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LOCAL COHOMOLOGY AND PURE MORPHISMS

ANURAG K. SINGH AND ULI WALTHER

Dedicated to Professor Phil Griffith

Abstract. We study a question raised by Eisenbud, Mustaţǎ, and Still-
man regarding the injectivity of natural maps from Ext modules to local
cohomology modules. We obtain some positive answers to this question
which extend earlier results of Lyubeznik. In the process, we also prove
a vanishing theorem for local cohomology modules which connects the-
orems previously known in the case of positive characteristic and in the
case of monomial ideals.

1. Introduction

Throughout this paper, the rings we consider are commutative, Noether-
ian, and contain an identity element. For an ideal a of a ring R, the local
cohomology modules Hi

a(R) may be obtained as

Hi
a(R) = lim−→

t

Exti
R(R/at, R) for i > 0 ,

where {at}t>0 is a decreasing chain of ideals cofinal with the chain {at}t>0, and
the maps in the directed system are those induced by the natural surjections

R/at+1 −→ R/at .

Any chain of ideals which is cofinal with the chain {at}t>0 yields the same
direct limit. In this context, Eisenbud, Mustaţǎ, and Stillman have raised the
following questions:

Question 1.1 ([EMS, Question 6.1]). Let R be a polynomial ring over
a field. For which ideals a of R does there exist a chain of ideals {at}t>0 as
above, such that for all i > 0 and all t > 0, the natural map

Exti
R(R/at, R) −→ Hi

a(R)
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is injective?

Question 1.2 ([EMS, Question 6.2]). Given a polynomial ring R over
a field, for which ideals a is the natural map Exti

R(R/a, R) −→ Hi
a(R) an

inclusion?

Question 1.1 is motivated by the fact that the R-modules Hi
a(R) are typ-

ically not finitely generated, whereas modules of the form Exti
R(R/b, R) are

finitely generated. Consequently, a chain of ideals as in Question 1.1 yields a
filtration of Hi

a(R) by a natural family of finitely generated submodules.
Let R be a polynomial ring over a field. For an ideal a generated by

square-free monomials m1, . . . ,mr, set a[t] = (mt
1, . . . ,m

t
r) for integers t > 0.

Lyubeznik [Ly1, Theorem 1 (i)] proved that the natural maps

Exti
R(R/a[t], R) −→ Hi

a(R)

are injective for all i > 0 and t > 0; see also Mustaţǎ [Mu, Theorem 1.1]. If
R has positive characteristic, an ideal a generated by square-free monomials
has the property that R/a is F -pure; see § 2. Our main result, Theorem 2.8,
recovers Lyubeznik’s result and also provides a positive answer to Question 1.1
for ideals defining F -pure rings, a case we single out for mention here:

Theorem 1.3. Let R be a regular ring containing a field of characteristic
p > 0, and a an ideal such that R/a is F -pure. Then the natural maps

Exti
R(R/a[pt], R) −→ Hi

a(R)

are injective for all i > 0 and all t > 0.

Remark 1.4. If d = depthR(a, R), then the natural map

Extd
R(R/a, R) −→ Hd

a (R)

is injective. To see this, let E• be a minimal injective resolution of R. Then
H•

a (R) is the cohomology of the complex Γa(E•) and Ext•R(R/a, R) is the
cohomology of its subcomplex HomR(R/a, E•) = (0 :E• a). Since d is the
least integer i such that Γa(Ei) is nonzero, we are considering the cohomology
of the rows of the diagram

· · · −−−−→ 0 −−−−→ Γa(Ed) −−−−→ Γa(Ed+1) −−−−→ · · ·x x x
· · · −−−−→ 0 −−−−→ (0 :Ed a) −−−−→ (0 :Ed+1)a −−−−→ · · · ,

and the desired inclusion follows.

Remark 1.5. It is easy to see that Question 1.1 has a positive answer if
a is a set-theoretic complete intersection: if f1, . . . , fn is a regular sequence
generating a up to radical, then the ideals at = (f t

1, . . . , f
t
n) form a descending
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chain with Exti
R(R/at, R) ↪−→ Hi

a(R) for all i > 0 and t > 0; for i = n, this
follows from Remark 1.4, whereas if i 6= n, then Exti

R(R/at, R) = 0 = Hi
a(R).

We thank David Eisenbud, Srikanth Iyengar, and Oana Veliche for use-
ful discussions. Our work also owes a great intellectual debt to Gennady
Lyubeznik’s paper [Ly2].

2. Pure homomorphisms and F -pure rings

Definition 2.1. A ring homomorphism ϕ : R −→ S is pure if the map

ϕ⊗ 1: R⊗R M −→ S ⊗R M

is injective for each R-module M . If R contains a field of characteristic p > 0,
then R is F -pure if the Frobenius homomorphism r 7→ rp is pure.

Evidently, pure homomorphisms are injective. Let R be a subring of S. If
the inclusion R ↪−→ S splits as a maps of R-modules, then it is pure. The
converse is also true for module-finite extensions; see [HR2, Corollary 5.3].

Example 2.2. Let R = K[x1, . . . , xd] be a polynomial ring over a field K,
and let t be a positive integer. Then there is a K-linear endomorphism ϕ of
R with ϕ(xi) = xt

i for 1 6 i 6 d. The inclusion ϕ(R) ⊆ R splits since R is a
free module over ϕ(R) with basis xe1

1 · · ·x
ed

d , where 0 6 ei 6 t− 1. It follows
that ϕ : R −→ R is pure.

Let a be an ideal of R generated by square-free monomials. Then ϕ(a) ⊆ a,
so ϕ induces an endomorphism ϕ of R/a. The image of ϕ is spanned, as a
K-vector space, by those monomials in xt

1, . . . , x
t
d which are not in a. Using

the map which is the identity on these monomials, and kills the rest, we obtain
a splitting of ϕ. It follows that the endomorphism ϕ : R/a −→ R/a is pure.

Remark 2.3. The notion of F -pure rings was introduced by Hochster
and Roberts in the course of their study of rings of invariants [HR1], [HR2].
Examples of F -pure rings include regular rings, determinantal rings, Plücker
embeddings of Grassmannians, polynomial rings modulo square-free mono-
mial ideals, normal affine semigroup rings, homogeneous coordinate rings of
ordinary elliptic curves, and, more generally, homogeneous coordinate rings
of ordinary Abelian varieties. Moreover, pure subrings of F -pure rings are
F -pure, and if R and S are F -pure algebras over a perfect field K, then their
tensor product R⊗K S is also F -pure.

Remark 2.4. Let ϕ : R −→ S be a ring homomorphism. If f ∈ R, then ϕ
localizes to give a map Rf −→ Sϕ(f). Similarly, if f is a sequence of elements
of R, then ϕ induces a map of Čech complexes

Č•
f (R) −→ Č•

ϕ(f)(S) .
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Setting a = (f), we have an induced map of local cohomology groups

ϕ∗ : Hi
a(R) −→ Hi

aS(S) for all i > 0 .

Note that for r ∈ R and η ∈ Hi
a(R), we have ϕ(r)ϕ∗(η) = ϕ∗(rη).

Now suppose ϕ is an endomorphism of R with rad a = radϕ(a)R. Then
one obtains an induced action

ϕ∗ : Hi
a(R) −→ Hi

ϕ(a)R(R) = Hi
a(R) ,

which is an endomorphism of the underlying Abelian group.
The archetypal example is the one where ϕ is the Frobenius endomorphism

of a ring R of prime characteristic; in this case, for all ideals a of R and integers
i > 0, there is an induced action ϕ∗ on Hi

a(R) known as the Frobenius action.

If ϕ : R −→ S is pure, then for all ideals a of R and all integers i > 0, the
induced map ϕ∗ : Hi

a(R) −→ Hi
aS(S) is injective; see [HR1, Corollary 6.8] or

[HR2, Lemma 2.1]. In another direction, we have the following lemma, which
will be a key ingredient in the proof of Theorem 2.8.

Lemma 2.5. Let (R,m) be a local ring with a pure endomorphism ϕ such
that ϕ(m)R is m-primary. Then, for all i > 0, the induced action

ϕ∗ : Hi
m(R) −→ Hi

m(R)

is surjective up to R-span, i.e., ϕ∗(Hi
m(R)) generates Hi

m(R) as an R-module.

Proof. Consider an element η ∈ Hi
m(R); we need to show that it belongs to

the R-module spanned by ϕ∗(Hi
m(R)). The descending chain of R-modules

〈η, ϕ∗(η), ϕ2
∗(η), . . .〉 ⊇ 〈ϕ∗(η), ϕ2

∗(η), . . .〉 ⊇ 〈ϕ2
∗(η), ϕ3

∗(η), . . .〉
stabilizes since Hi

m(R) is Artinian. Hence there exists e > 0 such that

(2.5.1) ϕe
∗(η) ∈ 〈ϕe+1

∗ (η), ϕe+2
∗ (η), . . .〉 .

Let e be the least such integer. If e = 0 we are done, whereas if e > 1 then
the R-module

M =
〈ϕe−1

∗ (η), ϕe
∗(η), ϕe+1

∗ (η), . . .〉
〈ϕe

∗(η), ϕe+1
∗ (η), . . .〉

is nonzero. But then, by the purity of ϕ, so is its image under

ϕ⊗ 1: R⊗R M −→ R⊗R M ,

which contradicts (2.5.1). �

Remark 2.6. Let R be a regular ring with a flat endomorphism ϕ. We use
Rϕ to denote the R-bimodule which has R as its underlying Abelian group,
the usual action of R on the left, and the right R-action with r′r = ϕ(r)r′ for
r ∈ R and r′ ∈ Rϕ. Let Φ be the functor on the category of R-modules with

Φ(M) = Rϕ ⊗R M ,
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where Φ(M) is viewed as an R-module via the left R-module structure of Rϕ.
The iteration Φt is the functor with

Φt(M) = Rϕ ⊗R Φt−1(M) for t > 1 ,

where Φ0 is interpreted as the identity functor. It is easily seen that

Φt(M) = Rϕt

⊗R M .

(1) There is an isomorphism Φ(R) ∼= R given by r′⊗r 7→ r′ϕ(r). It follows
that if M is a free R-module, then Φ(M) ∼= M . For a map α of free modules
given by a matrix (αij), the map Φ(α) is given by the matrix (ϕ(αij)). Since ϕ
is flat, Φ is an exact functor, and so it takes finite free resolutions to finite free
resolutions. If M and N are R-modules, then there are natural isomorphisms

(2.6.1) Φ(Exti
R(M,N)) ∼= Exti

R(Φ(M), Φ(N)) for all i > 0 .

In particular, if a is an ideal of R, then (2.6.1) implies that

Φ(Exti
R(R/a, R)) ∼= Exti

R(R/ϕ(a)R,R) .

(2) Suppose that the ideals {ϕt(a)R}t>0 form a descending chain cofinal
with the chain {at}t>0. Then, for each i > 0, the above isomorphism and its
iterations fit into a commutative diagram

· · · −−−−→ Exti
R(R/ϕt(a)R,R) −−−−→ Exti

R(R/ϕt+1(a)R,R) −−−−→ · · ·y y
· · · −−−−→ Φt(Exti

R(R/a, R)) −−−−→ Φt+1(Exti
R(R/a, R)) −−−−→ · · ·

where the maps in the top row are those induced by the natural surjections
R/ϕt+1(a)R −→ R/ϕt(a)R, and the vertical maps are isomorphisms. Hence
the bottom row has direct limit Hi

a(R). It follows that Hi
m(R) ∼= Φ(Hi

m(R)).
(3) Assume in addition that (R,m) is a regular local ring of dimension d,

and that ϕ is a flat local endomorphism. In this case, the dimension formula

dim R + dim R/ϕ(m)R = dim R

implies that ϕ(m)R is m-primary. Let E denote the injective hull of R/m as
an R-module, and set (−)∨ = HomR(−, E). Since R is Gorenstein, we have

E ∼= Hd
m(R) ∼= Φ(Hd

m(R)) ∼= Φ(E) .

Hence (2.6.1) implies that Φ(M∨) ∼= (Φ(M))∨ for each R-module M . Setting
M = Exti

R(R/a, R) and using local duality, we get

(Φ(Exti
R(R/a, R)))∨ ∼= Φ(Hd−i

m (R/a)) .

Since Φt(−) = Rϕt ⊗R (−), we immediately obtain the isomorphisms

(Φt(Exti
R(R/a, R)))∨ ∼= Φt(Hd−i

m (R/a)) for all t > 0 .



292 ANURAG K. SINGH AND ULI WALTHER

Applying (−)∨ to the diagram in (2), we get the commutative diagram

· · · ←−−−− Hd−i
m (R/ϕt(a)R) ←−−−− Hd−i

m (R/ϕt+1(a)R) ←−−−− · · ·x x
· · · ←−−−− Φt(Hd−i

m (R/a)) ←−−−− Φt+1(Hd−i
m (R/a)) ←−−−− · · ·

where the vertical maps are isomorphisms, and the maps in the first row are
those induced by the natural surjections R/ϕt+1(a)R −→ R/ϕt(a)R.

In the archetypal example, R is a regular ring containing a field of positive
characteristic, and ϕ is the Frobenius endomorphism. In this case, ϕ is flat
by Kunz’s theorem [Ku, Theorem 2.1]. The functor Φ is the Peskine-Szpiro
functor of [PS], and the commutative diagram in Remark 2.6 (2) is precisely
that obtained by Lyubeznik in [Ly2, Lemma 2.1]. The following is a mild
generalization of [Ly2, Lemma 2.2].

Lemma 2.7. Let (R,m) be a regular local ring with a flat local endomor-
phism ϕ, and let a be an ideal such that ϕ(a) ⊆ a. Then ϕ induces an endo-
morphism ϕ of R/a, and hence an action ϕ∗ : Hi

m(R/a) −→ Hi
m(R/a). The

composition

Rϕ ⊗R Hi
m(R/a)

∼=−−−−→ Hi
m(R/ϕ(a)R) π−−−−→ Hi

m(R/a)

is the map with r′⊗η 7−→ r′ ·ϕ∗(η), where π is the map induced by the natural
surjection R/ϕ(a)R −→ R/a.

Proof. Since ϕ(m)R is m-primary, if x is a system of parameters for R,
then so is its image ϕ(x). The displayed isomorphism is a consequence of the
flatness of ϕ as we saw in Remark 2.6. To analyze this isomorphism, let η̃ be
a lift of η ∈ Hi

m(R/a) to the module Či
x(R/a) of the Čech complex Č•

x(R/a).
Then

ϕ(η̃) ∈ Či
ϕ(x)(R/ϕ(a)R)

and the image of r′ ⊗ η under the isomorphism is the image of r′ · ϕ(η̃) in
Hi

m(R/ϕ(a)R). Lastly, π maps this to r′ · ϕ∗(η) ∈ Hi
m(R/a). �

We are now ready to prove the main result:

Theorem 2.8. Let R be a regular ring and a an ideal of R. Suppose R
has a flat endomorphism ϕ such that {ϕt(a)R}t>0 is a decreasing chain of
ideals cofinal with {at}t>0, and the induced endomorphism ϕ : R/a −→ R/a
is pure. Then, for all i > 0 and t > 0, the natural map

Exti
R(R/ϕt(a)R,R) −→ Exti

R(R/ϕt+1(a)R,R)

is injective.
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Proof. It suffices to verify the injectivity after localizing at maximal ideals,
so we assume that (R,m) is a regular local ring. Let d = dim R, and let E be
the injective hull of R/m as an R-module. Using (−)∨ = HomR(−, E), local
duality gives an isomorphism

Exti
R(R/ϕt(a)R,R)∨ ∼= Hd−i

m (R/ϕt(a)R) ,

and it suffices to show that the map

(2.8.1) Hd−i
m (R/ϕt+1(a)R) −→ Hd−i

m (R/ϕt(a)R)

induced by the natural surjection

R/ϕt+1(a)R −→ R/ϕt(a)R

is surjective for each t > 0. In view of the isomorphisms

Rϕ ⊗R Hd−i
m (R/ϕt(a)R) ∼= Hd−i

m (R/ϕt+1(a)R)

and the right exactness of tensor, it suffices to verify the surjectivity of (2.8.1)
in the case t = 0. By Lemma 2.7, this reduces to checking that the ϕ-action

ϕ∗ : Hd−i
m (R/a) −→ Hd−i

m (R/a)

is surjective up to taking the R-span. This follows from Lemma 2.5. �

Theorem 1.3 follows immediately from Theorem 2.8 by taking ϕ to be
the Frobenius endomorphism. To recover the result for square-free monomial
ideals [Ly1, Theorem 1 (i)], take ϕ as in Example 2.2.

3. Examples

We first construct an example of a module M over a regular local ring
(R,m) such that Hi

m(M) = 0 but Exti
R(R/a,M) is nonzero for every m-

primary ideal a of R. It then follows that Hi
m(M) cannot be realized as a

union of appropriate Ext-modules. We use the following lemma:

Lemma 3.1. Let (R,m) be a regular local ring of dimension d, and let a
be an m-primary ideal. Then, for each R-module M , there is an isomorphism

Exti
R(R/a,M) ∼= TorR

d−i(Extd
R(R/a, R),M) for all 0 6 i 6 d .

Proof. Let P• be a minimal free resolution of R/a. The complex
HomR(P•, R) has homology Ext•R(R/a, R). Since a is an m-primary ideal
of a regular ring R, we have deptha R = d, and so Extj

R(R/a, R) is nonzero
only for j = d. It follows that, with a change of index, HomR(P•, R) is an
acyclic complex of free modules resolving the module Extd

R(R/a, R). Hence

Exti
R(R/a,M) = Hi(Hom(P•,M)) ∼= Hi(Hom(P•, R)⊗R M)

∼= TorR
d−i(Extd

R(R/a, R),M) . �
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Example 3.2. Let (R,m) be a regular local ring of dimension d > 0, and
x a nonzero element of m. Then R/(x) has dimension d−1, so Hd

m(R/(x)) = 0.
However, if a is an m-primary ideal, then Lemma 3.1 implies that

Extd
R(R/a, R/(x)) ∼= Extd

R(R/a, R)⊗R R/(x) ,

which is nonzero. In particular, if {at}t>0 is a decreasing family of ideals
cofinal with {mt}t>0, then the modules Extd

R(R/at, R/(x)) are nonzero for
each t, and so the maps Extd

R(R/at, R/(x)) −→ Hd
m(R/(x)) are not injective.

Example 3.4 below is due to Eisenbud: given positive integers a 6 b − 2,
there exists a polynomial ring R and a finitely generated graded R-module
M , such that the natural map Exti

R(R/a,M) −→ Hi
m(M) is not injective for

all a < i < b and all m-primary ideals a. This is based on a construction of
Evans and Griffith [EG, Theorem A].

Theorem 3.3 (Evans-Griffith). Let K be an infinite field and take a se-
quence of positive integers, n0 < n1 < · · · < ns. Then there exists a poly-
nomial ring R over K, with a homogeneous prime ideal p, such that the local
cohomology module Hi

m(R/p) is nonzero if and only if i ∈ {n0, n1, . . . , ns}.
Moreover, if n0 > 2, then R/p may be chosen to be a normal domain. �

Example 3.4 (Eisenbud). Let a 6 b − 2 be positive integers. By Theo-
rem 3.3, there exists a polynomial ring R with a homogeneous prime p, such
that depthR/p = a, dim R/p = b and Hj

m(R/p) = 0 for all a < j < b. Let a
be an m-primary ideal. Then Exta

R(R/a, R/p) is nonzero so, by Lemma 3.1,

TorR
d−a(Extd

R(R/a, R), R/p) 6= 0 where d = dim R .

By the rigidity of Tor over regular local rings, [Li], it follows that

TorR
j (Extd

R(R/a, R), R/p) 6= 0 for all 0 6 j 6 d− a .

By another application of Lemma 3.1, the module Exti
R(R/a, R/p) is nonzero

if a 6 i 6 d. Now if {at}t>0 is any decreasing family of ideals cofinal with
{mt}t>0, it follows that the maps

Exti
R(R/at, R/p) −→ Hi

m(R/p)

are not injective for each a < i < b and each t > 0.

Example 3.5. Let K be a field and consider the K-linear ring homomor-
phism

α : R = K[w, x, y, z] −→ K[s4, s3t, st3, t4]

where α sends w, x, y, z to the elements s4, s3t, st3, t4 respectively. Let a be
the kernel of α. Using vanishing theorems such as [HL, Theorem 2.9], it may
be verified that Hi

a(R) = 0 for i > 3.
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If K has characteristic p > 0, Hartshorne [Ha] showed that a is a set-
theoretic complete intersection, i.e., that there exist elements f, g in R such
that a = rad(f, g). In this case, the ideals at = (f t, gt) form a descending
chain cofinal with {at} for which the maps Exti

R(R/at, R) −→ Hi
a(R) are

injective for all i > 0 and t > 0; see Remark 1.5.
Next, suppose that K has characteristic 0. If b is an ideal with rad b = a

such that Exti
R(R/b, R) −→ Hi

a(R) is injective for all i > 0, then

Ext3R(R/b, R) = 0 = Ext4R(R/b, R)

and so R/b is Cohen-Macaulay. This leads to the following question:

Question 3.6. Let K be a field of characteristic 0 and, as in Example 3.5,
let a ⊂ R = K[w, x, y, z] be an ideal with R/a ∼= K[s4, s3t, st3, t4]. Is the ideal
a set-theoretically Cohen-Macaulay, i.e., does there exist an ideal b ⊂ R with
rad b = a, such that the ring R/b is Cohen-Macaulay?

While the requirement of F -purity in Theorem 1.3 is certainly a strong
hypothesis, it appears to be a crucial ingredient. In the following example, we
have regular rings Rp = R/pR of prime characteristic p and ideals ap = aRp

such that the maps

Ext4Rp
(Rp/a[pt]

p , Rp) −→ H4
ap

(Rp)

are injective if and only if Rp/ap is F -pure; the set of primes for which this is
the case is infinite, as is its complement.

Example 3.7. Let E ⊂ P2
Q be an elliptic curve, and consider the Segre

embedding of E × P1
Q in P5

Q. Clearing denominators in a set of generators for
the defining ideal of the homogeneous coordinate ring, we obtain an ideal a
of R = Z[u, v, w, x, y, z] such that R/a⊗Z Q is the coordinate ring of E × P1

Q.
For prime integers p, let Rp = R/pR and ap = aRp. For all but finitely many
primes p, the reduction mod p of E is a smooth elliptic curve Ep and Rp/ap

is a homogeneous coordinate ring for Ep × P1
Z/p. We restrict our attention

to such primes. Since depth Rp/ap = 2, the Auslander-Buchsbaum formula
implies that pdRp

Rp/ap = 4. Using the flatness of Frobenius, we see that

pdRp
Rp/a[pt]

p = 4 ,

and hence that

Ext4Rp
(Rp/a[pt]

p , Rp) 6= 0 for all t > 0 .

On the other hand, H4
ap

(Rp) is zero if Ep is supersingular and nonzero if
Ep is ordinary; see [HS, Example 3, page 75] or [Ly2, page 219]. By well-
know results on elliptic curves, there are infinitely primes p for which Ep
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is supersingular, and infinitely many for which it is ordinary. Consider the
natural map

(3.7.1) Exti
Rp

(Rp/a[pt]
p , Rp) −→ Hi

ap
(Rp) .

Ordinary primes. If Ep is ordinary, then its coordinate ring is F -pure, and it
follows that Rp/ap is F -pure as well. In this case, Theorem 1.3 implies that
the map (3.7.1) is injective for all i > 0 and t > 0.
Supersingular primes. If p is a prime such that Ep is supersingular, then
H4

ap
(Rp) = 0, so the map (3.7.1) is not injective for i = 4. We do not know

whether there exists an ap-primary ideal b for which the maps

Exti
Rp

(Rp/b, Rp) −→ Hi
ap

(Rp)

are injective for all i > 0. Since Hi
ap

(Rp) = 0 for i > 4 in the supersingular
case, the existence of such an ideal would imply that ap is set-theoretically
Cohen-Macaulay; see also [SW, § 3].

4. A vanishing criterion

The observations from § 2 yield the following vanishing theorem, which links
Lyubeznik’s positive characteristic result [Ly2, Theorem 1.1] to a theorem for
monomial ideals recorded below as Corollary 4.2.

Theorem 4.1. Let (R,m) be a regular local ring, a an ideal, and ϕ a
flat local endomorphism such that {ϕt(a)R}t>0 is a decreasing chain of ideals
cofinal with the chain {at}t>0. Then Hi

a(R) = 0 if and only if some iteration
of the induced action

ϕ∗ : Hdim R−i
m (R/a) −→ Hdim R−i

m (R/a)

is zero.

Proof. Let d = dim R. The direct limit

Hi
a(R) = lim−→

t

Exti
R(R/ϕt(a)R,R)

vanishes if and only if for each t ∈ N, there exists k ∈ N such that the map

(4.1.1) Exti
R(R/ϕt(a)R,R) −→ Exti

R(R/ϕt+k(a)R,R)

induced by the surjection R/ϕt+k(a)R −→ R/ϕt(a)R is zero. By local duality,
the map (4.1.1) is zero if and only if

Hd−i
m (R/ϕt+k(a)R) −→ Hd−i

m (R/ϕt(a)R)

is the zero map. By Remark 2.6 (3) and the flatness of Rϕ ⊗R −, this is
equivalent to the map

Hd−i
m (R/ϕk(a)R) −→ Hd−i

m (R/a)
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being zero. By Lemma 2.7, this last condition is equivalent to the k-th iterate
of the action ϕ∗ : Hd−i

m (R/a) −→ Hd−i
m (R/a) being zero. �

Using Theorem 4.1 we next recover a vanishing theorem for monomial
ideals, [Ly1, Theorem 1 (iii)]. In [Mi, Corollary 6.7] Miller proves a stronger
statement connecting Hi

a(S) and Hdim S−i
m (S/a) via Alexander duality.

Corollary 4.2. Let S be a polynomial ring over a field, and let a be
an ideal generated by square-free monomials. Then Hi

a(S) = 0 if and only if
Hdim S−i

m (S/a) = 0.

Proof. Let S = K[x1, . . . , xd], and let ϕ be the K-linear endomorphism with
ϕ(xi) = x2

i for 1 6 i 6 d. Then ϕ is flat, and induces a pure endomorphism
of S/a; see Example 2.2.

Each of the modules in question is graded, so the issue of vanishing is
unchanged under localization at the homogeneous maximal ideal of S. We
can therefore work over the regular local ring (R,m), where we need to show
that Hi

a(R) = 0 if and only if Hd−i
m (R/aR) = 0. The endomorphism ϕ

localizes to give a flat endomorphism of R. Moreover, since purity localizes,
ϕ induces a pure endomorphism ϕ of R/aR. By Theorem 4.1, Hi

a(R) = 0 if
and only if some iterate of the action

ϕ∗ : Hd−i
m (R/aR) −→ Hd−i

m (R/aR)

is zero. But ϕ∗ is injective since ϕ is pure, so an iterate of ϕ∗ is zero precisely
if Hd−i

m (R/aR) = 0. �
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