Marden’s theorem

Daniel Smolkin

Department of Mathematics
University of Utah

GSAC Colloquium

January 14, 2014
Statement of the theorem

Theorem 1
Let p be a degree-3 polynomial over \mathbb{C}. Suppose the roots of p form a triangle in the complex plane. Then the roots of p' are the foci of the Steiner inellipse of this triangle.
• Ellipse: \(\{ p : d(p, a) + d(p, b) = r \} \) for some \(a, b \) called foci and some \(r \) called the major axis length

• Steiner inellipse: the unique ellipse tangent to the three sides of a triangle at their midpoints
Ellipse properties

Optical property
Uniqueness property: given a pair of points and a line, there is at most one ellipse with foci at those points tangent to that line.
\[\angle F_1 P G_1 = \angle F_2 P G_2 \]
Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then...
Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then...

- E is tangent to that side (at its midpoint)
- E is tangent to the other two sides of T as well
- E is tangent to every side at its midpoint
Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then...

- E is tangent to that side (at its midpoint)
- E is tangent to the other two sides of T as well
Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then...

- E is tangent to that side (at its midpoint)
- E is tangent to the other two sides of T as well
- E is tangent to every side at its midpoint
Outline in pictures

1.
Outline in pictures

1. Daniel Smolkin (Utah)

Marden's theorem

January 14, 2014 8 / 19
Outline in pictures

1.

2.

3.

4.
Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then E is tangent to that side.

Thus, the unique ellipse that is tangent to that side and has foci at the roots of p' is tangent to that side at its midpoint (what we really need).
Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then E is tangent to that side.

Thus, the unique ellipse that is tangent to that side and has foci at the roots of p' is tangent to that side at its midpoint (what we really need).

Proof:

WLOG, can rotate, scale, translate, reflect (exercise)
Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then E is tangent to that side.

- Thus, the *unique* ellipse that is tangent to that side and has foci at the roots of p' is tangent to that side at its midpoint (what we really need).

Proof:
- WLOG, can rotate, scale, translate, reflect (exercise)
- So we can assume the following picture:
Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E intersects a side of T at its midpoint, then E is tangent to that side.

Thus, the unique ellipse that is tangent to that side and has foci at the roots of p' is tangent to that side at its midpoint (what we really need).

Proof:

- WLOG, can rotate, scale, translate, reflect (exercise)
- So we can assume the following picture:
Step 1

- Roots = \{1, -1, w\}
Step 1

- Roots = \{1, -1, w\}

\[\Rightarrow p(z) = z^3 - wz^2 - z, \quad p'(z) = 3z^2 - 2wz - 1 \]
Step 1

- Roots = \{1, -1, w\}
- \Rightarrow p(z) = z^3 - wz^2 - z, \quad p'(z) = 3z^2 - 2wz - 1
- Note:
 \[
 \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) + \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) = -\frac{b}{a},
 \]
 \[
 \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) \cdot \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) = \frac{c}{a}
 \]
\[z_1 z_2 = -1/3 \Rightarrow \text{Arg } z_1 + \text{Arg } z_2 = \pi \pmod{2\pi\mathbb{Z}} \]
\[
\begin{align*}
\bullet \quad z_1 z_2 &= -1/3 \Rightarrow \text{Arg } z_1 + \text{Arg } z_2 = \pi \text{ (mod } 2\pi \mathbb{Z}) \\
\bullet \quad z_1 + z_2 &= 2w/3 \Rightarrow \text{Im } z_1 > 0 \text{ or } \text{Im } z_2 > 0
\end{align*}
\]
\[z_1 z_2 = -1/3 \Rightarrow \text{Arg } z_1 + \text{Arg } z_2 = \pi \pmod{2\pi \mathbb{Z}} \]
\[z_1 + z_2 = 2w/3 \Rightarrow \text{Im } z_1 > 0 \text{ or } \text{Im } z_2 > 0 \]
\[\text{So } 0 < \text{Arg } z_1, \text{Arg } z_2 < \pi \text{ and } \text{Arg } z_1 + \text{Arg } z_2 = \pi \]
\[z_1 z_2 = -1/3 \implies \text{Arg } z_1 + \text{Arg } z_2 = \pi \pmod{2\pi \mathbb{Z}} \]
\[z_1 + z_2 = 2w/3 \implies \text{Im } z_1 > 0 \text{ or } \text{Im } z_2 > 0 \]
\[\text{So } 0 < \text{Arg } z_1, \text{Arg } z_2 < \pi \text{ and } \text{Arg } z_1 + \text{Arg } z_2 = \pi \]

By the optical property of ellipses, \(x\)-axis is tangent to our ellipse.
Outline in pictures

1. Daniel Smolkin (Utah)

Marden's theorem

January 14, 2014
Step 2

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E is tangent to a side of T at its midpoint, then E is tangent to every side of T.

Proof:
Step 2

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p'. If E is tangent to a side of T at its midpoint, then E is tangent to every side of T.

Proof:

- Assume the following picture:
Step 2

- \(p(z) = z^3 - (1 + w)z^2 + wz, \quad p'(z) = 3z^2 - 2(1 + w)z + w \)
Step 2

- $p(z) = z^3 - (1 + w)z^2 + wz$, \quad p'(z) = 3z^2 - 2(1 + w)z + w$
- $z_1 + z_2 = \frac{2}{3}(1 + w)$, so one focus is above x-axis.
Step 2

- \(p(z) = z^3 - (1 + w)z^2 + wz, \quad p'(z) = 3z^2 - 2(1 + w)z + w \)
- \(z_1 + z_2 = \frac{2}{3}(1 + w) \), so one focus is above \(x \)-axis.
- Since ellipse tangent to \(x \)-axis, both foci on one side
Step 2

- \(z_1z_2 = \frac{w}{3} \)
Step 2

- \(z_1 z_2 = w/3 \Rightarrow \text{Arg } z_1 + \text{Arg } z_2 = \text{Arg } w. \)
Step 2

- $z_1 z_2 = w / 3 \implies \text{Arg } z_1 + \text{Arg } z_2 = \text{Arg } w$.
- The line between 0 and w is tangent to the ellipse by third ellipse property.

$\angle F_1 PG_1 = \angle F_2 PG_2$
Outline in pictures

1.

2.

Marden's theorem
Step 3

\(E \) is tangent to each side at its midpoint

By step 1, there is some \(E' \) with same foci tangent to another side at its midpoint. By uniqueness property, \(E = E' \).
Step 3

E is tangent to each side at its midpoint

- By step 1, there is some E' with same foci tangent to another side at its midpoint.
Step 3

E is tangent to each side at its midpoint

- By step 1, there is some E' with same foci tangent to another side at its midpoint
- By uniqueness property, $E = E'$
Empirical evidence
References

- My website (slides and python script)
 math.utah.edu/~smolkin/talks