Top Research Publications Teaching Contact

Kyle R Steffen



  • Y. Epshteyn, K. R. Steffen, and Q. Xia. Difference Potentials Method for the Mullins–Sekerka model. In preparation, 2017.
  • K. R. Steffen and C. Hohenegger. Nonlocal slender body theory for particles near a wall. In preparation, 2017.
  • G. Ludvigsson, K. R. Steffen, S. Sticko, S. Wang, Q. Xia, Y. Epshteyn, and G. Kreiss, High-order numerical methods for 2D parabolic problems in single and composite domains, Journal of Scientific Computing (January 2018). DOI: 10.1007/s10915-017-0637-y. (pdf), (online), (arXiv preprint)
  • K. R. Steffen, Y. Epshteyn, J. Zhu, M. Bowler, J. W. Deming, and K. M. Golden, Network modeling of fluid transport through sea ice with entrained exopolymeric substances, Multiscale Modeling and Simulation, 16(1) (January 2018), pp. 106–124. DOI: 10.1137/17M1117513. (pdf), (online)
  • J. Albright, Y. Epshteyn and K. R. Steffen, High-Order Accurate Difference Potentials Methods for Parabolic Problems. Applied Numerical Mathematics, 93 (July 2015). Special Issue in Honor of Viktor Ryaben'kii's 90th Birthday, pp. 87–106. DOI: 10.1016/j.apnum.2014.08.002. (pdf) (online) (preprint)
  • C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, and K. M. Golden. Transition in the fractal geometry of Arctic melt ponds. The Cryosphere, 6(5) (2012), pp. 1157–1162. DOI: 10.5194/tc-6-1157-2012. (pdf) (online)
  • J. D. Blanchard and K. R. Steffen. Crystallographic Haar-type Composite Dilation Wavelets. In: J. Cohen and A. I. Zayed (eds.), Wavelets and Multiscale Analysis: Theory and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, 2011, pp. 83–108. DOI: 10.1007/978-0-8176-8095-4_5. (pdf) (online)


Contact info

Kyle R Steffen
University of Utah
Department of Mathematics, JWB 328
155 S 1400 E RM 233
Salt Lake City, UT, 84112-0090
Tel: +1 801 585 5469
FAX: +1 801 581 4148

Last updated: February 2018.