DEFORMATIONS OF MINIMAL COHOMOLOGY CLASSES ON ABELIAN VARIETIES

LUIGI LOMBARDI AND SOFIA TIRABASSI

Abstract. We show that the infinitesimal deformations of the Brill–Noether locus W_d attached to a smooth non-hyperelliptic curve C are in one-to-one correspondence with the deformations of C. As an application, we prove that if a Jacobian J deforms together with a minimal cohomology class out the Jacobian locus, then J is hyperelliptic. In particular, this provides an evidence to a conjecture of Debarre on the classification of ppavs carrying a minimal cohomology class. Finally, we also study simultaneous deformations of Fano surfaces of lines and intermediate Jacobians.

1. Introduction

Given a smooth complex curve C of genus $g \geq 2$ with Jacobian J, we denote by C_d ($d \geq 1$) the d-fold symmetric product of C and by

$$f_d : C_d \rightarrow J, \quad P_1 + \ldots + P_d \mapsto \mathcal{O}_C(P_1 + \ldots + P_d - dQ)$$

the Abel–Jacobi map defined up to the choice of a point $Q \in C$. In the papers [Ke2] and [Fa] the infinitesimal deformations of C_d and f_d are studied: these are in one-to-one correspondence with the deformations of C if and only if $g \geq 3$. In particular, there are isomorphisms of functors of Artin rings

$$\text{Def}_{C_d} \simeq \text{Def}_{f_d} \simeq \text{Def}_C \quad \text{for all} \quad d \geq 2 \quad \text{if and only if} \quad g \geq 3.$$

On the other hand, the computation of infinitesimal deformations of the images

$$W_d = \{[L] \in \text{Pic}^d(C) | h^0(C, L) > 0\}$$

of Abel–Jacobi maps, namely the Brill–Noether loci parameterizing degree d line bundles on C having at least one non-zero global section, is a problem that has not been studied yet in its full generality and that has interesting relationships to a conjecture of Debarre on the classification of minimal cohomology classes on principally polarized abelian varieties. Previous calculations of deformations of W_d have been performed only for the Theta divisors $\Theta \simeq W_{g-1}$ of non-hyperelliptic Jacobians where the authors of [SV] prove that all first-order deformations of C inject in those of W_{g-1}.

The main difficulty in order to compute the deformations of W_d is that this space is singular. But, as shown by work of Kempf [Ke1], the singularities of W_d are at most rational and a resolution of its singularities is provided by the Abel–Jacobi map $u_d : C_d \rightarrow W_d$. By extending a construction of Wahl in [Wa, §1] for the affine case related to equisingular deformations, this allows us to define a “blowing-down deformations” morphism of functors of Artin rings

$$u'_d : \text{Def}_{C_d} \rightarrow \text{Def}_{W_d}$$

sending an infinitesimal deformation C_d of C_d over an Artinian local \mathbb{C}-algebra A with residue field \mathbb{C}, to the infinitesimal deformation $W_d := (W_d, u_d^* \mathcal{O}_{C_d})$ of W_d over A (Proposition 2.9). The main
result concerning the infinitesimal deformations of W_d is that these are in one-to-one correspondence with those of the curve, except possibly if the curve is hyperelliptic. More precisely we have the following result whose proof can be found in §3.1.

Theorem 1.1. If C is a smooth non-hyperelliptic curve of genus $g \geq 3$, then for all $1 \leq d < g - 1$ the blowing-down morphism $u'_d : \text{Def}_{C_d} \to \text{Def}_{W_d}$ is an isomorphism. In particular, $\text{Def}_{W_d} \simeq \text{Def}_C$, W_d is unobstructed, and Def_{W_d} is prorepresented by a formal power series in $3g - 3$ variables.

We believe that the hypothesis of non-hyperellipticity should be removed at least in cases $d \neq 2$. However, for $d = 2$, we notice that the W_2, besides the deformations coming from the curve, may admit additional deformations coming from deformations of Fano surfaces of lines associated to smooth cubic threefolds as Collino shows that the locus of hyperelliptic Jacobians of dimension five lies in the boundary of the locus of the intermediate Jacobians of smooth cubic threefolds ([Co]).

In case the exceptional locus of u_d has codimension at least three in C_d, Theorem 1.1 follows from the general theory of blowing-down morphisms (see in particular Criterion 1.2 below) and does not rely on the special properties of Abel–Jacobi maps. In fact, the existence of blowing-down morphisms is not specific to the morphism u_d itself, rather to any morphism $f : X \to Y$ between projective integral schemes such that $Rf_* O_X \simeq O_Y$ (Proposition 2.5). In §2.3, we give an explicit description to the differential of a blowing-down morphism $f' : \text{Def}_X \to \text{Def}_Y$ and, moreover, we find sufficient conditions on X, Y and f so that f' defines an isomorphism of functors. This leads to the following criterion whose proof can be found in Corollary 2.8. Please refer to [Ran2] for related criteria regarding source-target-stability type problems.

Criterion 1.2. Let $f : X \to Y$ be a birational morphism of integral projective schemes over an algebraically closed field of characteristic zero such that the exceptional locus of f is of codimension at least three in X. Furthermore assume that $Rf_* O_X \simeq O_Y$. If X is non-singular, unobstructed and $h^0(X, T_X) = 0$, then the blowing-down morphism $f' : \text{Def}_X \to \text{Def}_Y$ is an isomorphism of functors of Artin rings.

Hence the difficult case of Theorem 1.1 is when the exceptional locus of u_d is precisely of codimension two (the case of codimension one is excluded as we are supposing that C is non-hyperelliptic). For this case we carry out an ad-hoc argument specific to Abel–Jacobi maps. The main point is to prove that the differential du'_d of the blowing-down morphism is an isomorphism even in this case. However the kernel and cokernel of du'_d are identified to the groups $\text{Ext}^1_{O_{C_d}} (P, O_{C_d})$ and $\text{Ext}^2_{O_{C_d}} (P, O_{C_d})$ respectively where P is the cone of the following composition of morphisms of complexes

$$Lu'_d \Omega_{W_d} \rightarrow u'_d \Omega_{W_d} \rightarrow \Omega_{C_d},$$

where the first is the truncation morphism. On the other hand, an application of Grothendieck–Verdier’s duality shows that the vanishings of these Ext-groups hold as soon as the support of the higher direct image sheaf $R^1 f_{ds}(\Omega_{C_d/W_d} \otimes \omega_{C_d})$ has sufficiently high codimension in J, namely at least five (see Propositions 3.5 and 3.6). But this is ensured thanks to Ein’s computation of the Castelnuovo–Mumford regularity of the dual of the normal bundle to the fibers of f_d ([Ein]). Finally, the passage from first-order deformations to arbitrary infinitesimal deformations easily follows as C_d is unobstructed.
As an application, we compute the infinitesimal deformations of the Albanese map

\[
\iota_d : W_d \hookrightarrow J, \quad L \mapsto L \otimes \mathcal{O}_C(-dQ)
\]

where both the domain, the codomain, and the closed immersion are allowed to deform (Sernesi in [Se, Example 3.4.24 (iii)] solves the case \(d = 1\)). The importance of this problem relies on a conjecture of Debarre pointing to a classification of \(d\)-codimensional subvarieties \(X\) of ppavs \((A, \Theta)\) representing a minimal cohomology class, i.e. \([X] = \frac{1}{d!} [\Theta]^d\) in \(H^{2d}(A, \mathbb{Z})\) (cf. [De1], [De2] and [G]).

Conjecture 1.3. Let \((A, \Theta)\) be an indecomposable ppav of dimension \(g\) and let \(X \subset A\) be a reduced equidimensional subscheme of codimension \(d > 1\). Then \([X] = \frac{1}{d!} [\Theta]^d\) in \(H^{2d}(A, \mathbb{Z})\) if and only if either \(X = \pm W_d\), or \(X = \pm F\) (up to translation) where \(F \subset J(Y)\) is the Fano surface parameterizing lines on a smooth cubic threefold \(Y\) embedded in the 5-dimensional intermediate Jacobian \(J(Y)\).

Debarre establishes the previous conjecture in the case \(A = J(C)\) is the Jacobian of a smooth curve by proving that, by means of rather complicated arguments involving difference maps on abelian varieties, that the only effective cycles on a Jacobian representing a minimal class are, up to translation, either \(W_d\) or \(-W_d\) ([De1] Theorem 5.1). Moreover, Debarre himself solves the conjecture in a weak sense, leading to a weak solution of the Schottky problem, by proving that the Jacobian locus \(J_g\) in the moduli space of ppavs \(A_g\) is an irreducible component of the locus \(C_{g,d}\) of \(g\)-dimensional ppavs carrying an effective cycle representing the minimal class \(\frac{1}{d!} [\Theta]^d\), and similarly for the locus of intermediate Jacobians ([De1] Theorem 8.1). (Other evidence towards Conjecture 1.3 can be found in [Ho] for the case of generic intermediate Jacobians.) Therefore the study of deformations of type

\[
\begin{array}{ccc}
W_d & \rightarrow & J \\
\downarrow & & \downarrow \\
\text{Spec } A & & \\
\end{array}
\]

over an Artinian local \(\mathbb{C}\)-algebra \(A\) with residue field \(\mathbb{C}\) such that the restriction to the closed point is the closed embedding \(\iota_d : W_d \hookrightarrow J\) will tell us in which directions the Jacobian \(J\) is allowed to deform as a ppav containing a subvariety representing a minimal class. In particular, this study will suggest us along which type of Jacobians there might be an irreducible component of \(C_{g,d}\) (different from \(J_g\)) that passes through them. The main result in this direction of this paper is a further evidence to Conjecture 1.3 showing that, away the hyperelliptic locus, any infinitesimal deformation of \(J\), sideways with an infinitesimal deformation of the minimal class \(W_d\), forces \(J\) to deform along the Jacobian locus. Less informally, if

\[
p_{W_d} : \text{Def}_{\iota_d} \longrightarrow \text{Def}_{W_d}
\]

denotes the natural forgetful morphism, we have the following:

Theorem 1.4. If \(C\) is a smooth non-hyperelliptic curve of genus \(g \geq 3\), then for any \(1 \leq d < g - 1\) the forgetful morphism \(p_{W_d} : \text{Def}_{\iota_d} \rightarrow \text{Def}_{W_d}\) is an isomorphism. In particular, \(\text{Def}_{\iota_d} \simeq \text{Def}_C\), \(\iota_d\) is unobstructed, and \(\text{Def}_{\iota_d}\) is prorrepresented by a formal power series in \(3g - 3\) variables.
The proof of the previous theorem still relies on the use of blowing-down morphisms. More precisely, we prove that not only deformations of schemes with rational singularities can be blown-down, but also the deformations of morphisms between them (Corollary 2.9). Thus there is a well-defined morphism of functors

$$F : \text{Def}_{f_d} \longrightarrow \text{Def}_{ι_d}$$

which we prove to be an isomorphism, by means of Theorem 1.1 and Ran’s formalism of deformations of morphisms recalled in details in §2. Finally, as by work of Kempf [Ke2] the forgetful morphism $\text{Def}_{f_d} \rightarrow \text{Def}_{C_d}$ is an isomorphism, we deduce that so is p_{W_d}.

Problem 1.5. Pareschi–Popa in [PP, Conjecture A] suggest that d-dimensional subvarieties X of g-dimensional ppavs (A, Θ) representing a minimal cohomology class should be characterized as those for which the twisted ideal sheaf $I_X(\Theta)$ is GV (we recall that a sheaf F on an abelian variety A is GV if $\text{codim} V^i(F) \geq i$ for all $i > 0$ where $V^i(F) := \{ \alpha \in \text{Pic}^0(A) \mid h^i(A, F \otimes \alpha) > 0 \}$). In fact, one of the main results of [PP] is that the GV condition on X implies that X has minimal class. It would be interesting to check whether this property is stable under infinitesimal deformations in order to get information concerning the geometry of the corresponding loci in A_g for all d. Steps in this direction are again due to Pareschi–Popa as they prove, without appealing to deformation theory but involving Fourier–Mukai transforms techniques, that for $d = 1$ and $d = g - 2$ this locus coincide precisely with the Jacobian locus in A_g ([PP, Theorem C]).

Notation. In these notes a *scheme* is a separated scheme of finite type defined over an algebraically closed field k of characteristic zero, unless otherwise specified. We denote by Ω_X the sheaf of Kähler differentials and by T_X the tangent sheaf over a scheme X.

Acknowledgments. Both authors are grateful to Andreas Höring for conversations regarding the Conjecture 1.3 and his paper [Ho]. LL is grateful to Daniel Huybrechts who introduced him to the theory of deformations and for discussions that inspired the results of this work. Moreover he is thankful to Daniel Greb, Sándor Kovács, Andreas Krug, Taro Sano, Christian Schnell, Stefan Schreieder, Lei Song and Zhiyu Tian for answering to all his questions. Finally, special thanks go to Alberto Bellardini and Mattia Talpo for correspondences and clarifications on moduli spaces. ST is grateful to Herb Clemens for having explained her a lot of deformation theory and for the patience with which he answered all her questions. She is also thankful to Christopher Hacon and Elham Izadi for very inspiring mathematical conversations.

Support. This collaboration started when ST visited the University of Illinois at Chicago supported by the AWM-NSF Mentoring Grant (NSF award number DMS-0839954), while LL was a graduate student there. Both authors are grateful to UIC for the nice working environment and the kind hospitality. LL was supported by the SFB/TR45 “Periods, moduli spaces, and arithmetic of algebraic varieties” of the DFG (German Research Foundation).

2. Deformations of morphisms

We start by recalling Ran’s theory on deformations of morphisms between compact complex spaces extending works of Horikawa in the smooth case (cf. [Ran1, Ran2, Ran3]). The deformations considered by Ran allow to deform both the domain and the codomain of a morphism. For the purposes of this work we present Ran’s theory for the category of schemes defined over an algebraically closed field k of characteristic zero.
Let X be a reduced projective k-scheme. We define the spaces

$$T^i_X := \text{Ext}^i_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X)$$

and denote by Defi_X the functor of Artin rings of deformations of X up to isomorphism. We recall that T^1_X is the tangent space to Def1_X. Under this identification a first-order deformation $\pi : \mathcal{X} \to \text{Spec} \left(k[[t]]/(t^2) \right)$ of X is sent to the extension class determined by the conormal sequence of the closed immersion $X \subset \mathcal{X}$:

$$0 \to \mathcal{O}_X \to \Omega_{\mathcal{X}|X} \to \Omega_X \to 0$$

(the fact that π is flat implies that \mathcal{O}_X is the conormal bundle of $X \subset \mathcal{X}$, while the fact that X is reduced implies that the conormal sequence is exact also on the left). Moreover, if X is a locally complete intersection, then T^2_X is an obstruction space (cf. [Se, Theorem 2.4.1 and Proposition 2.4.8]).

Let Y be another projective reduced k-scheme, and let $f : X \to Y$ be a morphism. A deformation of $f : X \to Y$ over an Artinian local k-algebra A with residue field k is a diagram of commutative squares and triangles

\begin{equation}
\begin{array}{ccc}
X & \xrightarrow{f} & \mathcal{X} \\
\downarrow f & & \downarrow \tilde{f} \\
Y & \xrightarrow{g} & \mathcal{Y} \\
\downarrow h & & \downarrow \gamma \\
\text{Spec } k & & \text{Spec } A
\end{array}
\end{equation}

such that \mathcal{X} and \mathcal{Y} are, respectively, deformations of X and Y over A and \tilde{f} restricts to f when pulling-back to Spec k. We denote by Deff the functor of Artin rings of infinitesimal deformations of f up to isomorphism. The functors DefX and Deff satisfy Schlessinger’s conditions (H_0), (H_1), (H_2) and (H_3) when both X and Y are projective schemes (cf. [S]).

2.1. **Tangent space.** One of the central results in [Ran1] is that the first-order deformations of a morphism $f : X \to Y$ are controlled by a certain space T^1_f defined as follows. Let $\delta_0 : \mathcal{O}_Y \to f_* \mathcal{O}_X$ and $\delta_1 : f^* \Omega_Y \to \Omega_X$ be the natural morphisms induced by f and let

$$\text{ad}(\delta_0) : f^* \mathcal{O}_Y \to \mathcal{O}_X$$

be the morphism induced by δ_0 via adjunction. Then we define T^1_f to be the abelian group consisting of isomorphism classes of triples (e_X, e_Y, γ) such that e_X and e_Y are classes in $\text{Ext}^1_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X)$ and $\text{Ext}^1_{\mathcal{O}_Y}(\Omega_Y, \mathcal{O}_Y)$ determined by the conormal sequences of some deformations \mathcal{X} and \mathcal{Y} of X and Y respectively:

\begin{equation}
\begin{aligned}
e_X : 0 & \to \mathcal{O}_X \to \Omega_{\mathcal{X}|X} \to \mathcal{O}_X \to 0 \\
e_Y : 0 & \to \mathcal{O}_Y \to \Omega_{\mathcal{Y}|Y} \to \mathcal{O}_Y \to 0
\end{aligned}
\end{equation}

and $\gamma : f^* \Omega_{\mathcal{Y}|Y} \to \Omega_{\mathcal{X}|X}$ is a morphism such that the following diagram
commutes. For future reference we recall [Ran1, Proposition 3.1] revealing the role of T^1_f.

Proposition 2.1. Let X and Y be projective reduced k-schemes and let $f : X \to Y$ be a morphism. Then T^1_f is the tangent space to Def_f.

Proof. As already pointed out earlier, the datum of two extension classes $e_X \in T^1_X$ and $e_Y \in T^1_Y$ is equivalent to giving two Cartesian diagrams

\[
\begin{array}{ccc}
X & \xrightarrow{g} & \mathcal{X} \\
\downarrow & & \downarrow h \\
\text{Spec } k & \rightarrow & \text{Spec } (k[t]/(t^2))
\end{array}
\quad
\begin{array}{ccc}
Y & \xrightarrow{h} & \mathcal{Y} \\
\downarrow & & \downarrow g \\
\text{Spec } k & \rightarrow & \text{Spec } (k[t]/(t^2))
\end{array}
\]

such that both g and h are flat morphisms. On the other hand, as it is shown in [BE, Theorem 1.6], the existence of a morphism $\tilde{f} : \mathcal{X} \to \mathcal{Y}$ such that the top square of (2) commutes is equivalent to the existence of a morphism $\gamma : f^*\Omega_{\mathcal{Y}|\mathcal{Y}} \to \Omega_{\mathcal{X}|\mathcal{X}}$ such that the right square of (5) commutes. Finally, it is not hard to prove that the commutativity of the rightmost triangle in (2) is equivalent to the commutativity of the left square of (5). \qed

2.2. Ran’s exact sequence. In order to study the space T^1_f usually one appeals to an exact sequence relating T^1_f to the tangent spaces T^1_X and T^1_Y. This sequence turns out to be extremely useful to study stability and co-stability properties of a morphism, and furthermore, in some situations, it suffices to determine the group T^1_f itself (cf. [Ran2]).

Let T^0_f to be the group consisting of pairs of morphisms

\[
(6) \quad a : \Omega_X \rightarrow \mathcal{O}_X \quad \text{and} \quad b : \Omega_Y \rightarrow \mathcal{O}_Y
\]

such that the following diagram

\[
\begin{array}{ccc}
f^*\Omega_Y & \xrightarrow{f^*b} & f^*\mathcal{O}_Y \\
\downarrow \delta_1 & & \downarrow \text{ad}(\delta_0) \\
\Omega_X & \xrightarrow{a} & \mathcal{O}_X
\end{array}
\]
commutes, and consider the sequence

\[0 \to T^0 \to T^0_X \oplus T^0_Y \to \text{Hom}_{\mathcal{O}_X}(f^*\Omega_Y, \mathcal{O}_X) \xrightarrow{\lambda_0} T^1 \to T^1_X \oplus T^1_Y \to \text{Ext}^1_{\mathcal{O}_X}(Lf^*\Omega_Y, \mathcal{O}_X), \]

where the morphisms without names are the obvious ones, while the others are defined as follows. Given a pair of morphisms as in (6), we set \(\lambda_0(a, b) = a \circ \delta_1 - \text{ad}(\delta_0) \circ f^*b \). On the other hand, \(\lambda_1 \) takes a morphism \(\varepsilon : f^*\Omega_Y \to \mathcal{O}_X \) to the trivial extensions in \(T^1_X \) and \(T^1_Y \) together to the morphism \(\delta = \left(\begin{array}{c} \text{ad}(\delta_0) \varepsilon \\ 0 \end{array} \right) \) so that the following diagram

\[
\begin{array}{ccc}
\text{f}^*\mathcal{O}_Y & \xrightarrow{\lambda_0} & \text{f}^*\mathcal{O}_Y \oplus \text{f}^*\Omega_Y & \xrightarrow{\lambda_1} & \text{f}^*\Omega_Y \\
\downarrow{\text{ad}(\delta_0)} & & \downarrow{\delta} & & \downarrow{\delta_1} \\
\mathcal{O}_X & \xrightarrow{\lambda_2} & \mathcal{O}_X \oplus \Omega_X & \xrightarrow{\lambda_2} & \Omega_X \\
\end{array}
\]

commutes. Finally, in order to define \(\lambda_2 \), we introduce some additional notation. Let

\[\xi : f_*\mathcal{O}_X \to \mathbf{R}f_*\mathcal{O}_X \quad \text{and} \quad \zeta : Lf^*\Omega_Y \to f^*\Omega_Y \]

be the truncation morphisms (see [Huy, Exercise 2.32]) and set

\[\tilde{\delta}_0 := \xi \circ \delta_0 : \mathcal{O}_Y \to \mathbf{R}f_*\mathcal{O}_X \quad \text{and} \quad \tilde{\delta}_1 := \delta_1 \circ \zeta : Lf^*\Omega_Y \to \Omega_X. \]

We denote by \(\lambda_2^1 \) and \(\lambda_2^2 \) the components of \(\lambda_2 \) and we set \(\lambda_2(e_X, e_Y) = \lambda_2^1(e_X) - \lambda_2^2(e_Y) \) where \(e_X \) and \(e_Y \) are extension classes as in (4), so we only need to define \(\lambda_2^1 \) and \(\lambda_2^2 \). Thinking of the extensions \(e_X \in T^1_X \) and \(e_Y \in T^1_Y \) as morphisms of complexes

\[\alpha : \Omega_X \to \mathcal{O}_X[1] \quad \text{and} \quad \beta : \Omega_Y \to \mathcal{O}_Y[1], \]

we then set

\[\lambda_2^1(\alpha) = \alpha \circ \tilde{\delta}_1 \quad \text{and} \quad \lambda_2^2(\beta) = \text{ad}(\tilde{\delta}_0[1] \circ \beta) \]

where \(\text{ad}(-) \) denotes the adjunction isomorphism of [Ha1, Corollary 5.11]. More concretely, we have \(\lambda_2^2(\beta) = \text{ad}(\tilde{\delta}_0[1] \circ \beta) \simeq g \circ Lf^*\mathbf{R}f_*\mathcal{O}_X \to \mathcal{O}_X \) is the natural morphism induced by adjunction.

Proposition 2.2. If \(f : X \to Y \) is a morphisms of reduced \(k \)-schemes such that \(f(X) \) is not contained in the singular locus of \(Y \), then the sequence (7) is exact.

Proof. We show exactness only at the term \(T^1_X \oplus T^1_Y \), exactness at the other terms follows easily from the definition of our objects and maps. First of all we show that the composition \(T^1_f \to T^1_X \oplus T^1_Y \to \text{Ext}^1_{\mathcal{O}_X}(Lf^*\Omega_Y, \mathcal{O}_X) \) is zero. Let \(e_X \) and \(e_Y \) be two extension classes as in (4) which we think of as morphisms of complexes \(\alpha : \Omega_X \to \mathcal{O}_X[1] \) and \(\beta : \Omega_Y \to \mathcal{O}_Y[1] \), and suppose that there exists a morphism \(\gamma : f^*\Omega_Y \to \mathcal{O}_X \) such that (5) commutes. By our assumption on \(f(X) \), together to generic freeness and base change, we see that the sheaf \(L^{-1}f^*\Omega_Y \) is torsion on \(X \). This in particular yields the exactness of the sequence

\[0 \to f^*\mathcal{O}_Y \to f^*\Omega_Y | f^{-1}| \to f^*\Omega_Y \to 0. \]

Therefore the commutativity of (5) implies the commutativity of the following diagram of distinguished triangles
\[
\begin{array}{cccc}
L f^* \mathcal{O}_Y & \rightarrow & L f^* \Omega_{Y/Y} & \rightarrow \ L f^* \Omega_Y \\
\downarrow \text{ad}(\delta_0) & & \downarrow \bar{\gamma} & \downarrow \delta_1 \\
\mathcal{O}_X & \rightarrow & \Omega_{X/X} & \rightarrow \mathcal{O}_X[1]
\end{array}
\]

where \(\bar{\gamma}\) denotes the composition \(L f^* \Omega_{Y/Y} \rightarrow f^* \Omega_{Y/Y} \xrightarrow{\gamma} \Omega_{X/X}\). Hence in particular the commutativity of the right-most square tells us that

\[
\lambda_2^2(\beta) = \text{ad}(\delta_0[1] \circ \beta)
\]
\[
\simeq \rho \circ L f^* (\delta_0[1]) \circ L f^* \beta
\]
\[
\simeq \text{ad}(\delta_0[1]) \circ L f^* \beta
\]
\[
\simeq \alpha \circ \delta_1 = \lambda_2^1(\alpha),
\]

and therefore \(\lambda_2(\alpha, \beta) \simeq 0\).

On the other hand, if \(\lambda_2(\alpha, \beta) = \lambda_2^1(\alpha) - \lambda_2^2(\beta) \simeq 0\), then \(\alpha \circ \delta_1 \simeq \text{ad}(\delta_0[1] \circ \beta) \simeq \text{ad}(\delta_0[1]) \circ L f^* \beta\) which implies the commutativity of (11). By taking cohomology in degree 0 and by the fact that (10) is exact, we have that the diagram (5) is commutative too. Therefore the triple \((e_X, e_Y, \gamma)\) lies in the image of \(\lambda_1\).

\[\Box\]

Remark 2.3. The functor \(\text{Def}_f\) comes equipped with two forgetful morphisms \(p_X : \text{Def}_f \rightarrow \text{Def}_X\) and \(p_Y : \text{Def}_f \rightarrow \text{Def}_Y\) obtained by the fact that a deformation of \(f\) determines both a deformation of \(X\) and one of \(Y\). The differential \(dp_X\) is identified to the morphism \(T^1_f \rightarrow T^1_X\) of the sequence (7), and similarly for the differential \(dp_Y\).

Remark 2.4. Obstruction spaces to the functor \(\text{Def}_f\) are studied in [Ran1] in complete generality. However we believe that this analysis should work under the additional hypothesis that the involved spaces are locally complete intersections. As in this paper we will be dealing with varieties which are not locally complete intersections, we refrain to give a systematic description of the obstructions, but rather we refer to [Ran1] and [Ran3] to get a flavor of this theory.

2.3. Blowing-down deformations.

We recall that a resolution of singularities \(X\) of a variety \(Y\) with at most rational singularities induces a morphism of functors of Artin rings \(\text{Def}_X \rightarrow \text{Def}_Y\) (cf. [Wa] for the affine case, and [Hui, Proposition 2.1] and [Sa, Corollary 2.13] for the projective case). We extend this fact by relaxing the hypotheses on \(X\).

Proposition 2.5. Let \(X\) and \(Y\) be projective integral \(k\)-schemes and let \(f : X \rightarrow Y\) be a morphism such that \(R f_* \mathcal{O}_X \simeq \mathcal{O}_Y\). Then \(f\) defines a morphism of functors

\[
f' : \text{Def}_X \rightarrow \text{Def}_Y
\]

where to a deformation \(\mathcal{X}\) of \(X\) over a local Artinian \(k\)-algebra \(A\) with residue field \(k\), is associated the deformation \(\mathcal{Y} := (Y, f_* \mathcal{O}_X)\) of \(Y\) over \(A\).
Proof. Let A be a local Artinian k-algebra as in the statement and let

\[\xymatrix{ X \ar[r]^-g \ar[d]^\bar{g} & X' \ar[d]^g \\
\text{Spec } k \ar[r]^\alpha & \text{Spec } A } \]

be a deformation of X over A. Moreover denote by $\bar{h} : Y \to \text{Spec } k$ the structure morphism of Y. Then $\bar{g} = \bar{h} \circ f$ and Y admits a morphism h to $\text{Spec } A$ determined by the following morphism of k-algebras

\[A = \mathcal{O}_{\text{Spec } A} \to \bar{g}_*\mathcal{O}_X = \bar{h}_*f_*\mathcal{O}_X = \bar{h}_*\mathcal{O}_Y. \]

We only need to prove that h is a flat morphism. To this end we can suppose that Y is affine.

Claim 2.6. We have $R^i f_*\mathcal{O}_X \simeq \mathcal{O}_Y$.

Proof. By the construction of Y we have $f_*\mathcal{O}_X \simeq \mathcal{O}_Y$, therefore we only need to prove the vanishings $R^i f_*\mathcal{O}_X = 0$ for $i > 0$.

Since $R^i f_*\mathcal{O}_X \simeq \mathcal{O}_Y$ we have $H^i(X, \mathcal{O}_X) = 0$ for all $i > 0$. This easily follows by taking cohomology from the following chain of isomorphisms (and from the fact that we are assuming Y affine)

\[R\Gamma(X, \mathcal{O}_X) \simeq R\Gamma(Y, \mathcal{R}f_*\mathcal{O}_X) \simeq \Gamma(Y, R^i f_*\mathcal{O}_X). \]

Now as g is a flat morphism we can apply the push-pull formula of [Ku, Lemma 2.22 and Corollary 2.23] to (13) to have

\[L^\alpha Rg_*\mathcal{O}_X \simeq R\Gamma(X, \mathcal{O}_X). \]

Let $i_0 := \max \{ j \mid R^j g_* \mathcal{O}_X \neq 0 \}$. If by contradiction $i_0 > 0$, then we would have

\[0 = L^{i_0} \alpha^* Rg_*\mathcal{O}_X \simeq \alpha^* R^{i_0} g_*\mathcal{O}_X, \]

and therefore by Nakayama’s lemma we would get the contradiction $R^{i_0} g_*\mathcal{O}_X = 0$. We conclude that $i_0 = 0$ and moreover that

\[R^j g_*\mathcal{O}_X \simeq \mathcal{R}h_* Rf_*\mathcal{O}_X \simeq R\Gamma(Y, \mathcal{R}f_*\mathcal{O}_X) \simeq \Gamma(Y, R^j f_*\mathcal{O}_X). \]

From this we see that for any $j > 0$ we have

\[0 = R^j g_*\mathcal{O}_X \simeq \Gamma(Y, R^j f_*\mathcal{O}_X), \]

and since the functor of global sections is exact on affine spaces, we finally get $R^j f_*\mathcal{O}_X = 0$ for all $j > 0$. \hfill \Box

In order to show that h is flat, we will prove that for any coherent sheaf \mathcal{F} on $\text{Spec } A$ we have $L^i h^* \mathcal{F} = 0$ for all $i < 0$. But this follows from the projection formula ([Ha1] Proposition 5.6) as the following chain of isomorphisms yields

\[Lh^*\mathcal{F} \simeq \mathcal{O}_Y \otimes Lh^*\mathcal{F} \]
\[\simeq Rf_*\mathcal{O}_X \otimes Lh^*\mathcal{F} \]
\[\simeq Rf_*\left(Lf^* Lh^*\mathcal{F} \right) \]
\[\simeq Rf_* g^*\mathcal{F} \]
\[\simeq Rf_* (g^* \mathcal{F}). \]
We conclude that $L^ih^*\mathcal{F} = 0$ for all $i < 0$ since the derived push-forward of a sheaf lives in non-negative degrees.

Proposition 2.7. The differential df' to f' in (12) can be described as the composition
\[
\Ext^1_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X) \longrightarrow \Ext^1_{\mathcal{O}_X}(Lf^*\Omega_Y, \mathcal{O}_X) \cong \Ext^1_{\mathcal{O}_Y}(\Omega_Y, \mathcal{O}_Y)
\]
where the first map is obtained by applying the functor $\Ext^1_{\mathcal{O}_X}(-, \mathcal{O}_X)$ to the morphism $\delta_1 : Lf^*\Omega_Y \to \Omega_X$, and the second by adjunction formula [Ha1, Corollary 5.11]. Moreover, if f is birational and the exceptional locus of f in X has codimension at least 3, then df' is an isomorphism.

Proof. We refer to [Wa] for the description of df' in the affine case. In the global case this is obtained as follows; we continue using notation of Proposition 2.5 and its proof. Let \mathcal{X} be a first-order deformation of X and let $\mathcal{Y} = (Y, f_*\mathcal{O}_X)$ be the deformation determined by f'. As $f_*\mathcal{O}_X = \mathcal{O}_Y$, we get a morphism $\tilde{f} : \mathcal{X} \to \mathcal{Y}$ such that the top square of the diagram (2) commutes. Therefore, as shown in the proof of Proposition 2.1, the right square of (5) commutes and hence, under the morphism $\Ext^1_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X) \xrightarrow{\delta_1} \Ext^1_{\mathcal{O}_X}(Lf^*\Omega_Y, \mathcal{O}_X)$, the distinguished triangle
\[
\mathcal{O}_X \longrightarrow \Omega_{X|\mathcal{X}} \longrightarrow \Omega_X \longrightarrow \mathcal{O}_X[1],
\]
which determines the deformation \mathcal{X}, is sent to the triangle
\[
\mathcal{O}_X \longrightarrow Lf^*\Omega_{Y|\mathcal{Y}} \longrightarrow Lf^*\Omega_Y \longrightarrow \mathcal{O}_X[1].
\]
Consequently, via adjunction, this last triangle is sent to the exact sequence $0 \to \mathcal{O}_Y \to \Omega_{Y|\mathcal{Y}} \to \Omega_Y \to 0$ which is the sequence determining the first-order deformation \mathcal{Y} of Y. Therefore the morphism defined in (14) takes \mathcal{X} to \mathcal{Y} which is what we needed to show.

For the second statement we complete δ_1 to a distinguished triangle:
\[
Lf^*\Omega_Y \longrightarrow \Omega_X \longrightarrow Q \longrightarrow Lf^*\Omega_Y[1].
\]
We note that since f is an isomorphism outside the exceptional locus, the supports of the cohomology sheaves $H^i(Q)$ of Q have codimension ≥ 3. Moreover, $H^i(Q) = 0$ for $i \geq 1$ as $Lf^*\Omega_Y$ lives in non-positive degrees. Then $\Ext^j_{\mathcal{O}_X}(H^i(Q), \mathcal{O}_X) = 0$ for all $j \leq 2$ and all i, and therefore the spectral sequence $E_2^{ij} = \Ext^j_{\mathcal{O}_X}(H^{-i}(Q), \mathcal{O}_X) \Rightarrow \Ext^{j+i}_{\mathcal{O}_X}(Q, \mathcal{O}_X)$ yields the vanishing
\[
\ker df' \cong \Ext^1_{\mathcal{O}_X}(Q, \mathcal{O}_X) = 0 \quad \text{and} \quad \coker df' \cong \Ext^2_{\mathcal{O}_X}(Q, \mathcal{O}_X) = 0.
\]

The previous proposition leads to a criterion for the blowing-down morphism to be an isomorphism. This proves Criterion 1.2 of the Introduction.

Corollary 2.8. Let $f : X \to Y$ be a birational morphism of integral projective k-schemes such that the exceptional locus of f is of codimension at least three in X and $Rf_*\mathcal{O}_X \cong \mathcal{O}_Y$. If X is nonsingular, unobstructed (e.g. $h^2(X, T_X) = 0$), and $h^0(X, T_X) = 0$, then the blowing-down morphism $f' : \text{Def}_X \to \text{Def}_Y$ is an isomorphism.

Proof. By [Se, Corollary 2.6.4 and Corollary 2.4.7] the functor Def_X is prorepresentable and smooth. Moreover, as f is a small resolution, there is an isomorphism $f_*T_X \cong T_Y$ whose proof can be found in [SV, Lemma 21]. Then $H^0(Y, T_Y) \cong H^0(X, T_X) = 0$ and Def_Y is prorepresentable as well. At this point the corollary is a consequence of Proposition 2.7 and the following criterion [Se, Remark
2.3.8]: if \(\gamma : G \to G' \) is a morphism of functors of Artin rings such that the differential \(d\gamma \) is an isomorphism and both \(G \) and \(G' \) are prorepresentable with \(G \) smooth, then \(\gamma \) is an isomorphism and \(G' \) is smooth as well.

In a similar fashion, we also show that it is possible to blow-down deformations of morphisms.

Proposition 2.9. Let \(f : X \to Y \) be a resolution of singularities of a projective integral normal \(k \)-scheme \(Y \) such that \(Rf_*O_X \cong O_Y \). Moreover fix a smooth projective variety \(Z \) together with two morphisms \(f_1 : X \to Z \) and \(f_2 : Y \to Z \) such that \(f_1 = f_2 \circ f \). Then \(f \) defines a morphism of functors \(F : \text{Def} f_1 \to \text{Def} f_2 \) such that the following diagram
\[
\begin{array}{ccc}
\text{Def} f_1 & \xrightarrow{p} & \text{Def} X \\
\downarrow F & & \downarrow f' \\
\text{Def} f_2 & \xrightarrow{p'} & \text{Def} Y
\end{array}
\]
(15)
commutes where \(p \) and \(p' \) are forgetful morphisms and \(f' \) is the blowing-down morphism defined in Proposition 2.5.

Proof. By definition, a deformation \(\tilde{f}_1 : \mathcal{X} \to \mathcal{Z} \) of \(f_1 \) over a local Artinian \(k \)-algebra \(A \) with residue field \(k \) determines a deformation \(\mathcal{X} \) of \(X \), and hence, by Proposition 2.5, a deformation \(\mathcal{Y} = (Y, f_*O_X) \) of \(Y \) together to a deformation \(s : \mathcal{Z} \to \text{Spec} A \) of \(Z \). Moreover, as \(\tilde{f}_1 \) determines a morphism of sheaves of \(k \)-algebras \(f^*f_2^*O_Z = f_1^*O_Z \to \mathcal{O}_X \), by applying \(f_* \) we get a morphism of sheaves of \(k \)-algebras \(f_2^*O_Z \to f_*\mathcal{O}_X \cong O_Y \), which in turn defines a morphism \(\tilde{f}_2 : \mathcal{Y} \to \mathcal{Z} \).

At this point in order to check that \(\tilde{f}_2 \) is a deformation of \(f_2 \) we only need to show that the composition \(\mathcal{Y} \xrightarrow{\tilde{f}_2} \mathcal{Z} \xrightarrow{s} \text{Spec} A \) is flat. This is equivalent to proving that for any coherent sheaf \(\mathcal{F} \) on \(\text{Spec} A \) the higher cohomology of \(L(s \circ \tilde{f}_2)^*\mathcal{F} \) vanish. But since \(s \circ \tilde{f}_1 \) is flat, by projection formula we have that for any index \(i < 0 \) (we use the symbol \(H^i \) to denote the \(i \)-th cohomology of a complex):

\[
H^i(L(s \circ \tilde{f}_2)^*\mathcal{F}) \cong H^i(L\tilde{f}_2^*Ls^*\mathcal{F})
\]
\[
\cong H^i(O_{\mathcal{Y}} \otimes L\tilde{f}_2^*Ls^*\mathcal{F})
\]
\[
\cong H^i(Rf_*O_X \otimes L\tilde{f}_2^*Ls^*\mathcal{F})
\]
\[
\cong H^i(Rf_*(\tilde{f}_1^*Ls^*\mathcal{F}))
\]
\[
\cong H^i(Rf_*(s \circ \tilde{f}_1)^*\mathcal{F}) = 0.
\]

The commutativity of (15) follows from the definitions of all involved morphisms and functors. \(\Box \)
Let C be a complex smooth curve of genus $g \geq 3$. For any integer $1 \leq d \leq g - 1$ we denote by
\[W_d(C) = \{ [L] \in \text{Pic}^d(C) \mid h^0(C, L) > 0 \} \]
the Brill–Noether loci parameterizing degree d line bundles on C having at least one non-zero global section. Up to the choice of a point Q on C, we think of $W_d(C)$ as subvarieties of the Jacobian $J(C)$. We recall that it is possible to give a structure of scheme on $W_d(C)$ by means of Fitting ideals so that $W_d(C)$ is an irreducible, normal, Cohen–Macaulay scheme of dimension d ([ACGH, Corollary 4.5]). A resolution of singularities of $W_d(C)$ is provided by an Abel–Jacobi map
\[u_d : C_d \longrightarrow W_d(C), \quad P_1 + \ldots + P_d \mapsto O_C(P_1 + \ldots + P_d - dQ) \]
where C_d is the d-fold symmetric product of C. Note that the fiber of u_d over a point $[L] \in W_d(C)$ is nothing else than the linear series $|L|$ associated to L. Finally, by fundamental results of Kempf ([Ke1]), we have that $W_d(C)$ has at most rational singularities so that the following isomorphisms hold:
\[R^1u_d^*O_{C_d} \simeq O_{W_d(C)} \quad \text{and} \quad R^1u_d^*\omega_{C_d} \simeq \omega_{W_d(C)}. \]
By Proposition 2.5 there is then a well-defined blowing-down morphism
\[u'_d : \text{Def}_{C_d} \longrightarrow \text{Def}_{W_d(C)}. \]

The goal of this section is to prove the following:

Theorem 3.1. If C is a smooth non-hyperelliptic curve of genus $g \geq 3$, then the blowing-down morphism $u'_d : \text{Def}_{C_d} \to \text{Def}_{W_d(C)}$ is an isomorphism of functors for all $1 \leq d \leq g - 2$.

The proof of the previous theorem requires a few technical results on the supports of higher-direct image sheaves of type $R^1u_d^*(\omega_{W_d(C)} \otimes \omega_{C_d})$ and $R^1u_d^*(\Omega_{C_d/W_d(C)} \otimes \omega_{C_d})$. We will collect these facts in the following subsection and we will show the proof of Theorem 3.1 in §3.2.

Before proceeding with the proof of Theorem 3.1, it is worth noticing that Fantechi ([Fa]), extending previous work of Kempf ([Ke2]), proved the following:

Theorem 3.2 (Fantechi). Let C be a smooth curve of genus $g \geq 2$ and let $d \geq 2$ be an integer. Then the quotient morphism $C^d \to C_d$ induces an isomorphism of functors $\text{Def}_{C_d} \simeq \text{Def}_C$ if and only if $g \geq 3$.

Therefore we have the following

Corollary 3.3. If C is a smooth non-hyperelliptic curve, then for all $1 \leq d \leq g - 2$ there are isomorphisms of functors $\text{Def}_C \simeq \text{Def}_{W_d(C)}$.

It follows from the previous corollary that $\text{Def}_{W_d(C)}$ is unobstructed and is prorepresented by a formal power series in $3g - 3$ variables as Def_C is so ([Se, Proposition 2.4.8 and Corollary 2.6.6]).
3.1. Supports of special higher direct image sheaves. We denote by

$$W_d^j(C) = \{ [L] \in \text{Pic}^d(C) \mid h^0(C, L) \geq i + 1 \}$$

the Brill–Noether loci parameterizing degree d line bundles on C having at least $i + 1$ linearly independent global sections, and by

$$C_d^n = \{ 0 \leq D \in \text{Div}^d(C) \mid \dim |D| \geq i \}$$

the loci parameterizing degree d effective divisors on C whose associated linear series is of dimension at least i. Note that $u_d^{-1}(W_d^j(C)) = C_d^n$. We start by remarking a general fact concerning the supports of higher direct image sheaves under Abel–Jacobi maps.

Proposition 3.4. If \mathcal{F} is a coherent sheaf on C_d, then $\text{supp} \ R^j u_d^* \mathcal{F} \subset W_d^j(C)$ for all $j > 0$.

Proof. There are fiber product diagrams

$$\begin{array}{ccc}
C_d \setminus C_d^n & \xrightarrow{\nu} & C_d \\
\downarrow \tilde{u}_d & & \downarrow u_d \\
W_d(C) \setminus W_d^j(C) & \xrightarrow{\mu} & W_d(C)
\end{array}$$

where ν and μ are open immersions and \tilde{u}_d is the restriction of u_d on $C_d \setminus C_d^n$. Since $\dim u_d^{-1}([L]) = \dim |L| < j$ for all $L \in W_d(C) \setminus W_d^j(C)$, we have $R^j \tilde{u}_d^*(\nu^* \mathcal{F}) = 0$ by [Ha2, Corollary 11.2]. Therefore by base change we find $\mu^* R^j u_d^* \mathcal{F} = 0$. \hfill \Box

We now give more precise information regarding the supports of two specific higher direct image sheaves: $R^1 u_d^*(u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d})$ and $R^1 u_d^*(\Omega_{C_d/W_d(C)} \otimes \omega_{C_d})$ where $\Omega_{C_d/W_d(C)}$ is the sheaf of relative Kähler differentials. The main tool we use towards this study is Ein’s cohomological computations of the dual of the normal bundle to the fibers of u_d ([Ein]).

Proposition 3.5. For any $1 \leq d \leq g - 1$ the support of $R^1 u_d^*(u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d})$ is contained in $W_d^2(C)$.

Proof. By Proposition 3.4 we have that $\text{supp} \ R^1 u_d^*(u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d}) \subset W_d^1(C)$, so we only need to show that the stalks

$$R^1 u_d^*(u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d})_{[L]}$$

vanish for all $[L] \in W_d^1(C) \setminus W_d^2(C)$. From now on we fix an arbitrary element $[L] \in W_d^1(C) \setminus W_d^2(C)$. Recall that, as shown in [Ein], the normal bundle N of a fiber $P_L := u_d^{-1}([L]) \simeq \mathbb{P}^1$ at $[L]$ sits in an exact sequence of the form

$$0 \rightarrow N \rightarrow H^1(C, \mathcal{O}_C) \otimes \mathcal{O}_{P_L} \rightarrow H^1(C, L) \otimes \mathcal{O}_{P_L}(1) \rightarrow 0.$$

From this we easily deduce that $\det N^\vee \simeq \mathcal{O}_{\mathbb{P}^1}(g - d + 1)$, and moreover that $\omega_{C_d | P_L} \simeq \omega_{P_L} \otimes \det N^\vee \simeq \mathcal{O}_{\mathbb{P}^1}(g - d - 1)$ by adjunction.

We apply the theorem on formal functions to get the vanishing of the mentioned above stalks. Denote by \mathcal{I} the ideal sheaf defining $E = E_1 := P_L$ in C_d and let E_n be the subscheme defined by
T^n. We have exact sequences
\begin{equation}
0 \to T^n/T^{n+1} \to i_{(n+1)^*} \mathcal{O}_{E_{n+1}} \to i_n^* \mathcal{O}_E \to 0
\end{equation}
where the maps $i_n: E_n \to C_d$ denote the natural inclusions. Set now $\mathcal{F} = \mathcal{F}_1 := u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d}$ and $\mathcal{F}_n := i_n^* \mathcal{F} = i_n^* (u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d})$. By the theorem on formal functions there we obtain isomorphisms
\[R^1 u_d^* (u_d^* \Omega_{W_d(C)} \otimes \omega_{C_d})[L] \cong \lim_{\to} H^1(E_n, \mathcal{F}_n), \]
so that it is enough to check the vanishing of cohomology groups on the right hand side. By Proposition 3.5 we only need to check the vanishing of W_n. We have exact sequences
\[0 \to W_n \to \text{Sym}^n N^\vee \otimes \mathcal{F} \to i_{(n+1)^*} \mathcal{O}_{E_{n+1}} \otimes \mathcal{F} \to i_n^* \mathcal{O}_E \otimes \mathcal{F} \to 0 \]
where we denote by K_n the kernel of ψ. We are interested in the vanishing of $H^1(E_{n,\mathcal{F}_n}) \cong H^1(C_d, i_{(n+1)^*} \mathcal{O}_{E_{n+1}} \otimes \mathcal{F})$. We proceed by induction on n. The base step $n = 0$ is easily proved as
\[H^1(E, \mathcal{F}|_E) \cong \bigoplus_d H^1(E, \omega_{C_d|E}) \cong \bigoplus_d H^1(P^1, \mathcal{O}_{P^1}(g - d - 1)) = 0. \]
Now we show that if $H^1(E_n, \mathcal{F}_n) = 0$, then also $H^1(E_{n+1}, \mathcal{F}_{n+1}) = 0$. First of all we note that all we need is the vanishing of
\begin{equation}
H^1(E, \text{Sym}^n N^\vee \otimes \mathcal{F}|_E) \cong \bigoplus_d H^1(P^1, \text{Sym}^n N^\vee \otimes \mathcal{O}_{P^1}(g - d - 1)).
\end{equation}
In fact by denoting by Q_n the cokernel of ψ, then the inductive hypothesis tells us that $H^1(E_{n+1}, \mathcal{F}_{n+1}) = 0$ as soon as $H^1(E_{n+1}, Q_n) = 0$. But this holds as soon as $H^1(E, \text{Sym}^n N^\vee \otimes \mathcal{F}|_E) = 0$ as $H^2(E_{n+1}, K_n) = 0$ since $\dim E_{n+1} = 1$.

Finally, in order to get the vanishing of the RHS of (19), we note that dualizing the sequence (17) we get surjections $\text{Sym}^n (H^1(C, \mathcal{O}_C) \otimes \mathcal{O}_{P^1}) \to \text{Sym}^n N^\vee$ for all $n \geq 1$. Therefore there are surjections
\[H^1(P^1, \text{Sym}^n (H^1(C, \mathcal{O}_C) \otimes \mathcal{O}_{P^1}) \otimes \mathcal{O}_{P^1}(g - d - 1)) \to H^1(P^1, \text{Sym}^n N^\vee \otimes \mathcal{O}_{P^1}(g - d - 1)) \]
from which one easily deduces the vanishing of (19) as the LHS is zero. □

Proposition 3.6. For any $1 \leq d \leq g - 2$ the support of $R^1 u_{d*} (\Omega_{C_d/W_d(C)} \otimes \omega_{C_d})$ is contained in $W_d(C)$. □

Proof. We follow the strategy of Proposition 3.5 so that we only need to check the vanishing of
\[H^1(E, (\Omega_{C_d/W_d(C)})|_E \otimes \omega_{C_d}|_E) \quad \text{and} \quad H^1(E, \text{Sym}^n N^\vee \otimes (\Omega_{C_d/W_d(C)})|_E \otimes \omega_{C_d}|_E) \]
for all $n \geq 1$. We recall the isomorphism $(\Omega_{C_d/W_d(C)})|_E \cong \omega_E \cong \mathcal{O}_{P^1}(-2)$ (cf. e.g. [Ha2, Proposition 8.10]) and that $\omega_{C_d|E} \cong \mathcal{O}_{P^1}(g - d - 1)$. Therefore
\[H^1(E, (\Omega_{C_d/W_d(C)})|_E \otimes \omega_{C_d}|_E) \cong H^1(P^1, \mathcal{O}_{P^1}(g - d - 3)) = 0 \]
as soon as $d \leq g - 2$. For the second set of groups we note the isomorphisms
\begin{equation}
H^1(E, \text{Sym}^n N^\vee \otimes (\Omega_{C_d/W_d(C)})|_E \otimes \omega_{C_d}|_E) \cong H^1(P^1, \text{Sym}^n N^\vee \otimes \mathcal{O}_{P^1}(g - d - 3))
\end{equation}
and the moreover surjections
\[H^1(P^1, \text{Sym}^n (H^1(C, \mathcal{O}_C) \otimes \mathcal{O}_{P^1}) \otimes \mathcal{O}_{P^1}(g - d - 3)) \to H^1(P^1, \text{Sym}^n N^\vee \otimes \mathcal{O}_{P^1}(g - d - 3)) \]
deduced from (17). As the groups on the left hand side vanish, the groups in (20) vanish too. □
Remark 3.7. The previous two propositions can be extended to all higher direct images to yield inclusions

\[\text{supp} R^j u_{d*}(\omega^*_{W_d} \otimes \omega_{C_d}) \subset W_{d+1}^j(C) \quad \text{and} \quad \text{supp} R^j u_{d*}(\Omega_{C_d/W_d} \otimes \omega_{C_d}) \subset W_{d+1}^j(C) \]

for all \(j \geq 1 \) (the latter holds for \(d \leq g - 2 \)). While the proof of the first set of inclusions do not require any additional tools, for the latter we need to involve Bott’s formula to check that \(H^j(P^j, \Omega_{P^j} \otimes \mathcal{O}_{P^j}(g - d - 1)) = 0 \) for all \(j \geq 1 \).

3.2. Proof of Theorem 3.1. To prove Theorem 3.1 we use the criterion [Se, Remark 2.3.8] which we have already recalled in Corollary 2.8.

In our setting, the functor \(\text{Def}_{C_d} \) is prorepresentable and unobstructed by Theorem 3.2. Therefore we only need to prove that \(\text{Def}_{W_d}(C) \) is prorepresentable and that the differential to \(u_{d*}^* \) is an isomorphism. A sufficient condition for the prorepresentability of \(\text{Def}_{W_d}(C) \) is the vanishing of \(H^0(W_d(C), T_{W_d}(C)) \) ([Se, Corollary 2.6.4]). On the other hand, as \(u_d \) is a small resolution (since we are supposing that \(C \) is non-hyperelliptic), we obtain an isomorphism \(u_{d*} T_{C_d} \simeq T_{W_d}(C) \) ([SV, Lemma 21]) which immediately yields

\[H^0(W_d(C), T_{W_d}(C)) \simeq H^0(C_d, T_{C_d}) \simeq H^0(C^d, T_{C^d})^\sigma_d = 0 \]

by the Künneth decomposition (here \(\sigma_d \) denotes the \(d \)-symmetric group).

We now prove that the differential \(du_d^* \) is an isomorphism. This is slightly more difficult and it will take the rest of the subsection. To begin with, we complete the morphisms \(\zeta : L u_{d*}^* \Omega_{W_d}(C) \to u_{d*}^* \Omega_{W_d}(C) \) and \(\delta_1 : L u_{d*}^* \Omega_{W_d} \to \Omega_{C_d} \) defined in (8) and (9) to distinguished triangles:

\[L u_{d*}^* \Omega_{W_d}(C) \to u_{d*}^* \Omega_{W_d}(C) \to M \to L u_{d*}^* \Omega_{W_d}(C)[1] \]

\[L u_{d*}^* \Omega_{W_d}(C) \to \Omega_{C_d} \to P \to L u_{d*}^* \Omega_{W_d}(C)[1]. \]

Moreover, since \(\bar{\delta}_1 = \delta_1 \circ \zeta \) where \(\delta_1 : u_{d*}^* \Omega_{W_d}(C) \to \Omega_{C_d} \) is the natural morphism, these triangles fit in the following commutative diagram:

\[
\begin{array}{cccccccc}
L u_{d*}^* \Omega_{W_d}(C) & \xrightarrow{\zeta} & u_{d*}^* \Omega_{W_d}(C) & \to & M & \to & L u_{d*}^* \Omega_{W_d}(C)[1] \\
\downarrow \delta_1 & & \downarrow \delta_1 & & \downarrow M & & \downarrow P[1] \\
\Omega_{C_d} & \to & \Omega_{C_d} & \to & 0 & \to & \Omega_{C_d}[1] \\
\downarrow P & & \downarrow N & & \downarrow M[1] & & \downarrow P[1] \\
L u_{d*}^* \Omega_{W_d}(C)[1] & \xrightarrow{u_{d*}^* \Omega_{W_d}(C)[1]} & M[1] & \to & L u_{d*}^* \Omega_{W_d}(C)[2] \\
\end{array}
\]

where \(N \) is the cone of \(\delta_1 \). Therefore, from the description of \(du_d^* \) as in Remark 2.7, in order to prove that \(du_d^* \) is an isomorphism, it is enough to prove that \(\text{Ext}_{\mathcal{O}_{C_d}}^1(P, \mathcal{O}_{C_d}) = \text{Ext}_{\mathcal{O}_{C_d}}^2(P, \mathcal{O}_{C_d}) = 0 \)
which is implied by the following vanishing
\[\text{Ext}_{\mathcal{O}_C}(N, \mathcal{O}_C) = \text{Ext}_{\mathcal{O}_C}(M[1], \mathcal{O}_C) = 0 \quad \text{for } i = 1, 2 \quad \text{and} \quad j = 2, 3. \]

The key ingredient to prove these vanishings is the Grothendieck–Verdier duality which reduces calculations from \(C_d \) to the Jacobian \(J(C) \) of \(C \). By denoting by \(t_d : W_d(C) \to J(C) \) the inclusion of \(W_d(C) \) in \(J(C) \), defined up to a choice of a point \(q \in C \), and by denoting by
\[f_d := t_d \circ u_d : C_d \to J(C), \quad p_1 + \cdots + p_d \mapsto \mathcal{O}_C(p_1 + \cdots + p_d - dq) \]
the Abel–Jacobi map, then applications of Grothendieck–Verdier duality ([Ha1, p. 7-8]) yield isomorphisms
\[\text{Ext}^j_{\mathcal{O}_C}(N, \mathcal{O}_C) \simeq \text{Ext}^j_{\mathcal{O}_J}(\mathbf{R}f_{d*}(N \otimes \omega_{C_d}), \mathcal{O}_J) \]
and
\[\text{Ext}^j_{\mathcal{O}_J}(M[1], \mathcal{O}_C) \simeq \text{Ext}^j_{\mathcal{O}_J}(\mathbf{R}f_{d*}(M[1] \otimes \omega_{C_d}), \mathcal{O}_J). \]
At this point the proof that \(du'_d \) is an isomorphism follows from the following Propositions 3.8 and 3.9.

Proposition 3.8. If \(C \) is a smooth non-hyperelliptic curve of genus \(g \), then \(\text{Ext}^{j+g-d}_{\mathcal{O}_J}(\mathbf{R}f_{d*}(M[1] \otimes \omega_{C_d}), \mathcal{O}_J) = 0 \) for \(j = 2, 3 \).

Proposition 3.9. If \(C \) is a smooth non-hyperelliptic curve of genus \(g \), then \(\text{Ext}^{j+g-d}_{\mathcal{O}_J}(\mathbf{R}f_{d*}(N \otimes \omega_{C_d}), \mathcal{O}_J) = 0 \) for \(j = 1, 2 \).

Proof of Proposition 3.8. Our assertion is equivalent to \(\text{Ext}^{j+g-d}_{\mathcal{O}_J}(\mathbf{R}f_{d*}(M \otimes \omega_{C_d}), \mathcal{O}_J) = 0 \) for \(j = 1, 2 \). First of all we note that
\[\supp R^j f_{d*}(M \otimes \omega_{C_d}) \subset W_d(1)(C) \quad \text{for} \quad j = -1, 0. \]
To see this we first tensorize the top distinguished triangle of (21) by \(\omega_{C_d} \), and then we apply the functor \(R^j u_{d*} \). Hence projection formula ([Ha1, Proposition 5.6]), together to the isomorphism (16), yields an exact sequence
\[0 \to R^{-1} u_{d*}(M \otimes \omega_{C_d}) \to \Omega_{W_d(1) \otimes \omega_{W_d(1)}} \to u_{d*}(\omega_{W_d(1) \otimes \omega_{C_d}}) \to \]
\[u_{d*}(M \otimes \omega_{C_d}) \to R^1 u_{d*}(\omega_{W_d(1) \otimes \omega_{C_d}}) \]
such that \(\kappa \) is an isomorphism outside the singular locus of \(W_d(1) \), i.e. \(W_d^2(C) \). This says that \(R^{-1} u_{d*}(M \otimes \omega_{C_d}) \) is supported on \(W_d(C) \) and moreover, since \(R^1 u_{d*}(\omega_{W_d(1) \otimes \omega_{C_d}}) \) is supported on \(W_d^2(C) \) by Proposition 3.5, we find that \(u_{d*}(M \otimes \omega_{C_d}) \) is supported on \(W_d^2(C) \) as well. Finally the statement in (23) follows as \(t_d \) is a closed immersion.

We now point out that, for all \(j \geq 1 \), there are isomorphisms
\[R^j u_{d*}(M \otimes \omega_{C_d}) \simeq R^j u_{d*}(\omega_{W_d(1) \otimes \omega_{C_d}}) \]
deduced from diagram (21). These isomorphisms, together with Propositions 3.5 and 3.4, yield
\[\supp R^1 f_{d*}(M \otimes \omega_{C_d}) \subset W_d^2(C) \quad \text{and} \quad \supp R^j f_{d*}(M \otimes \omega_{C_d}) \subset W_d^j(C) \quad \text{for all} \quad j \geq 2. \]
Consider now the spectral sequence ([Huy, p. 58])
\[E^{p,q}_2 = \text{Ext}^p_{\mathcal{O}_J}(R^{-q} f_{d*}(M \otimes \omega_{C_d}), \mathcal{O}_J) \Rightarrow \text{Ext}^{p+q}_{\mathcal{O}_J}(\mathbf{R}f_{d*}(M \otimes \omega_{C_d}), \mathcal{O}_J). \]
We are interested in the vanishing of the terms on the lines \(p + q = 1 + g - d \) and \(p + q = 2 + g - d \), and therefore to the vanishing of the terms \(E_2^{1+g-d-q,q} \) and \(E_2^{2+g-d-q,q} \) for \(q \leq 1 \). However this easily follows from the general fact that \(\text{Ext}^k_{\mathcal{O}_J(C)}(\mathcal{F}, \mathcal{O}_J(C)) = 0 \) for any coherent sheaf \(\mathcal{F} \) on \(J(C) \) such that \(\text{codim supp} \mathcal{F} > k \), and from Martens’ Theorem saying that \(\dim W_d^J(C) \leq d - 2j - 1 \) if \(C \) is non-hyperelliptic ([ACGH, Theorem 5.1]). In fact, in this way, we obtain \(E_2^{p,q} = 0 \) for couples \((p,q)\) such that either \(p \leq g - d - 2q \) and \(q \leq -2 \), or \(p \leq 4 + g - d \) and \(q = -1,0 \).

Proof of Proposition 3.9. We consider the spectral sequence

\[
E_2^{p,q} = R^p u_d^* (H^q(N \otimes \omega_C)) \Rightarrow R^{p+q} u_d^* (N \otimes \omega_{C_d})
\]

in order to compute the supports of the sheaves \(\mathcal{F}^j := R^j f_{d*} (N \otimes \omega_{C_d}) \). By noting that \(H^0(N \otimes \omega_{C_d}) = \text{Ker} (\delta_1 \otimes \omega_{C_d}) \), \(H^{-1}(N \otimes \omega_{C_d}) = \Omega_{C_d}/W_d(C) \otimes \omega_{C_d} \), and \(H^j(N \otimes \omega_{C_d}) = 0 \) else, by Propositions 3.4 and 3.6 we find

\[
\text{supp} \mathcal{F}^{-1} \subset W^1_d(C), \quad \text{supp} \mathcal{F}^0 \subset W^1_d(C), \quad \text{supp} \mathcal{F}^1 \subset W^2_d(C) \quad \text{and}
\]

\[
\text{supp} \mathcal{F}^j \subset W^j_d(C) \quad \text{for all} \quad j \geq 2.
\]

At this point to compute the groups \(\text{Ext}^j_{\mathcal{O}_J(C)}(R f_{d*} (N \otimes \omega_{C_d}), \mathcal{O}_J(C)) \) for \(j = 1,2 \) we use the spectral sequence

\[
E_2^{p,q} = \text{Ext}^p_{\mathcal{O}_J(C)}(\mathcal{F}^{-q}, \mathcal{O}_J(C)) \Rightarrow \text{Ext}^{p+q}_{\mathcal{O}_J(C)}(R f_{d*} (N \otimes \omega_{C_d}), \mathcal{O}_J(C))
\]

and we argue as in Proposition 3.8. \(\square \)

4. Simultaneous deformations of \(W_d(C) \) and \(J(C) \)

In this section we aim to prove Theorem 1.4. We start by proving some general facts regarding the closed immersion \(\iota_d : W_d(C) \hookrightarrow J(C) \).

Proposition 4.1. Let \(C \) be a smooth curve of genus \(g \geq 2 \) and let \(1 \leq d < g \) be an integer. Then

i). \(H^j(C_d, \mathcal{O}_{C_d}) \simeq \wedge^j H^1(C, \mathcal{O}_C) \) for all \(1 \leq j \leq d \).

ii). \(H^j(J(C), \mathcal{I}_{W_d(C)}) = 0 \) for all \(1 \leq j \leq d \).

iii). \(\text{Ext}^j_{\mathcal{O}_J(C)}(\Omega_{J(C)}, \mathcal{O}_{J(C)}) \simeq \text{Ext}^j_{\mathcal{O}_J(C)}(\Omega_{J(C)}, \iota_{d*} \mathcal{O}_{W_d(C)}) \) for all \(1 \leq j \leq d \).

Proof. We start with (i). Denote by \(\pi_d : C^d \to C_d \) the quotient morphism realizing the symmetric product \(C_d \) as quotient of the \(d \)-fold product \(C^d \) under the action of the symmetric group \(\sigma_d \).
Therefore Künneth’s decomposition yields

\[H^*(C_d, \mathcal{O}_{C_d}) \approx H^*(C^d, (\pi_{d*}\mathcal{O}_{C_d})^{\sigma_d}) \]
\[\approx H^*(C^d, \mathcal{O}_{C_d})^{\sigma_d} \]
\[\approx (H^*(C, \mathcal{O}_C) \otimes \mathbb{C})^{\sigma_d} \]
\[\approx \bigoplus_{j=0}^d (\text{Sym}^{d-j} H^0(C, \mathcal{O}_C) \otimes \wedge^j H^1(C, \mathcal{O}_C))[-j] \]
\[\approx \bigoplus_{j=0}^d \wedge^j H^1(C, \mathcal{O}_C)[-j]. \]

Now we turn to the proof of (ii). By recalling the definition of \(f_d = \iota_d \circ u_d : C_d \to J(C) \) in (22), we get isomorphisms

\[f_d^* \wedge^j H^1(J(C), \mathcal{O}_{J(C)}) \approx \wedge^j f_d^* H^1(J(C), \mathcal{O}_{J(C)}) \approx \wedge^j H^1(C, \mathcal{O}_C) \approx H^j(C_d, \mathcal{O}_{C_d}) \]

thanks to the universal property of \(J(C) \) and by (i). Moreover, since \(R u_{d*} \mathcal{O}_{C_d} \approx \mathcal{O}_{W_d(C)} \), we obtain isomorphisms

\[u_{d*} \wedge^j (W_d(C), \mathcal{O}_{W_d(C)}) \approx \wedge^j (C_d, \mathcal{O}_{C_d}) \approx u_{d*} \iota_{d*} \wedge^j (J(C), \mathcal{O}_{J(C)}). \]

These immediately yield (ii) once one looks at the long exact sequence in cohomology induced by the short exact sequence

\[(25) \quad 0 \to \mathcal{I}_{W_d(C)} \to \mathcal{O}_{J(C)} \to \iota_{d*} \mathcal{O}_{W_d(C)} \to 0. \]

Finally, for the last point it is enough to apply \(R \text{Hom}_{\mathcal{O}_{J(C)}}(\Omega_{J(C)}, -) \) to the sequence (25) and to use (ii). This yields the claimed isomorphisms for \(j \leq d - 1 \) together with an injection \(\text{Ext}^d_{\mathcal{O}_{J(C)}}(\Omega_{J(C)}, \mathcal{O}_{J(C)}) \hookrightarrow \text{Ext}^d_{\mathcal{O}_{J(C)}}(\Omega_{J(C)}, \iota_{d*} \mathcal{O}_{W_d(C)}) \) which is an isomorphism for dimensional reasons. \(\square \)

The deformations of Abel–Jacobi maps \(f_d : C_d \to J(C) \) have been studied by Kempf. In particular, in [Ke2], he shows that these deformations are all induced by those of \(C_d \) in case \(C \) is non-hyperelliptic. However, in view of Theorem 3.2, Kempf’s result extends to all smooth curves of genus \(g \geq 3 \). In the following proposition we present a slightly different proof of this fact by means of the theory of deformations of holomorphic maps developed by Namba in [Na]. Moreover, we include a statement regarding the deformations of the closed immersion \(\iota_d : W_d(C) \hookrightarrow J(C) \). In combination to Theorem 1.1, this in particular proves Theorem 1.4 of the Introduction.

Proposition 4.2. If \(C \) is a smooth curve of genus \(g \geq 3 \), then for all \(1 \leq d \leq g - 2 \) the forgetful morphism \(\text{Def} f_d \to \text{Def}_{C_d} \) is an isomorphism. Moreover, if in addition \(C \) is non-hyperelliptic, the forgetful morphism \(\text{Def}_{f_d} \to \text{Def}_{W_d(C)} \) is an isomorphism as well.

Proof. We start with the proof that the forgetful morphism \(p : \text{Def}_{f_d} \to \text{Def}_{C_d} \) is an isomorphism. First of all we show that the differential \(dp \) is an isomorphism. Since the varieties \(C_d \) and \(J(C) \) are both smooth, the tangent space \(T^1_{f_d} \) and the obstruction space \(T^2_{f_d} \) to \(\text{Def}_{f_d} \) fit in an exact sequence...
denote by lines on Y. Let $\dim Y = 10$ while the obstruction space dimension 40. Therefore, since Def $\to T_{f_d}$ is unobstructed, we have that $d p$ and T_{f_d} is an obstruction map for Def f_d.

From the isomorphism $R f_d \mathcal{O}_{C_d} \cong \iota_d \mathcal{O}_{W_d(C)}$, we see that the morphisms λ_0, λ_1 and λ_2 induce isomorphisms

$$H^i(J(C), T_J(C)) \cong H^i(C_d, f_d^* T_J(C)) \quad \text{for} \quad i = 0, 1, 2$$

by Proposition 4.1. Therefore the differential $d p : T_{f_d} \to T_{C_d}$ is an isomorphism and Def f_d is less obstructed than Def C_d. Therefore, by [Se, Proposition 2.3.6], we conclude that Def f_d is unobstructed since Def C_d is so. Finally, according to the criterion [Se, Remark 2.3.8], p is an isomorphism as soon as both Def f_d and Def C_d are prorepresentable. But this follows as $H^0(C_d, T_{C_d}) = 0$ and from the general criterion of prorepresentability [Ma, Proposition 13].

We now suppose that the curve C is non-hyperelliptic in order to prove the second statement. There is a blowing-down morphism $t : \text{Def}_{f_d} \to \text{Def}_{\iota_d}$ deduced by Proposition 2.9 which fits in a commutative diagram

\[
\begin{array}{ccc}
\text{Def}_{f_d} & \xrightarrow{p} & \text{Def}_{C_d} \\
\downarrow t & & \downarrow u'_d \\
\text{Def}_{\iota_d} & \xrightarrow{p'} & \text{Def}_{W_d(C)}
\end{array}
\]

where p' is the forgetful morphism. We notice that the differential dp' is nothing else than the morphism $T_{\iota_d} \to T_{W_d}$ of the exact sequence (7) associated to $f = \iota_d$ (cf. also Remark 2.7). Therefore, since by Proposition 4.1 the second components of λ_0 and λ_2 of the same sequence are isomorphisms, we get that dp' is an isomorphism. Therefore dt is an isomorphism too since we have already showed that both dp and du'_d are isomorphisms (Theorem 3.1). Moreover, Def ι_d is prorepresentable by [Ma, Proposition 13] as in particular dp' injective and Def $W_d(C)$ is prorepresentable. Therefore, since Def f_d is unobstructed, we have that t is an isomorphism ([Se, Remark 2.3.8]). Finally, as both p and u'_d are isomorphisms, this yields that p' is an isomorphism as well.

5. **Deformations of Fano surfaces of lines**

In this section we prove some deformation-theoretic statements regarding the Fano surface of lines. Let $Y \subset \mathbb{P}^4$ be a smooth cubic hypersurface and let $F(Y)$ be the Fano scheme parameterizing lines on Y. Then $F(Y)$ is a smooth surface which embeds in the intermediate Jacobian $J(Y)$. We denote by $\iota : F(Y) \hookrightarrow J(Y)$ this embedding and we recall that the tangent space to Def $F(Y)$ has dimension 10 while the obstruction space dimension 40.
Proposition 5.1. The surface $F(Y)$ is co-stable in $J(Y)$, i.e. the forgetful morphism $p_{F(Y)} : \text{Def}_i \to \text{Def}_{F(Y)}$ is smooth. Moreover, $dp_{F(Y)}$ is an isomorphism and Def_i is less obstructed than $\text{Def}_{F(Y)}$.

Proof. By [CG, Theorem 11.19] (cf. [LT] for a different proof) there is an isomorphism $J(Y) \simeq \text{Alb}(F(Y))$ between the intermediate Jacobian $J(Y)$ and the Albanese variety of $F(Y)$ from which we get an isomorphism $H^1(F(Y), \mathcal{O}_{F(Y)}) \simeq H^1(J(Y), \mathcal{O}_{J(Y)})$. Moreover, by [CG, (12.1)] we deduce a further isomorphism

$$H^2(F(Y), \mathcal{O}_{F(Y)}) \simeq H^1(F(Y), \mathcal{O}_{F(Y)}) \otimes H^1(F(Y), \mathcal{O}_{F(Y)}) \simeq H^1(J(Y), \mathcal{O}_{J(Y)}) \otimes H^1(J(Y), \mathcal{O}_{J(Y)}) \simeq H^2(J(Y), \mathcal{O}_{J(Y)}) .$$

Therefore, by looking at the long exact sequence in cohomology induced by $0 \to \mathcal{I}_{F(Y)} \to \mathcal{O}_{J(Y)} \to \mathcal{O}_{F(Y)} \to 0$, we deduce that $\dim H^i(J(Y), \mathcal{I}_{F(Y)} \otimes T_{J(Y)}) = 0$ for $i = 0, 1, 2$. But the vanishing of the previous groups for $i = 2$ is a sufficient condition to co-stability ([Se, Proposition 3.4.23]). On the other hand, the vanishing of all them allow us to reason as in Proposition 4.2 to obtain the other statements. \square

References

[Na] M. Namba Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Mathematics 767 (1979), Springer-Verlag
[Ran1] Z. Ran Deformations of maps, Algebraic curves and projective geometry, Lecture Notes in Mathematics 1389 (1989), 246-253
[S] M. Schlessinger Functors of Artin rings, T.A.M.S. 130 (1968), 208-222
[Se] E. Sernesi Deformations of algebraic schemes, 334, A series of comprehensive studies in mathematics, Springer

Mathematical Institut, University of Bonn, Endenicher Allee 60, 53115, Germany

E-mail address: lombardi@math.uni-bonn.de

Department of Mathematics, The University of Utah, 155 S 1400 E, JWB 233, Salt Lake City, UT 84112-0090, USA

E-mail address: sofia@math.utah.edu