Solutims to Review Problems

1. (5 pts each) For $f(x)=\frac{x-3}{9-x^{2}}$, answer the following questions.
(a) $\lim _{x \rightarrow 3} f(x)=-\quad-1 / 6$

$$
\lim _{x \rightarrow 3} \frac{x-3}{9-x^{2}}=\lim _{x \rightarrow 3} \frac{x-3}{(3-x)(3+x)}=\lim _{x \rightarrow 3} \frac{-(3-x)}{(3-x)(3+x)}=\frac{-1}{6}
$$

(b) $\lim _{x \rightarrow-3} f(x)=D_{i} N, \in$.

$$
\lim _{x \rightarrow-3} \frac{x-3}{9-x^{2}}=\lim _{x \rightarrow-3} \frac{-(3-x)}{(3-x)(3+x)}=\lim _{x \rightarrow-3} \frac{-1}{3+x} \text {. does not exist. }
$$

(c) $\lim _{x \rightarrow 0} f(x)=-\frac{1}{3}$
$\lim _{x \rightarrow 0} \frac{x-3}{9-x^{2}}=\frac{0-3}{9-0}=-\frac{3}{9}=-1 / 3 \quad$ No zero in denominator
(d) Where is $f(x)$ discontinuous? Only at points when denomination is zen since it is a

$$
x=3, x=-3
$$ rational function.

2. (5 pts each) Find the following limits.
(a) $\lim _{x \rightarrow-\infty} \frac{x^{2}+5 x-3}{2 x^{2}+7 x}=-\frac{1}{2}$

$$
\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{2}}\left(x^{2}+5 x-3\right)}{\frac{1}{x^{2}}\left(2 x^{2}+7 x\right)}=\lim _{x \rightarrow-\infty} \frac{1+\frac{5}{x}-\frac{3}{x^{2}}}{2+\frac{7}{x} 70}=\frac{1}{2}
$$

(b) $\lim _{x \rightarrow \infty} \frac{x^{3}+x-2}{3 \mathrm{x}^{5}+4 \mathrm{x}^{2}+1}=$

$$
=\frac{0}{\lambda^{0} \lambda^{0} \lambda^{0}}
$$

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{5}}\left(x^{3}+x-2\right)}{\frac{1}{x^{5}}\left(3 x^{5}+4 x^{2}+1\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}+\frac{1}{x^{4}}-\frac{2}{x^{5}}}{3+4 / x^{3}+1 / x^{5}}=\frac{0}{3}=0
$$

3. (12 pts) Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=x^{2}+3 \mathrm{x}$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 3} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+3(x+h)-\left[x^{2}+3 x\right]}{h} \\
& =\lim _{h \rightarrow 3} \frac{x^{2}+2 x h+h^{2}+3 x+3 h-x^{2}-3 x}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+3 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+3+h)}{h}=\lim _{h \rightarrow 0} 2 x+3+h=2 x+3 \\
& \\
& f^{\prime}(x)=2 x+3
\end{aligned}
$$

4. (6 pts each) Suppose the total cost of producing x bicycles is given by $C(x)=5000+40 \mathrm{x}+0.5 x^{2}$.
(a) How fast is the Cost changing with respect to the number of bicycles produced?

$$
c^{\prime}(x)=40+2(0,5) x=40+x
$$

Answer: \qquad $40+x$
(b) What is the rate of change of the Cost function when 10 bicycles are produced?

$$
C^{\prime}(10)=40+10=50
$$

Answer:

5. (5 pts each) Find y^{\prime} for the following functions. (DO NOT bother to simplify!!!)
(a) $y=\sqrt[3]{x}-\frac{5}{2 x^{2}}+4 x-7 x^{-1}=x^{1 / 3}-\frac{5}{2} x^{-2}-7 x^{-1}$

$$
\begin{aligned}
& \text { (a) } y=\sqrt[3]{x}-\frac{5}{2 x^{2}}+4 x-7 x^{-1}=x^{3}-\frac{5}{2} x-7 x \\
& y^{\prime}=\frac{1}{3} x^{-\frac{2}{3}}-(-2) \frac{5}{2} x^{-3}-(-1) 7 x^{-2}+4<\text { from } \\
& y^{\prime}=\frac{1}{3} x^{-2 / 3}+5 x^{-3}+7 x^{-2}+4
\end{aligned}
$$

(b) $y=\left(4 x^{4}+x^{2}\right)\left(5 x+\frac{1}{x^{233}}\right) \quad y^{\prime}=\left(4 x^{4}+x^{2}\right)^{\prime}\left(5 x+\frac{1}{x^{2 / 3}}\right)+\left(4 x^{4}+x^{2}\right)\left(5 x+x^{-\frac{2}{3}}\right)^{\prime}$ $=\left(16 x^{3}+2 x\right)\left(15 x+1 / x^{2 / 3}\right)+\left(4 x^{4}+x^{2}\right)\left(5-\frac{2}{3} x^{-5 / 3}\right)$

$$
y^{\prime}=\left(16 x^{3}+2 x\right)\left(05 x+\frac{1}{x^{2 / 3}}\right)+\left(4 x^{4}+x^{2}\right)\left(5-\frac{2}{3} x^{\frac{-5}{3}}\right)
$$

3 A
(Note: This is \#5 continued.)
Find y^{\prime} for the following functions. (Do NOT bother to simplify!!!)
(c) $y=\frac{2 x^{3}-1}{5 x^{3}} \quad y^{\prime}=\frac{\left(2 x^{3}-1\right)^{\prime} 5 x^{3}-\left(2 x^{3}-1\right)\left(5 x^{3}\right)^{\prime}}{\left(5 x^{3}\right)^{2}}=\frac{6 x^{2} \cdot 5 x^{3}-\left(2 x^{3}-1\right) 15 x^{2}}{25 x^{6}}$

$$
y^{\prime}=\frac{\frac{6 x^{2} \cdot 5 x^{3}-\left(2 x^{3}-1\right) 15 x^{2}}{25 x^{6}} \text { could leave as }\left(5 x^{3}\right)^{2}}{}
$$

$$
\text { (d) } y=\sqrt{5 x+3 x^{3}}=\left(5 x+3 x^{3}\right)^{1 / 2}
$$

$$
\begin{gathered}
\text { (d) } y=\sqrt{5 x+3 x^{3}}=\left(5 x+3 x^{3}\right)^{12} \\
y^{\prime}=\frac{1}{2}\left(5 x+3 x^{3}\right)^{-\frac{1}{2}} \cdot\left(5 x+3 x^{3}\right)^{\prime}=\frac{1}{2}\left(5 x+3 x^{3}\right)^{-1 / 2}\left(5+9 x^{2}\right)
\end{gathered}
$$

$$
y^{\prime}=\frac{1}{2}\left(5 x+3 x^{3}\right)^{-1 / 2} \cdot\left(5+9 x^{2}\right)
$$

second derivative: \qquad

4 A
7. (16 pts) For $f(x)=3 \mathrm{x}\left(x^{2}-4 \mathrm{x}\right)$, find the equation of the tangent line to the curve at $x=-1$.

Slope is $f^{\prime}(-1)$.

$$
f^{\prime}(x)=3\left(x^{2}-4 x\right)+3 x\left(x^{2}-4 x\right)^{\prime}=3\left(x^{2}-4 x\right)+3 x(2 x-4)
$$

So $m=f^{\prime}(-1)=3\left((-1)^{2}-4(-1)\right)+3(-1)(2(-1)-4)$

$$
=3(1+4)-3(-6)=15+18=33
$$

When $x=-1, y=f(-1)=-3\left((-1)^{2}+4\right)=-3.5=-15$

Point slog equation

$$
y-(-15)=33(x-(-1)) \text { ar } y+15=33(x+1)
$$

Tangent Line: \qquad $y+15=33(x+1)$

