. (Continuous mapping) Show that a mapping $T: X \longrightarrow Y$ is continuous if and only if the inverse image of any closed set $M \subset Y$ is a closed set in X.

Solution: The statement is a simple application of Theorem 1.5. It is useful to observe that if M is any subset of Y, and M_0 is the preimage (inverse image) of M under T, then the preimage of $Y \setminus M$ is precisely $X \setminus M_0$. More precisely,

$$M_0 = \{ x \in X \colon f(x) \in M \}.$$
$$X \setminus M_0 = M_0^C = \{ x \in X \colon f(x) \notin M \} = \{ x \in X \colon f(x) \in Y \setminus M \}.$$

Suppose T is continuous. Let $M \subset Y$ be closed and M_0 be the preimage of M under T. Since $Y \setminus M$ is open in Y, theorem above implies that its preimage $X \setminus M_0$ is open in X, or equivalently M_0 is closed in X. Conversely, suppose the preimage of any closed set $M \subset U$ is a closed set in X. This is equivalent to saying that the preimage of any open set $N \subset U$ is an open set in X (refer to observation above). Thus, theorem above implies that T is continuous.

15. Show that the image of an open set under a continuous mapping need not be open.

Solution: Consider $x(t) = \sin(t)$, then x maps $(0, 2\pi)$ to [-1, 1].

1.4 Convergence, Cauchy Sequence, Completeness.

Definition 1.4.1. A sequence (x_n) in a metric space X = (X, d) is said to **converge** or to be convergent if there exists an $x \in X$ such that

$$\lim_{n \to \infty} d(x_n, x) = 0.$$

x is called the **limit** of (x_n) .

Lemma 1.4.2 (Boundedness, limit). Let X = (X, d) be a metric space. (a) A convergent sequence in X is bounded and its limit is unique.

(b) If $x_n \longrightarrow x$ and $y_n \longrightarrow y$ in X, then $d(x_n, y_n) \longrightarrow d(x, y)$.

Definition 1.4.3 (Cauchy sequence, completeness). A sequence (x_n) in a metric space X = (X, d) is said to be **Cauchy** if for every $\varepsilon > 0$, there is an $N = N(\varepsilon)$ such that

 $d(x_m, x_n) < \varepsilon$ for every m, n > N.

The space X is said to be **complete** if every Cauchy sequence in X converges, that is, has a limit which is an element of X.

Theorem 1.4.4. Every convergent sequence in a metric space is a Cauchy sequence.

Theorem 1.4.5 (Closure, closed set). Let M be a non-empty subset of a metric space (X, d) and \overline{M} its closure.

(a) $x \in \overline{M}$ if and only if there is a sequence (x_n) in M such that $x_n \longrightarrow x$.

(b) M is closed if and only if the situation $x_n \in M, x_n \longrightarrow x$ implies that $x \in M$.

Theorem 1.4.6 (Complete subspace). A subspace M of a complete metric space X is itself complete if and only if the set M is closed in X.

Theorem 1.4.7 (Continuous mapping). A mapping $T: X \longrightarrow Y$ of a metric space (X, d) into a metric space (Y, \tilde{d}) is continuous at a point $x_0 \in X$ if and only if

$$x_n \longrightarrow x_0 \implies Tx_n \longrightarrow Tx_0.$$

• The only if direction is proved using ε - δ definition of continuity, whereas the if direction is a proof by contradiction.

1. (Subsequence) If a sequence (x_n) in a metric space X is convergent and has limit x, show that every subsequence (x_{n_k}) of (x_n) is convergent and has the same limit x.

Solution: Suppose we have a convergent sequence (x_n) in a metric space (X, d), with limit $x \in X$. By definition, for any given $\varepsilon > 0$, there exists an $N_1 = N_1(\varepsilon)$ such that $d(x_n, x) < \varepsilon$ for all $n > N_1$. For any subsequence $(x_{n_k}) \subset (x_n)$ choose $N = N_1$, then for all k > N (which implies that $n_k \ge k > N$ by definition of a subsequence), we have $d(x_{n_k}, x) < \varepsilon$. The statement follows.

2. If (x_n) is Cauchy and has a convergent subsequence, say, $x_{n_k} \longrightarrow x$, show that (x_n) is convergent with the limit x.

Solution: Chhose any $\varepsilon > 0$. Since (x_n) is Cauchy, there exists an N_1 such that $d(x_m, x_n) < \frac{\varepsilon}{2}$ for all $m, n > N_1$. Since (x_n) has a convergent subsequence (x_{n_k}) (with limit $x \in X$), there exists an N_2 such that $d(x_{n_k}, x) < \frac{\varepsilon}{2}$ for all $k > N_2$. Choose $N = \max\{N_1, N_2\}$, then for all n > N we have (by triangle inequality)

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

where we implicitly use the fact that $n_k \ge m > N_1$ for the first bound and $n_k \ge k > N_2$ for the second bound. Since $\varepsilon > 0$ was arbitrary, this shows that (x_n) is convergent with the limit $x \in X$.

3. Show that $x_n \longrightarrow x$ if and only if for every neighbourhood V of x there is an integer n_0 such that $x_n \in V$ for all $n > n_0$.

Solution: Suppose $x_n \to x$, then $\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} a_n = 0$, where (a_n) is a sequence of real numbers. Thus, given any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n - 0| = d(x_n, x) < \varepsilon$ for all n > N. In particular, we have that $x_n \in B_{\varepsilon}(x)$ for all n > N. Since $\varepsilon > 0$ was arbitrary, the statement follows by setting $V = B_{\varepsilon}(x)$ and $n_0 = N = N(\varepsilon)$. Conversely, suppose (x_n) is a sequence with the given property in the problem. For a fixed $\varepsilon > 0$, if we set $V = B_{\varepsilon}(x)$, there exists an $n_0 \in \mathbb{N}$ such that $x_n \in V$ for all $n > n_0$. In particular, we have that $d(x_n, x) < \varepsilon$ for all $n > n_0$. This shows that $x_n \to x$ since $\varepsilon > 0$ was arbitrary.

4. (Boundedness) Show that a Cauchy sequence is bounded.

Solution: Choose any Cauchy sequence (x_n) in a metric space (X, d). Given any $\varepsilon > 0$, there exists an N such that $d(x_m, x_n) < \varepsilon$ for all m, n > N. Choose $\varepsilon = 1 > 0$, there exists N_{ε} such that $d(x_m, x_n) < 1$ for all $m, n > N_{\varepsilon}$. Let $\alpha = \max_{j,k=1,\dots,N_{\varepsilon}} d(x_j, x_k)$, and choose $A = \max\{\alpha, 1\}$. We see that $d(x_m, x_n) < A$ for all $m, n \ge 1$. This shows that (x_n) is bounded. 5. Is boundedness of a sequence in a metric space sufficient for the sequence to be Cauchy? Convergent?

Solution: It turns out that boundedness of a sequence in a metric space does not imply Cauchy or convergent. Consider the sequence (x_n) , where $x_n = (-1)^n$; it is clear that (x_n) is bounded in (\mathbb{R}, d) , where $d(x_m, x_n) = |x_m - x_n|$.

- (x_n) is not Cauchy in \mathbb{R} since if we pick $\varepsilon = \frac{1}{2} > 0$, then for all N, there exists m, n > N (we could choose m = N + 1, n = N + 2 for example) such that $d(x_m, x_n) = d(x_{N+1}, x_{N+2}) = 1 > \frac{1}{2}$.
- (x_n) is not convergent in \mathbb{R} since it is not Cauchy.
- 6. If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges. Give illustrative examples.

Solution: Let (x_n) and (y_n) be Cauchy sequences in a metric space (X, d) and fix an $\varepsilon > 0$. By definition, there exists N_1, N_2 such that

$$d(x_m, x_n) < \frac{\varepsilon}{2}$$
 for all $m, n > N_1$.
 $d(y_m, y_n) < \frac{\varepsilon}{2}$ for all $m, n > N_2$.

Define a sequence (a_n) , with $a_n = d(x_n, y_n)$; observe that (a_n) is a sequence in \mathbb{R} . Thus to show that (a_n) converges, an alternative way is to show that (a_n) is a Cauchy sequence. First, generalised triangle inequality of d yields the following two inequalities:

$$a_{m} = d(x_{m}, y_{m}) \leq d(x_{m}, x_{n}) + d(x_{n}, y_{n}) + d(y_{n}, y_{m})$$

$$= d(x_{m}, x_{n}) + a_{n} + d(y_{m}, y_{n})$$

$$\implies a_{m} - a_{n} \leq d(x_{m}, x_{n}) + d(y_{m}, y_{n}).$$

$$a_{n} = d(x_{n}, y_{n}) \leq d(x_{n}, x_{m}) + d(x_{m}, y_{m}) + d(y_{m}, y_{n})$$

$$= d(x_{m}, x_{n}) + a_{m} + d(y_{m}, y_{n})$$

$$\implies a_{n} - a_{m} \leq d(x_{m}, x_{n}) + d(y_{m}, y_{n}).$$

Choose $N = \max\{N_1, N_2\}$. Combining these inequalities yields:

$$|a_m - a_n| \le d(x_m, x_n) + d(y_m, y_n)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{for all } m, n > N.$$

Since $\varepsilon > 0$ was arbitrary, this shows that the sequence (a_n) is Cauchy in \mathbb{R} . Consequently, (a_n) must converge. 7. Give an indirect proof of Lemma 1.4-2(b).

Solution: We want to prove that if $x_n \to x$ and $y_n \to y$ in a metric space (X, d), then $d(x_n, y_n) \to d(x, y)$. Choose any $\varepsilon > 0$. By definition, there exists N_1, N_2 such that

$$d(x_n, x) < \frac{\varepsilon}{2}$$
 for all $n > N_1$.
 $d(y_n, x) < \frac{\varepsilon}{2}$ for all $n > N_2$.

Generalised triangle inequality of d yields the following two inequalities:

$$d(x_n, y_n) \leq d(x_n, x) + d(x, y) + d(y, y_n)$$

$$\implies d(x_n, y_n) - d(x, y) \leq d(x_n, x) + d(y_n, y).$$

$$d(x, y) \leq d(x, x_n) + d(x_n, y_n) + d(y_n, y)$$

$$\implies d(x, y) - d(x_n, y_n) \leq d(x_n, x) + d(y_n, y).$$

Now choose $N = \max\{N_1, N_2\}$. Combining these inequalities yields:

$$|d(x_n, y_n) - d(x, y)| \le d(x_n, x) + d(y_n, y)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{for all } n > N.$$

This proves the statement since $\varepsilon > 0$ was arbitrary.

8. If d_1 and d_2 are metrics on the same set X and there are positive numbers a and b such that for all $x, y \in X$,

$$ad_1(x,y) \le d_2(x,y) \le bd_1(x,y),$$
 (†)

show that the Cauchy sequences in (X, d_1) and (X, d_2) are the same.

Solution: Suppose (x_n) is any Cauchy sequence in (X, d_1) . Given $\varepsilon > 0$, there exists an N_1 such that $d(x_m, x_n) < \frac{\varepsilon}{b}$ for all $m, n > N_1$. Using the second inequality in (†),

$$d_2(x_m, x_n) \le b d_1(x_m, x_n) < \not b\left(\frac{\varepsilon}{\not b}\right) = \varepsilon \quad \text{for all } m, n > N_1.$$

Thus, (x_n) is also a Cauchy sequence in (X, d_2) .

Now suppose (y_n) is any Cauchy sequence in (X, d_2) . Given $\varepsilon > 0$, there exists an $N_2 \in \mathbb{N}$ such that $d(y_m, y_n) < a\varepsilon$ for all $m, n > N_2$. Using the first inequality in (\dagger) ,

$$d_1(y_m, y_n) \le \frac{1}{a} d_1(y_m, y_n) < \frac{1}{\alpha} (\alpha \varepsilon) = \varepsilon \quad \text{for all } m, n > N_2.$$

Thus, (y_n) is also a Cauchy sequence in (X, d_1) .

9. The Cartesian product $X = X_1 \times X_2$ of two metric spaces (X_1, d_1) and (X_2, d_2) can be made into a metric space (X, d) in many ways. For instance, for $x = (x_1, x_2)$ and $y = (y_1, y_2)$, we proved previously that the following are metrics for X.

$$d_a(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2).$$

$$d_b(x,y) = \sqrt{d_1(x_1,y_1)^2 + d_2(x_2,y_2)^2}.$$

$$d_c(x,y) = \max\{d_1(x_1,y_1), d_2(x_2,y_2)\}.$$

Using Problem 8, show that (X, d_a) , (X, d_b) and (X, d_c) all have the same Cauchy sequences.

Solution: We simply need to establish a few related inequalities. $\begin{aligned} d_a &= d_1 + d_2 \leq 2 \max\{d_1, d_2\} = 2d_c \implies d_a \leq 2d_c. \\ d_c &= \max\{d_1, d_2\} \leq d_1 + d_2 = d_a \implies d_c \leq d_a. \\ d_b^2 &= d_1^2 + d_2^2 \leq d_1^2 + d_2^2 + 2d_1d_2 = (d_1 + d_2)^2 = d_a^2 \implies d_b \leq d_a. \\ d_c &= \max\{d_1, d_2\} = \max\{\sqrt{d_1^2}, \sqrt{d_2^2}\} \leq \sqrt{d_1^2 + d_2^2} = d_b \implies d_c \leq d_b. \\ d_a &\leq 2d_c \leq 2d_b \implies d_a \leq 2d_b. \\ d_b &\leq d_a \leq 2d_c \implies d_b \leq 2d_c. \end{aligned}$

Consequently, we have the following inequality:

$$d_a \le 2d_c \le 2d_b \le 2d_a.$$

10. Using the completeness of \mathbb{R} , prove completeness of \mathbb{C} .

Solution: Let (z_n) be any Cauchy sequence in \mathbb{C} , where $z_n = x_n + iy_n$. For any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all m, n > N,

$$d_{\mathbb{C}}(z_m, z_n) = |z_m - z_n| = \sqrt{(x_m - x_n)^2 + (y_m - y_n)^2} \le \varepsilon$$
$$\implies (x_m - x_n)^2 + (y_m - y_n)^2 \le \varepsilon^2.$$

The last inequality implies that for all m, n > N,

$$\begin{aligned} (x_m - x_n)^2 &\leq \varepsilon^2 \implies |x_m - x_n| \leq \varepsilon. \\ (y_m - y_n)^2 &\leq \varepsilon^2 \implies |y_m - y_n| \leq \varepsilon. \end{aligned}$$

Thus, both sequences (x_n) and (y_n) are Cauchy in \mathbb{R} , which converges to, say, x and y respectively as $n \longrightarrow \infty$ by completeness of \mathbb{R} . Define $z = x + iy \in \mathbb{C}$, then convergence of (x_n) and (y_n) implies that $d_{\mathbb{R}}(x_n, x)$ and $d_{\mathbb{R}}(y_n, y)$ both converge to 0 as $n \longrightarrow \infty$. Expanding the definition of $d_{\mathbb{C}}(z_n, z)$ gives

$$d_{\mathbb{C}}(z_n, z) = |z_n - z| = \sqrt{(x_n - x)^2 + (y_n - y)^2}$$
$$= \sqrt{d_{\mathbb{R}}(x_n, x)^2 + d_{\mathbb{R}}(y_n, y)^2} \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$

This shows that $z \in \mathbb{C}$ is the limit of (z_n) . Since (z_n) was an arbitrary Cauchy sequence in \mathbb{C} , this proves completeness of \mathbb{C} .

1.5 Examples. Completeness Proofs.

To prove completeness, we take an arbitrary Cauchy sequence (x_n) in X and show that it converges in X. For different spaces, such proofs may vary in complexity, but they have approximately the same general pattern:

- 1. Construct an element x (to be used as a limit).
- 2. Prove that x is an element of the space considered.
- 3. Prove convergence $x_n \longrightarrow x$ (in the sense of the metric).
- 1. Let $a, b \in \mathbb{R}$ and a < b. Show that the open interval (a, b) is an incomplete subspace of \mathbb{R} , whereas the closed interval [a, b] is complete.

Solution: Consider a sequence (x_n) in the metric space $((a, b), |\cdot|)$, where $x_n = a + \frac{1}{n}$. Given any $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $N > \frac{2}{\varepsilon}$, then for any $m, n > N > \frac{2}{\varepsilon}$, $d(x_m, x_n) = \left|\frac{1}{m} - \frac{1}{n}\right| \le \left|\frac{1}{m}\right| + \left|\frac{1}{n}\right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. This shows that (x_n) is a Cauchy sequence in (a, b). However, $(x_n) \longrightarrow a \notin (a, b)$ as $n \longrightarrow \infty$. This shows that (a, b) is an incomplete subspace of \mathbb{R} . Since [a, b] is a prove back of \mathbb{R} .

- is a closed (metric) subspace of \mathbb{R} (which is a complete metric space), it follows that the closed interval [a, b] is complete.
- 2. Let X be the space of all ordered n-tuples $x = (\xi_1, \ldots, \xi_n)$ of real numbers and $d(x, y) = \max_j |\xi_j \eta_j|$, where $y = (\eta_j)$. Show that (X, d) is complete.

Solution: Consider any Cauchy sequence (x_m) in \mathbb{R}^n , where $x_m = \left(\xi_1^{(m)}, \ldots, \xi_n^{(m)}\right)$. Since (x_m) is Cauchy, given any $\varepsilon > 0$, there exists an N such that for all m, r > N,

$$d(x_m, x_r) = \max_{j=1,...,n} |\xi_j^{(m)} - \xi_j^{(r)}| < \varepsilon$$

In particular, for every fixed $j = 1, \ldots, n$,

$$|\xi_j^{(m)} - \xi_j^{(r)}| < \varepsilon \quad \text{for all } m, r > N.$$
(†)

Hence, for every fixed j, the sequence $(\xi_j^{(1)}, \xi_j^{(2)}, \ldots)$ is a Cauchy sequence of real numbers. It converges by completeness of \mathbb{R} , say, $\xi_j^{(m)} \longrightarrow \xi_j$ as $m \longrightarrow \infty$.

Using these *n* limits, we define $x = (\xi_1, \ldots, \xi_n)$. Clearly, $x \in \mathbb{R}^n$. From (†), with $r \longrightarrow \infty$,

$$|\xi_j^{(m)} - \xi_j| < \varepsilon$$
 for all $m > N$.

Since the RHS is independent of j, taking maximum over j = 1, ..., n in both sides yields

$$d(x_m, x) = \max_{j=1,\dots,n} |\xi_j^{(m)} - \xi_j| < \varepsilon \quad \text{for all } m > N.$$

This shows that $x_m \longrightarrow x$. Since (x_m) was an arbitrary Cauchy sequence, \mathbb{R}^n with the metric $d(x, y) = \max |\xi_j - \eta_j|$ is complete.

3. Let $M \subset l^{\infty}$ be the subpace consisting of all sequences $x = (\xi_j)$ with at most finitely many nonzero terms. Find a Cauchy sequence in M which does not converge in M, so that M is not complete.

Solution: Let
$$(x_n)$$
 be a sequence in $M \subset l^{\infty}$, where

$$\begin{cases} \frac{1}{j} & \text{if } j \leq n, \\ 0 & \text{if } j > n. \end{cases}$$
i.e. $x_n = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots \right)$. Given any $\varepsilon > 0$, choose N such that $N+1 > \frac{1}{\varepsilon}$, then for any $m > n > N$,

$$d(x_m, x_n) = \sup_{j \in \mathbb{N}} \left| \xi_j^{(m)} - \xi_j^{(n)} \right| = \frac{1}{n+1} \leq \frac{1}{N+1} < \varepsilon.$$
This shows that (x_n) is Cauchy in M . However, it is clear that $x_n \longrightarrow x = \left(\frac{1}{n}\right)$
as $n \longrightarrow \infty$, but since $x \notin M$, (x_n) does not converge in M .

4. Show that M in Problem 3 is not complete by applying Theorem 1.4-7.

Solution: It is easy to see that M is a subspace of l^{∞} . The sequence in Problem 3 shows that $x_n \longrightarrow x$ in l^{∞} since

$$d(x_n, x) = \frac{1}{n+1} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

However, x doesn't belong to M since it has infinitely many nonzero terms. This shows that M is not a closed subspace of l^{∞} , and therefore not complete.

5. Show that the set X of all integers with metric d defined by d(m,n) = |m - n| is a complete metric space.

Solution: Observe that for any two distinct integers $m, n, d(m, n) \ge 1$. This implies that the only Cauchy sequences in X are either constant sequences or sequences that are eventually constant. This shows that the set X of all integers with the given metric is complete.

6. Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

Solution: Consider the sequence (x_n) , where $x_n = n$. We claim that (x_n) is Cauchy but not convergent in \mathbb{R} .

• Since $\arctan n \longrightarrow \frac{\pi}{2}$ as $n \longrightarrow \infty$, given any $\varepsilon > 0$, there exists an N such that $\left|\arctan(n) - \frac{\pi}{2}\right| < \frac{\varepsilon}{2}$ for all n > N. Thus, for all m, n > N,

$$d(x_m, x_n) = |\arctan(m) - \arctan(n)| \le \left|\arctan(m) - \frac{\pi}{2}\right| + \left|\frac{\pi}{2} - \arctan(n)\right|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

• Suppose, for contradiction, that (x_n) converges in \mathbb{R} with the given metric. By definition, there exists an $x \in \mathbb{R}$ such that

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} |\arctan(n) - \arctan(x)| = 0.$$

which then implies that $\arctan(x)$ must equal to $\frac{\pi}{2}$, by uniqueness of limits. This contradicts the assumption that $x \in \mathbb{R}$, since $\arctan(x) < \frac{\pi}{2}$ for any $x \in \mathbb{R}$.

7. Let X be the set of all positive integers and $d(m, n) = |m^{-1} - n^{-1}|$. Show that (X, d) is not complete.

Solution: Consider a sequence $(x_n) \in X$, where $x_n = n$. With the given metric, $d(x_m, x_n) = \left|\frac{1}{m} - \frac{1}{n}\right|$

and similar argument in Problem 1 shows that (x_n) is a Cauchy sequence. If (x_n) were to converge to some positive integer x, then it must satisfy

$$d(x_n, x) = \left|\frac{1}{n} - \frac{1}{x}\right| \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

Clearly, $\frac{1}{x}$ must be 0, which is a contradiction since no positive integers x gives $\frac{1}{x} = 0.$

8. (Space C[a, b]) Show that the subspace $Y \subset C[a, b]$ consisting of all $x \in C[a, b]$ such that x(a) = x(b) is complete.

Solution: Consider $Y \subset C[a, b]$ defined by $Y = \{x \in C[a, b] : x(a) = x(b)\}$. It suffices to show that Y is closed in C[a, b], so that completeness follows from Theorem 1.4.7. Consider any $f \in \overline{Y}$, the closure of Y. There exists a sequence of functions $(f_n) \in Y$ such that $f_n \longrightarrow f$ in C[a, b]. By definition, given any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N, we have

$$d(f_n, f) = \max_{t \in [a,b]} |f_n(t) - f(t)| < \varepsilon.$$

In particular, for every $t \in [a, b]$, $|f_n(t) - f(t)| < \varepsilon$ for all n > N. This shows that $(f_n(t))$ converges to f(t) uniformly on [a, b]. Since the $f'_n s$ are continuous function on [a, b] and the convergence is uniform, the limit function f is continuous on [a, b]. We are left with showing f(a) = f(b) to conclude that $f \in Y$. Indeed, triangle inequality for real numbers gives:

$$\begin{split} |f(a) - f(b)| &\leq |f(a) - f_n(a)| + |f_n(a) - f_n(b)| + |f_n(b) - f(b)| \\ &= |f(a) - f_n(a)| + |f_n(b) - f(b)| \\ &\leq 2 \max_{t \in [a,b]} |f_n(t) - f(t)| \\ &= 2d(f_n, f) \longrightarrow 0 \text{ as } n \longrightarrow \infty. \end{split}$$

9. In 1.5-5 we referred to the following theorem of calculus. If a sequence (x_m) of a continuous functions on [a, b] converges on [a, b] and the convergence is uniform on [a, b], then the limit function x is continuous on [a, b]. Prove this theorem.

Solution: The proof employs the so called $\varepsilon/3$ proof, which is widely used in proofs concerning uniform continuity. Choose any $t_0 \in [a, b]$ and $\varepsilon > 0$.

- Since (f_n) converges to f uniformly, there exists an $N \in \mathbb{N}$ such that for all $t \in [a, b]$ and for all n > N, we have $|f_n(t) f(t)| < \frac{\varepsilon}{3}$.
- Since f_{N+1} is continuous at $t_0 \in [a, b]$, there exists an $\delta > 0$ such that $|f_{N+1}(t) f_{N+1}(t_0)| < \frac{\varepsilon}{3}$ for all $t \in [a, b]$ satisfying $|t t_0| < \delta$.
- Thus, if $|t t_0| < \delta$, triangle inequality gives:

$$|f(t) - f(t_0)| \le |f(t) - f_{N+1}(t)| + |f_{N+1}(t) - f_{N+1}(t_0)| + |f_{N+1}(t_0) - f(t_0)|$$

$$<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$$

This shows that f is continuous at t_0 .

Since $t_0 \in [a, b]$ was arbitrary, f is continuous on [a, b] or $f \in C[a, b]$.

10. (Discrete metric) Show that a discrete metric space is complete.

Solution: Let (X, d) be a discrete metric space, for any two distinct $x, y \in X$, d(x, y) = 1. This implies that the only Cauchy sequences in X are either constant sequences or sequences that are eventually constant. This shows that a discrete metric space is complete.

11. (Space s) Show that in the space s, we have $x_n \longrightarrow x$ if and only if $\xi_j^{(n)} \longrightarrow \xi_j$ for all $j = 1, 2, \ldots$, where $x_n = \left(\xi_j^{(n)}\right)$ and $x = (\xi_j)$.

Solution: The sequence space s consists of the set of all (bounded or unbounded) sequences of complex numbers and the metric d defined by

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|}$$

where $x = (\xi_j)$ and $y = (\eta_j)$.

Suppose $x_n \longrightarrow x$ in s, where $x_n = \left(\xi_j^{(n)}\right)$. For every $j \ge 1$, given any $\varepsilon > 0$, there exists an N such that for all n > N we have:

$$\frac{1}{2^{j}} \frac{\left|\xi_{j}^{(n)} - \xi_{j}\right|}{1 + \left|\xi_{j}^{(n)} - \xi_{j}\right|} \leq d(x_{n}, x) < \frac{1}{2^{j}} \frac{\varepsilon}{1 + \varepsilon}$$
$$\frac{\left|\xi_{j}^{(n)} - \xi_{j}\right|}{1 + \left|\xi_{j}^{(n)} - \xi_{j}\right|} < \frac{\varepsilon}{1 + \varepsilon}$$
$$\left|\xi_{j}^{(n)} - \xi_{j}\right| (1 + \varepsilon) < \varepsilon \left[1 + \left|\xi_{j}^{(n)} - \xi_{j}\right|\right]$$
$$\left|\xi_{j}^{(n)} - \xi_{j}\right| < \varepsilon$$

This shows that $\xi_j^{(n)} \longrightarrow \xi_j$ as $n \longrightarrow \infty$. Since $j \ge 1$ was arbitrary, the result follows.

Conversely, suppose $\xi_j^{(n)} \longrightarrow \xi_j$ for all $j \ge 1$, where $x_n = \left(\xi_j^{(n)}\right)$ and $x = (\xi_j)$. This implies that for every fixed $j \ge 1$,

$$\frac{1}{2^j} \frac{\left|\xi_j^{(n)} - \xi_j\right|}{1 + \left|\xi_j^{(n)} - \xi_j\right|} \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$

This shows that $d(x_n, x) \longrightarrow 0$ as $n \longrightarrow \infty$.

12. Using Problem 11, show that the sequence space s is complete.

Solution: Consider any Cauchy sequence (x_n) in s, where $x_n = \left(\xi_j^{(n)}\right)$. Since (x_n) is Cauchy, for every $j \ge 1$, given any $\varepsilon > 0$, there exists an N such that for all m, n > N we have

$$\frac{1}{2^{j}} \frac{\left|\xi_{j}^{(m)} - \xi_{j}^{(n)}\right|}{1 + \left|\xi_{j}^{(m)} - \xi_{j}^{(n)}\right|} \le d(x_{m}, x_{n}) < \frac{1}{2^{j}} \frac{\varepsilon}{1 + \varepsilon}.$$

In particular, for every $j \ge 1$, $\left|\xi_{j}^{(m)} - \xi_{j}^{(n)}\right| < \varepsilon$ for all m, n > N. Hence, for every $j \ge 1$, the sequence $\left(\xi_{j}^{(1)}, \xi_{j}^{(2)}, \ldots\right)$ is a Cauchy sequence of real numbers. It converges by completeness of \mathbb{R} , say, $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ as $n \longrightarrow \infty$. Since $j \ge 1$ was arbitrary, this shows that $\xi_{j}^{(n)} \longrightarrow \xi_{j}$ as $n \longrightarrow \infty$ for all $j \ge 1$. Identifying $x = (\xi_{j})$, we have $x_{n} \longrightarrow x$ as $n \longrightarrow \infty$ from Problem 11. Since (x_{n}) was an arbitrary Cauchy sequence in s, this proves completeness of s.

13. Let X be the set of all continuous real-valued functions on J = [0, 1], and let

$$d(x,y) = \int_0^1 |x(t) - y(t)| \, dt.$$

Show that the sequence (x_n) is Cauchy in X, where

$$x_n(t) = \begin{cases} n & \text{if } 0 \le t \le \frac{1}{n^2}, \\ \frac{1}{\sqrt{t}} & \text{if } \frac{1}{n^2} \le t \le 1. \end{cases}$$

Solution: WLOG, take m > n. Sketching out $|x_m(t) - x_n(t)|$, we deduce that $d(x_m, x_n) = \int_0^{\frac{1}{m^2}} (m - n) dt + \int_{\frac{1}{m^2}}^{\frac{1}{n^2}} \left(\frac{1}{\sqrt{t}} - n\right) dt$

$$= (m-n)\frac{1}{m^2} + 2\left(\frac{1}{n} - \frac{1}{m}\right) - n\left(\frac{1}{n^2} - \frac{1}{m^2}\right) = \frac{1}{n} - \frac{1}{m}.$$

Similar argument in Problem 1 shows that (x_n) is a Cauchy sequence in C[0, 1].

14. Show that the Cauchy sequence in Problem 13 does not converge.

Solution: For every $x \in C[0, 1]$,

$$d(x_n, x) = \int_0^1 |x_n(t) - x(t)| dt$$

= $\int_0^{\frac{1}{n^2}} |n - x(t)| dt + \int_{\frac{1}{n^2}}^1 \left|\frac{1}{\sqrt{t}} - x(t)\right| dt$

Since the integrands are nonnegative, so is each integral on the right. Hence, $d(x_n, x) \longrightarrow 0$ would imply that each integral approaches zero and, since x is continuous, we should have $x(t) = \frac{1}{\sqrt{t}}$ if $t \in (0, 1]$. But this is impossible for a continuous function, otherwise we would have discontinuity at t = 0. Hence, (x_n) does not converge, that is, does not have a limit in C[0, 1].

15. Let X be the metric space of all real sequences $x = (\xi_j)$ each of which has only finitely many nonzero terms, and $d(x, y) = \sum |\xi_j - \eta_j|$, where $y = (\eta_j)$. Note that this is a finite sum but the number of terms depends on x and y. Show that (x_n) with $x_n = (\xi_j^{(n)})$,

$$\xi_{j}^{(n)} = \begin{cases} \frac{1}{j^{2}} & \text{for } j = 1, \dots, n \\ 0 & \text{for } j > n. \end{cases}$$

is Cauchy but does not converge.

Solution: Since $\sum_{j=1}^{\infty} \frac{1}{j^2}$ is convergent and it is a sum of positive terms, given any $\varepsilon > 0$, there exists an N_1 such that $\sum_{j=n}^{\infty} \frac{1}{j^2} < \varepsilon$ for all $n > N_1$. Choose $N = N_1$, then for all m > n > N, $d(x_m, x_n) = \sum_{j=n+1}^{m} \frac{1}{j^2} \leq \sum_{j=n+1}^{\infty} \frac{1}{j^2} \leq \sum_{j=N+1}^{\infty} \frac{1}{j^2} < \varepsilon$. This shows that (x_n) is a Cauchy sequence. For every $x = (\xi_j) \in X$, there exists an $N = N_x$ such that $\xi_j = 0$ for all j > N. Then for all n > N,

$$d(x_n, x) = |1 - \xi_1| + \left|\frac{1}{4} - \xi_2\right| + \ldots + \left|\frac{1}{N^2} - \xi_N\right| + \frac{1}{(N+1)^2} + \ldots + \frac{1}{n^2}.$$

We can clearly see that, even if $\xi_j = \frac{1}{j^2}$ for all $j \leq N$, $d(x_n, x)$ does not converge to 0 as $n \longrightarrow \infty$.

1.6 Completion of Metric Spaces.

1. Show that if a subspace Y of a metric space consists of finitely many points, then Y is complete.

Solution:

2. What is the completion of (X, d), where X is the set of all rational numbers \mathbb{Q} and d(x, y) = |x - y|?

Solution:

3. What is the completion of a discrete metric space X?

Solution:

4. If X_1 and X_2 are isometric and X_1 is complete, show that X_2 is complete.

Solution:

- 5. (Homeomorphism) A homeomorphism is a continuous bijective mapping $T: X \longrightarrow Y$ whose inverse is continuous; the metric spaces X and Y are then said to be homeomorphic.
 - (a) Show that if X and Y are isometric, they are homeomorphic.

Solution:

(b) Illustrate with an example that a complete and an incomplete metric space may be homeomorphic.

Solution:

6. Show that C[0,1] and C[a,b] are isometric.

Solution: Consider the mapping
$$T$$
 defined by

$$T: C[0,1] \longrightarrow C[a,b]: f \mapsto g(s) = f\left(\frac{s-a}{b-1}\right).$$

(a) T is an isometry. Indeed, for any $f_1, f_2 \in C[0, 1]$ we have

$$d(Tf_1, Tf_2) = \max_{t \in [a,b]} |Tf_1(t) - Tf_2(t)|$$

= $\max_{t \in [a,b]} \left| f_1\left(\frac{t-a}{b-a}\right) - f_2\left(\frac{t-a}{b-1}\right) \right|$
= $\max_{s \in [0,1]} |f_1(s) - f_2(s)|$
= $d(f_1, f_2).$

- (b) T is injective. Indeed, suppose $Tf_1 = Tf_2$, then $0 = d(Tf_1, Tf_2) = d(f_1, f_2)$ since T is an isometry. This implies that $d(f_1, f_2) = 0 \implies f_1 = f_2$.
- (c) *T* is surjective by construction. Indeed, for any $g \in C[a, b]$, define *f* such that $g(s) = f\left(\frac{s-a}{b-a}\right)$. Note that $f \in C[0, 1]$ since $\frac{s-a}{b-a} \in [0, 1]$ for all $s \in [a, b]$, and *g* is continuous on [a, b].
- 7. If (X, d) is complete, show that (X, \tilde{d}) , where $\tilde{d} = \frac{d}{1+d}$, is complete.

Solution:

8. Show that in Problem 7, completeness of (X, \tilde{d}) implies completeness of (X, d).

Solution:

9. If (x_n) and (x'_n) in (X, d) are such that $\lim_{n \to \infty} d(x_n, x'_n) = 0$ holds and $x_n \longrightarrow l$, show that (x'_n) converges and has the limit l.

Solution:

10. If (x_n) and (x'_n) are convergent sequences in a metric space (X, d) and have the same limit l, show that they satisfy $\lim_{n \to \infty} d(x_n, x'_n) = 0$.

Solution:

11. Show that $\lim_{n \to \infty} d(x_n, x'_n) = 0$ defines an equivalence relation on the set of all Cauchy sequences of elements of X.

Solution:

12. If (x_n) is Cauchy in (X, d) and (x'_n) in X satisfies $\lim_{n \to \infty} d(x_n, x'_n) = 0$, show that (x'_n) is Cauchy in X.

Solution:

13. (Pseudometric) A finite pseudometric on a set X is a function $d: X \times X \longrightarrow \mathbb{R}$ satisfying (M1), (M3), (M4) and

$$d(x,x) = 0. \tag{M2*}$$

What is the difference between a metric and a pseudometric? Show that $d(x, y) = |\xi_1 - \eta_1|$ defines a pseudometric on the set of all ordered pairs of real numbers, where $x = (\xi_1, \xi_2)$ and $y = (\eta_1, \eta_2)$. (We mention that some authors use the term *semimetric* instead of *pseudometric*.)

Solution:

14. Does

$$d(x,y) = \int_a^b |x(t) - y(t)| dt$$

define a metric or pseudometric on X if X is

(a) the set of all real-valued continuous function on [a, b],

Solution:

(b) the set of all real-valued Riemann integrable functions on [a, b]?

Solution:

15. If (X, d) is a pseudometric space, we call a set

$$B_r(x_0) = \{ x \in X \colon d(x, x_0) < r \}$$

an open ball in X with center $x_0 \in X$ and radius r > 0. What are open balls of radius 1 in Problem 13?

Solution: