Steps for Polynomial Division

\[\frac{p(x)}{q(x)} \]

1. Write \(q(x) \sqrt{p(x)} \)

2. Divide leading term of numerator by leading term of \(q(x) \). Write answer on top.

3. Multiply answer from 2 and \(q(x) \). Write answer below.

4. Subtract answer from 3 from numerator. Write answer below.

If answer from 4 has smaller degree than \(q(x) \):

STOP. Answer from 4 is your remainder. \(\frac{p(x)}{q(x)} \) is sum of terms on top plus \(\frac{\text{remainder}}{q(x)} \).

If answer from 4 has the same or larger degree than \(q(x) \):

Treat answer from 4 as the numerator and repeat 2, 3, 4.

\[\frac{10x^2+7x-2}{2x-5} \]

1. \(2x-5 \overline{10x^2+7x-2} \)

2. \(\frac{10x^2}{2x} = 5x \)

3. \((5x)(2x-5) = 10x^2 - 25x \)

4. \(\frac{5x}{2x-5} \bar{10x^2+7x-2} \)

5. \(2x-5 \overline{10x^2+7x-2} \)

6. \(32x-2 \)

7. \(\frac{32x}{2x} = 16 \)

8. \(2x-5 \overline{10x^2+7x-2} \)

9. \(- (10x^2-25x) \)

10. \(32x-2 \)

11. \(16(2x-5) = 32x-80 \)

12. \(\frac{5x}{2x-5} \bar{10x^2+7x-2} \)

13. \(- (10x^2-25x) \)

14. \(32x-2 \)

15. \(32x-80 \)

Answer: \(\frac{10x^2+7x-2}{2x-5} = 5x + 16 + \frac{78}{2x-5} \)