

Check for updates

On a conjecture of Lynch

Anurag K. Singh^a and Uli Walther^b

^aDepartment of Mathematics, University of Utah, Salt Lake City, Utah, USA; ^bDepartment of Mathematics, Purdue University, West Lafayette, Indiana, USA

ABSTRACT

We comment on a conjecture of Lynch on annihilators of local cohomology.

ARTICLE HISTORY Received 11 November 2019 Communicated by Lawrence Ein

KEYWORDS Annihilator; local cohomology

2010 MATHEMATICS SUBJECT CLASSIFICATION 13d45

The following conjecture has recently attracted attention, e.g. [2-5].

Conjecture 1 [6, conjecture 1.2]. Let R be a local ring, and I an ideal of R. If the cohomological dimension of I is a positive integer c, then

$$\dim R/\operatorname{ann}_R H_I^c(R) = \dim R/H_I^0(R).$$

The conjecture is known to be false: the first counterexamples were constructed in [1]; these are nonequidimensional, with dim $R \ge 5$. We present here a modification—with a short, elementary proof—that serves as a counterexample with dim R = 3. This is a counterexample, as well, to [6, proposition 4.3] and to [6, theorem 4.4]; the error there is in the chain of inequalities in the proof of Proposition 4.3, [6, p. 550], in the reduction from a complete local ring to a complete local unmixed ring: the cohomological dimension may change under the reduction step.

Example 2. Let k be a field, and set $R := k[x, y, z_1, z_2]/(xyz_1, xyz_2)$. Consider the local cohomology module $H^2_{(x,y)}(R)$. Using a Čech complex on x and y, one sees that

$$H^2_{(x,y)}(R) = R_{xy}/\text{image}(R_x + R_y).$$

The images of z_1 and z_2 are zero in R_{xy} , so the local cohomology module above agrees with $S_{xy}/\text{image}(S_x + S_y)$, where $S := R/(z_1, z_2)$ is isomorphic to the polynomial ring k[x, y]. Hence, $H^2_{(x,y)}(R)$ is a nonzero *R*-module, with annihilator (z_1, z_2) . On the other hand, since the ideal (x, y) contains nonzerodivisors, $H^0_{(x,y)}(R) = 0$. Hence, one has

dim $R/\operatorname{ann}_R H^2_{(x,y)}(R) = 2$ whereas dim $R/H^0_{(x,y)}(R) = 3$.

CONTACT Uli Walther walther@math.purdue.edu Department of Mathematics, Purdue University, 150 N University St, West Lafayette, IN, USA.

Funding

A.K.S.was supported by NSF grant DMS 1801285, and U.W. by the Simons Foundation Collaboration Grant for Mathematicians #580839.

References

- Bahmanpour, K. (2017). A note on Lynch's conjecture. Commun. Algebra 45(6):2738–2745. DOI: 10.1080/ 00927872.2016.1233237.
- [2] Boix, A. F., Eghbali, M. (2018). Annihilators of local cohomology modules and simplicity of rings of differential operators. *Beitr. Algebra Geom.* 59(4):665–684. DOI: 10.1007/s13366-018-0396-4.
- [3] Boix, A. F., Eghbali, M. (2018). Correction to: Annihilators of local cohomology modules and simplicity of rings of differential operators. *Beitr. Algebra Geom.* 59(4):685–688. DOI: 10.1007/s13366-018-0400-z.
- [4] Datta, R., Switala, N., Zhang, W. Annihilators of D-modules in mixed characteristic. arXiv:1907.09948.
- [5] Hochster, M., Jeffries, J. Faithfulness of top local cohomology modules in domains. arXiv:1909.08770.
- [6] Lynch, L. R. (2012). Annihilators of top local cohomology modules. Commun. Algebra 40(2):542–551. DOI: 10.1080/00927872.2010.533223.