Solutions

MATH 1100-001
EXAM 2

Instructions:. Put your name on the exam. Show your work for full credit. Calculators and other electronic devices (including cell phones) are not allowed. You are allowed one side of an 8.5 by 11 inch sheet of notes.

1. Suppose that the the total cost function is $C(x)=1000+92 x$, where x is the number of goods produced, and that price per unit is $p(x)=160+x-\frac{x^{2}}{3}$ (the price at which x goods will sell).
a. (5 points) Find the revenue function.

$$
R(x)=x p(x)=x\left(180+x \sim \frac{x^{2}}{3}\right)=100 x+x^{2}-\frac{x^{3}}{3}
$$

b. (5 points) Find the marginal revenue, and marginal cost functions.

$$
\begin{aligned}
& R^{\prime}(x)=100+2 x-x^{2}=\text { Mangind revenue function } \\
& C^{\prime}(x)=(100+92 x)^{\prime}=92=\text { Marginal Cost function. }
\end{aligned}
$$

c. (5 points) Find the profit function.

$$
P(x)=R(x)-C(x)=100 x+x^{2}-\frac{x^{3}}{3}-(100+92 x)
$$

d. (5 points) Find the marginal profit function.

$$
\begin{aligned}
P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x) & =10+2 x-x^{2}-92 \\
& =8+2 x-x^{2}
\end{aligned}
$$

le. (10 points) Find the number of units sold that maximizes the profit.

$$
P^{\prime}(x)=0 \Rightarrow 8+2 x-x^{2}=0 \Rightarrow x^{2}-2 x-8=0 \Rightarrow(x-4)(x+2)=0
$$

positive value of $x: x=4$

$$
P^{\prime \prime}(x)=2-2 x, P^{\prime \prime}(4)=2-8<0 \Rightarrow \text { maximin at } x=4
$$

Ind deriv. test (could use last derivitest)
2. Suppose that the cost for producing x goods is $C(x)=40+0.1 x^{2}$
a. (5 points) Find $\bar{C}(x)$, the average cost per unit.

$$
\bar{C}(x)=\frac{c(x)}{x}=\frac{40+0.1 x^{2}}{x}=\frac{40}{x}+\frac{0.1 x^{2}}{x}=\frac{40}{x}+0.1 x
$$

b. (20 points) Find the number of units produced that minimizes the average cost per unit. What is the minimum average cost per unit?

Gitical value: $\quad \bar{C}^{\prime}(x)=\left(0.1 x+40 x^{-1}\right)^{\prime}=0.1-40 x^{-2}=0.1-\frac{40}{x^{2}}$

$$
\begin{aligned}
& c^{\prime}(x)=0 \Rightarrow 0.1-\frac{40}{x^{2}}=0,0.1=\frac{40}{x^{2}}, x^{2}=\frac{40}{0.1}=400 \\
& x= \pm \sqrt{400}, x= \pm 20 . x>0 \Rightarrow x=20 .
\end{aligned}
$$

lIst derivative test: for $x<20$, says $x=00 \quad \bar{e}^{\prime}(00)=0.1-\frac{40}{900}=-0,3<0$ for $x>20$, sing $x=30 \bar{c}^{\prime}(30)=0.1-\frac{40}{900}>0$

$\Rightarrow \bar{c}$ hes a minimum at $x=20$
The average minimum cost is

$$
C^{\prime}(2 d)=\frac{40}{20}+0,1 \cdot(20)=2+2=4
$$

3. Let $f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+2$.
a. (5 points) Find the critical values of $f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=3 \cdot \frac{1}{3} x^{2}-2 \cdot 2 x+3=x^{2}-4 x+3=0 \\
& (x-3)(x-1)=0 \\
& \Rightarrow x=1,3
\end{aligned}
$$

b. (5 points) Find the intervals on which f is increasing and decreasing.

$$
\begin{aligned}
x<1 \quad \text { say } x=0 & f^{\prime}(0)=3>0 \\
1<x<3 & \text { say } x=2 \\
f^{\prime}(2) & =4-8+3=-1<0 \\
3<x \quad \text { say } x=4 & f^{\prime}(4)=16-16+3=3>0
\end{aligned}
$$

$\Rightarrow \quad f$ is increasing on $(-\infty, 1)$ and $(3, \infty)$ f is decreasing on $(1,3)$

c. (10 points) Find the relative maximum and minimum points (if any).

From the hst derivative test f has a rel. max at 1, rel min at 3

$$
\begin{array}{ll}
f(1)=\frac{1}{3}-2+3+2=10 / 3 & (1,10 / 3) \text { rel. max point } \\
f(3)=\frac{27}{3}-2 \cdot 9+9+2=2 & (3,2) \text { rel. min. point }
\end{array}
$$

d. (10 points) Find the intervals on which f is concave up and concave done, as well as any inflection points.

$$
\begin{aligned}
& f^{\prime \prime}(x)=2 x-4 . \quad f^{\prime \prime}(x)=0 \Rightarrow 2 x-4=0 \Rightarrow x=2 . \\
& x<2, \quad \text { say } x=0 \quad f^{\prime \prime}(0)=-4<0 \\
& x>2 \quad \text { say } x=3 \quad f^{\prime \prime}(3)=6-4=<>0
\end{aligned}
$$

f concave up on $(2, \infty)$
f concave down on $(-\infty, 2)$
4. Let f be the function:

$$
f(x)=\frac{2 x^{3}+1}{x\left(x^{2}-1\right)}
$$

a. (5 points) find the domain of f.

Domain: all x where $f(x)$ is defined. $f(x)$ not defined only When denominator is zens: $x\left(x^{2}-1\right)=0 \Rightarrow x(x+1)(x-1)<0$ Domain all x except $x=0,-1,1$.
b. (5 points) Find the vertical asymptotes (if any).

Versicle asymplets occam at value where denominator is zero; if numeneta not zero. $2 x^{3}+1 \neq 0$ when $x=-1,0,1$ sr verticle asymptotes ass:

$$
\begin{aligned}
& x=-1 \\
& x=0 \\
& x=1
\end{aligned}
$$

c. (5 points) Find the horizontal asymptotes (if any).

Herizontel asymptotes are given by $y=\lim _{x \rightarrow \infty} \frac{2 x^{3}+1}{x\left(x^{2}-1\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{2 x^{3}+1}{x^{3}-1}=\lim _{x \rightarrow \infty} \frac{2 x^{3}}{x^{3}}=2 \\
& \Rightarrow y=2
\end{aligned}
$$

