1. Find the following limits:
 (a) \(\lim_{x \to 0^+} \frac{\cot x}{\sqrt{-\ln x}} \)
 (b) \(\lim_{x \to 0^+} (3x)^x \)
 (c) \(\lim_{x \to 0} (\csc^2 x - \cot^2 x) \)

2. Find the following integrals:
 (a) \(\int \frac{(\ln x)^2}{x} \, dx \)
 (b) \(\int \frac{x + 1}{x(x - 1)} \, dx \)
 (c) \(\int \sin^2 x \cos^3 x \, dx \)
 (d) \(\int x^2 e^x \, dx \)
 (e) \(\int \frac{dx}{\sqrt{3 - 2x^2}} \)

3. The half-life of Tritium is 12 years. If you start with 50 grams of Tritium, how much will you have after 100 years?

4. Salt water, at a concentration of 2 kg/L, flows into a tank of water at a rate of 5 L/min. Salt water flows out of the tank at a rate of 4 L/min. The tank starts with 10 Liters of water. Find the differential equation describing the amount of salt in the tank after \(t \) minutes. (You don’t have to solve it).

5. Solve the differential equation
 \[x \frac{dy}{dx} + \ln x = 0 \]
 given \(y(1) = 2 \).

6. Find the convergence set of the power series \(\sum_{n=0}^{\infty} \frac{(n+1)^2}{n!} (x - 1)^n \).

7. Find the first 3 terms of the Taylor series of \(\frac{1}{x^3 + 1} \) at \(x = 0 \).

8. Find the area of the region enclosed by the curve given in polar coordinates by \(r = 2 \cos \theta \sqrt{\sin \theta}, 0 \leq \theta \leq \frac{\pi}{2} \).