A CONNECTEDNESS RESULT IN POSITIVE CHARACTERISTIC

ANURAG K. SINGH AND ULI WALther

Dedicated to Professor Paul Roberts on the occasion of his sixtieth birthday

Abstract. Let \((R, \mathfrak{m})\) be a complete local ring of dimension at least two, which contains a separably closed coefficient field of positive characteristic. Using a vanishing theorem of Peskine-Szpiro, Lyubeznik proved that the local cohomology module \(H^1_{\mathfrak{m}}(R)\) is Frobenius-torsion if and only if the punctured spectrum of \(R\) is connected in the Zariski topology. We give a simple proof of this theorem and, more generally, a formula for the number of connected components in terms of the Frobenius action on \(H^1_{\mathfrak{m}}(R)\).

1. Introduction

All rings considered in this note are commutative and Noetherian. We give a simple proof of the following result due to Lyubeznik:

Theorem 1.1 ([LY2, Corollary 4.6]). Let \((R, \mathfrak{m})\) be a complete local ring of dimension at least two, with a separably closed coefficient field of positive characteristic. Then the \(e\)-th iteration of the Frobenius map

\[F: H^1_{\mathfrak{m}}(R) \to H^1_{\mathfrak{m}}(R) \]

is zero for \(e \gg 0\) if and only if \(\text{Spec } R \setminus \{\mathfrak{m}\}\) is connected in the Zariski topology.

We also obtain, by similar methods, the following theorem:

Theorem 1.2. Let \((R, \mathfrak{m})\) be a complete local ring of positive dimension, with an algebraically closed coefficient field of positive characteristic. Then the number of connected components of \(\text{Spec } R \setminus \{\mathfrak{m}\}\) is

\[1 + \dim_K \bigcap_{e \in \mathbb{N}} F^e(H^1_{\mathfrak{m}}(R)). \]

In Section 5 we describe how this provides an algorithm to determine the number of geometrically connected components of projective algebraic sets defined over a finite field: computer algebra algorithms for primary decomposition can be used to determine the number of connected components over finite extensions of the fields \(\mathbb{F}_p\) or \(\mathbb{Q}\), but not over the algebraic closures of these fields. In the case of characteristic zero, de Rham cohomology allows for the computation of the number...
of geometrically connected components via D-module methods, \cite{Wal}, and we show that the Frobenius provides analogous methods in the case of positive characteristic.

Theorem 1.1 is obtained in \cite{Ly2} as a corollary of the following two theorems of Lyubeznik and Peskine-Szpiro:

\textbf{Theorem 1.3 (\cite{Ly2} Theorem 1.1)}. Let (A, \mathfrak{M}) be a regular local ring containing a field of positive characteristic, and let \mathfrak{A} be an ideal of A. Then $H^i_{\mathfrak{M}}(A) = 0$ if and only if there exists an integer $e \geq 1$ such that the e-th Frobenius iteration $F^e : H^{\dim A - i}(A/\mathfrak{A}) \to H^{\dim A - i}(A/\mathfrak{A})$ is the zero map.

\textbf{Theorem 1.4 (\cite{PS}, Chapter III, Theorem 5.5)}. Let (A, \mathfrak{M}) be a complete regular local ring with a separably closed coefficient field of positive characteristic, and let \mathfrak{A} be an ideal of A. Then $H^i_{\mathfrak{M}}(A) = 0$ for $i \geq \dim A - 1$ if and only if $\dim(A/\mathfrak{A}) \geq 2$ and $\text{Spec}(A/\mathfrak{A}) \setminus \{\mathfrak{M}\}$ is connected.

Our proof of Theorem 1.1 is “simple” in the sense that it does not rely on vanishing theorems such as those of \cite{PS}—indeed, the only ingredient, aside from elementary considerations, is the local duality theorem. Results analogous to Theorem 1.4 were proved by Hartshorne in the projective case \cite[Theorem 7.5]{HaR}, and by Ogus in equicharacteristic zero using de Rham cohomology \cite[Corollary 2.1]{Og}. Combining these results, one has:

\textbf{Theorem 1.5}. Let (A, \mathfrak{M}) be a regular local ring containing a field, and let \mathfrak{A} be an ideal of A. Then $H^i_{\mathfrak{M}}(A) = 0$ for $i \geq \dim A - 1$ if and only if

1. $\dim(A/\mathfrak{A}) \geq 2$, and
2. $\text{Spec}(A/\mathfrak{A}) \setminus \{\mathfrak{M}\}$ is formally geometrically connected (see Definition 2.1).

Huneke and Lyubeznik \cite[Theorem 2.9]{HL} gave a characteristic free proof of this using a generalization of a result of Faltings, \cite[Satz 1]{Fa}. Some other applications of local cohomology theory which yield strong results on the connectedness properties of algebraic varieties may be found in the papers \cite{BR} and \cite{HH}, where the authors obtain generalizations of Faltings’ connectedness theorem.

For the convenience of the reader, we include an Appendix with some facts about Frobenius actions; see Section 6.

\section*{2. Preliminary remarks}

\textit{Notation.} When R is the homomorphic image of a ring A, we use upper-case letters $\mathfrak{P}, \Omega, \mathfrak{M}, \mathfrak{A}, \mathfrak{B}$ for ideals of A, and corresponding lower-case letters p, q, m, a, b for their images in R.

\textbf{Definition 2.1}. Let (R, m) be a local ring. A field $K \subseteq R$ is a coefficient field for R if the composition $K \hookrightarrow R \twoheadrightarrow R/m$ is an isomorphism. Every complete local ring containing a field has a coefficient field.

We recall some notions from \cite[Chapitre VIII]{Ra}. Let (R, m, K) be a local ring and let $f(T) \in K[T]$ denote the image of a polynomial $f(T) \in R[T]$. Then R is Henselian if for every monic polynomial $f(T) \in R[T]$, every factorization of $f(T)$ as a product of relatively prime monic polynomials in $K[T]$ lifts to a factorization of $f(T)$ as a product of monic polynomials in $R[T]$. Hensel’s Lemma is precisely the statement that every complete local ring is Henselian. The \textit{Henselization} of a local
ring R is a local ring R^{sh}, with the property that every local homomorphism from R to a Henselian local ring factors uniquely through R^{sh}. The ring R^{sh} is obtained by taking the direct limit of all local étale extensions S of R for which $(R, m) \rightarrow (S, n)$ induces an isomorphism of residue fields $R/m \cong S/n$.

A local ring (R, m, K) is said to be strictly Henselian if it is Henselian and its residue field K is separably closed. It is easily seen that R is strictly Henselian if and only if every monic polynomial $f(T) \in R[T]$ for which $\overline{f}(T) \in K[T]$ is separable splits into linear factors in $R[T]$. Every local ring has a strict Henselization R^{sh}, such that every local homomorphism from R to a strictly Henselian ring factors through R^{sh}. The strict Henselization of a field K is its separable closure K^{sep}.

In general, the strict Henselization of a local ring (R, m, K) is obtained by fixing an embedding $\iota : K \rightarrow K^{\text{sep}}$, and taking the direct limit of local étale extensions (S, n, L) of (R, m, K) with $L \rightarrow K^{\text{sep}}$, for which the induced map $K \rightarrow L \rightarrow K^{\text{sep}}$ agrees with $\iota : K \rightarrow K^{\text{sep}}$.

The punctured spectrum of a local ring (R, m) is the set Spec $R \setminus \{m\}$, with the topology induced by the Zariski topology on Spec R. We say that the punctured spectrum of R is formally geometrically connected if the punctured spectrum of R^{sh}, the completion of the strict Henselization of the completion of R, is connected. If R is an \mathbb{N}-graded ring which is finitely generated over a field $R_0 = K$, then $	ext{Proj } R$ is said to be geometrically connected if $	ext{Proj} (R \otimes_K K^{\text{sep}})$ is connected.

Definition 2.2. Let a be an ideal of a ring R. A ring homomorphism $\varphi : R \rightarrow S$ induces a map of local cohomology modules $H^i_a(R) \xrightarrow{\varphi_*} H^i_a(S)$. In particular, if R contains a field of characteristic $p > 0$, then the Frobenius homomorphism $F : R \rightarrow R$ induces an additive map

$$H^i_a(R) \xrightarrow{F} H^i_{a^p}(R) = H^i_a(R),$$

called the Frobenius action on $H^i_a(R)$. An element $\eta \in H^i_a(R)$ is F-torsion if $F^e(\eta) = 0$ for some $e \in \mathbb{N}$. The module $H^i_a(R)$ is F-torsion if each element is F-torsion. The image of F^e need not be an R-module, but it is a K-vector space when K is perfect. In this case the F-stable part of $H^i_a(R)$ is the vector space

$$H^i_a(R)_{\text{st}} = \bigcap_{e \in \mathbb{N}} F^e(H^i_a(R)).$$

Some results about F-torsion modules and F-stable subspaces are summarized in Section [Ly1]. For a very general theory of F-modules, we refer the reader to [Ly1].

Remark 2.3. Consider a local ring (R, m) of positive dimension. The punctured spectrum of R is disconnected if and only if the minimal primes of R can be partitioned into two sets p_1, \ldots, p_m and q_1, \ldots, q_n such that $\text{rad}(p_i + q_j) = m$ for all pairs p_i, q_j. Consider the graph Γ whose vertices are the minimal primes of R, and there is an edge between minimal primes p and p' if and only if $\text{rad}(p + p') \neq m$.

It follows that the punctured spectrum of R is connected if and only if the graph Γ is connected. If the graph Γ is connected, take a spanning tree, i.e., a connected acyclic subgraph, containing all the vertices of Γ. This spanning tree must contain a vertex p_i with only one edge, so $\Gamma \setminus \{p_i\}$ is connected as well.

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be incomparable prime ideals of a local domain A. Then their images $\bar{p}_1, \ldots, \bar{p}_n$ are precisely the minimal primes of the ring $R = A/(\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n)$. From the above discussion, we conclude that if the punctured spectrum of R is
connected, then there exists i such that the punctured spectrum of the ring
$$A/(\mathfrak{P}_1 \cap \cdots \cap \mathfrak{P}_i \cap \cdots \cap \mathfrak{P}_n)$$
is connected as well.

Theorems 1.1 and 1.2 assert that connectedness issues for $\text{Spec } R \setminus \{m\}$ are
determined by the Frobenius action on $H^1_\mathfrak{m}(R)$. We next record an observation
about the length of $H^1_\mathfrak{m}(R)$.

Proposition 2.4. Let (R, \mathfrak{m}) be a local ring which is a homomorphic image of
a Gorenstein domain. Then $H^1_\mathfrak{m}(R)$ has finite length if and only if $\text{ann}_R \mathfrak{p} = 0$
for every prime ideal \mathfrak{p} of R with $\dim R/\mathfrak{p} = 1$.

Proof. If $\dim R = 0$, then $H^1_\mathfrak{m}(R) = 0$, and R has no primes with $\dim R/\mathfrak{p} = 1$. If $\dim R = 1$, then $H^1_\mathfrak{m}(R)$ has infinite length and $\dim R/\mathfrak{p} = 1$ for some minimal prime \mathfrak{p} of R. For the rest of the proof we hence assume that $\dim R \geq 2$.

Let $R = A/\Omega$ where A is a Gorenstein domain. Localizing A at the inverse
image of \mathfrak{m}, we may assume that (A, \mathfrak{m}) is a local ring. Using local duality over A,
the module $H^1_\mathfrak{m}(R) = H^1_\mathfrak{m}(A/\Omega)$ has finite length if and only if $\text{Ext}^\dim A^{-1}(A/\Omega, A)$
has finite length as an A-module. Since $\text{Ext}^\dim A^{-1}(A/\Omega, A)$ is finitely generated,
this is equivalent to the vanishing of
$$\text{Ext}^\dim A^{-1}((A/\Omega, A)_{\mathfrak{p}} = \text{Ext}^\dim A^{-1}(A_{\mathfrak{p}}/\Omega A_{\mathfrak{p}}, A_{\mathfrak{p}})$$
for all $\mathfrak{p} \in \text{Spec } A \setminus \{\mathfrak{m}\}$. Using local duality over the Gorenstein local ring
$(A_{\mathfrak{p}}, \mathfrak{P} A_{\mathfrak{p}})$, this is equivalent to the vanishing of
$$H^\dim A_{\mathfrak{p}} - \dim A + 1 (A_{\mathfrak{p}}/\Omega A_{\mathfrak{p}}) = H^\dim A_{R_{\mathfrak{p}}} - \dim A + 1 (R_{\mathfrak{p}})$$
for all $\mathfrak{p} \in \text{Spec } A \setminus \{\mathfrak{m}\}$. This local cohomology module vanishes for $\mathfrak{p} \notin \mathfrak{V}(\Omega)$. Since $\dim A_{\mathfrak{p}} - \dim A + 1 \leq 0$ for $\mathfrak{p} \in \text{Spec } A \setminus \{\mathfrak{m}\}$, we need only consider primes $\mathfrak{p} \in \mathfrak{V}(\Omega)$ with $\dim A_{\mathfrak{p}} = \dim A - 1$. Since A is a catenary local domain, $\dim A_{\mathfrak{p}}$ equals $\dim A - 1$ precisely when $\dim A/\mathfrak{p} = 1$, equivalently $\dim R/\mathfrak{p} = 1$. Hence $H^1_\mathfrak{m}(R)$ has finite length if and only if $H^0_{\mathfrak{p} R_{\mathfrak{p}}}(R_{\mathfrak{p}}) = H^0_{\mathfrak{p}}(R)$ vanishes for all $\mathfrak{p} \in \text{Spec } R$
with $\dim R/\mathfrak{p} = 1$, i.e., if and only if $\text{ann}_R \mathfrak{p} = 0$ for all \mathfrak{p} with $\dim R/\mathfrak{p} = 1$. \qed

3. **Main results**

Theorem 3.1. Let (R, \mathfrak{m}) be a strictly Henselian local domain containing a field of
positive characteristic. If R is a homomorphic image of a Gorenstein domain and $\dim R \geq 2$, then $H^1_\mathfrak{m}(R)$ is F-torsion.

Proof. Suppose there exists $\eta \in H^1_\mathfrak{m}(R)$ which is not F-torsion. Since R is a domain,
Proposition 2.3 implies that $H^1_\mathfrak{m}(R)$ has finite length. Hence for all integers $e \geq 0$, the element $F^e(\eta)$ belongs to the R-module spanned by $\eta, F(\eta), F^2(\eta), \ldots, F^{e-1}(\eta)$. Amongst all equations of the form

$$(3.1.1) \quad F^{e+k}(\eta) + r_{1}F^{e+k-1}(\eta) + \cdots + r_{e}F^{k}(\eta) = 0$$

with $r_{i} \in R$ for all i, choose one where the number of nonzero coefficients r_{i} that
occur is minimal. We claim that r_{e} must be a unit. Note that $H^1_\mathfrak{m}(R)$ is killed by
$m^{q'}$ for some $q' = pr^e$. If $r_{e} \in \mathfrak{m}$, then applying $F^{e'}$ to equation (3.1.1), we get
$$F^{e'+e+k}(\eta) + r_{1}^{q'}F^{e'+e+k-1}(\eta) + \cdots + r_{e}^{q'}F^{e'+k}(\eta) = 0.$$
But $r \neq 0$, so this is an equation with fewer nonzero coefficients, contradicting the minimality assumption. This shows that $r_1 \in R$ is a unit. Since η is not F-torsion, neither is $F^k(\eta)$, so after replacing η if necessary, we have an equation of the form

$$F^c(\eta) + r_1 F^{c-1}(\eta) + \cdots + r_e \eta = 0$$

where r_e is a unit and $\eta \in H^1_m(R)$ is not F-torsion. Let $\eta = [(y_1/x_1, \ldots, y_d/x_d)]$ where $H^1_m(R)$ is regarded as the cohomology of a Čech complex on a system of parameters x_1, \ldots, x_d for R. Then (3.1.2) implies that there exists $r_{e+1} \in R$ such that each $y_i/x_i \in R_{x_i}$ is a root of the polynomial

$$f(T) = T^{p^e} + r_1 T^{p^{e-1}} + \cdots + r_e T + r_{e+1} \in R[T].$$

Now $f'(T) = r_e$ is a unit, so $\overline{f(T)} \in R/\mathfrak{m}[T]$ is a separable polynomial. Since R is strictly Henselian, the polynomial $f(T)$ splits in $R[T]$, and hence any root of $f(T)$ in the fraction field of R is an element of R. In particular, $y_1/x_1 = \cdots = y_d/x_d$ is an element of R, and so $\eta = 0$.

We next prove the connectedness criterion, Theorem 1.1. By Proposition 6.1, the module $H^1_m(R)$ is F-torsion if and only if there exists e such that $F^e(H^1_m(R)) = 0$. In view of this, the following theorem is equivalent to Theorem 1.1.

Theorem 3.2. Let (R, \mathfrak{m}) be a local ring with $\dim R > 0$, which contains a field of positive characteristic. Then $H^1_m(R)$ is F-torsion if and only if $\dim R \geq 2$ and the punctured spectrum of R is formally geometrically connected.

Proof. Quite generally, for a local ring (R, \mathfrak{m}) we have $H^1_m(\hat{R}) = H^1_m(R)$. Moreover, $S = \hat{R}^{eh}$ is a faithfully flat extension of R, and $H^1_m(R) \otimes_R S \cong H^i_m(S)$ is F-torsion if and only if $H^1_m(S)$ is F-torsion. Hence we may assume that R is a complete local ring with a separably closed coefficient field.

Suppose that $H^1_m(R)$ is F-torsion. The local cohomology module $H^1_m(R)$ is not F-torsion by Proposition 6.1, so $\dim R \geq 2$. Let a and b be ideals of R such that $a + b$ is \mathfrak{m}-primary and $a \cap b = 0$. Let

$$x_1 = y_1 + z_1, \ldots, x_d = y_d + z_d$$

be a system of parameters for R where $y_i \in a$ and $z_i \in b$. Since $ab \subseteq a \cap b = 0$, we have $y_i z_j = 0$ for all i, j, and hence

$$y_i(y_j + z_j) = y_j(y_i + z_i).$$

These relations give an element of $H^1_m(R)$ regarded as the cohomology of a Čech complex on x_1, \ldots, x_d, namely

$$\eta = \left[\begin{array}{c} y_1 \\ x_1 \\ \vdots \\ y_d \\ x_d \end{array} \right] \in H^1_m(R).$$

The hypotheses imply that $F^c(\eta) = 0$ for some c, so there exists $q = p^e$ and $r \in \hat{R}$ such that $(y_i/x_i)^q = r$ in R_{x_i}, for all $1 \leq i \leq d$. Hence there exists $t \in \mathbb{N}$ such that $x_i^t y_i^q = r x_i^{q+t}$, i.e.,

$$(y_i + z_i)^t y_i^q = r(y_i + z_i)^{q+t}.$$
and so a is \(m \)-primary. Similarly if \(1 - r \) is a unit, then \(b \) is \(m \)-primary. This proves that the punctured spectrum of \(R \) is connected.

For the converse, assume that \(\dim R \geq 2 \) and that the punctured spectrum of \(R \) is connected. Let \(n \) denote the nilradical of \(R \). Note that \(\Spec R \) is homeomorphic to \(\Spec R/n \). Moreover, \(n \) supports a Frobenius action and is \(F \)-torsion. The long exact sequence of local cohomology relating \(H^i_m(R) \) and \(H^i_m(R/n) \) implies that if \(H^i_m(R/n) \) is \(F \)-torsion, then so is \(H^i_m(R) \), and hence there is no loss of generality in assuming that \(R \) is reduced. Let \(R = A/(\mathfrak{P}_1 \cap \cdots \cap \mathfrak{P}_n) \) where \(\mathfrak{P}_1, \ldots, \mathfrak{P}_n \) are incomparable prime ideals of a power series ring \(A = K[[x_1, \ldots, x_m]] \) over a separably closed field \(K \). We use induction on \(n \) to prove that \(H^1_m(R) \) is \(F \)-torsion; the case \(n = 1 \) follows from Theorem 3.1. So we assume \(n > 1 \) below.

If \(\dim R/p_i = 1 \) for some \(i \), then \(\Spec R \setminus \{m\} \) is the disjoint union of \(V(p_i) \setminus \{m\} \) and \(V(p_1 \cap \cdots \cap p_i \cap \cdots \cap p_n) \setminus \{m\} \), contradicting the connectedness assumption. Hence \(\dim R/p_i \geq 2 \) for all \(i \). By Remark 2.4 after relabeling the minimal primes if necessary, we may assume that the punctured spectrum of \(A/\Omega \) is connected where \(\Omega = \mathfrak{P}_2 \cap \cdots \cap \mathfrak{P}_n \). The short exact sequence

\[
0 \to A/(\mathfrak{P}_1 \cap \Omega) \to A/\mathfrak{P}_1 \oplus A/\Omega \to A/(\mathfrak{P}_1 + \Omega) \to 0
\]

induces a long exact sequence of local cohomology modules containing the piece

\[
(3.2.1) \quad H^0_m(A/(\mathfrak{P}_1 + \Omega)) \to H^1_m(A/(\mathfrak{P}_1 \cap \Omega)) \to H^1_m(A/\mathfrak{P}_1) \oplus H^1_m(A/\Omega).
\]

Since \(\text{rad}(\mathfrak{P}_1 + \mathfrak{P}_i) \neq \mathfrak{M} \) for some \(i > 1 \), it follows that \(\dim A/(\mathfrak{P}_1 + \Omega) \geq 1 \). Proposition 6.2 now implies that \(H^0_m(A/(\mathfrak{P}_1 + \Omega)) \) is \(F \)-torsion. By the inductive hypothesis, \(H^1_m(A/\mathfrak{P}_1) \) and \(H^1_m(A/\Omega) \) are \(F \)-torsion as well. The exact sequence (3.2.1) implies that \(H^1_m(A/(\mathfrak{P}_1 \cap \Omega)) = H^1_m(R) \) is \(F \)-torsion.

The following lemma will be used in the proof of Theorem 1.2.

Lemma 3.3. Let \((R, m)\) be a complete local domain with an algebraically closed coefficient field of positive characteristic. Then \(H^1_m(R)_{\text{st}} \), the \(F \)-stable part of the module \(H^1_m(R) \), is zero.

Proof. If \(\dim R = 0 \), then \(H^1_m(R) = 0 \), and if \(\dim R \geq 2 \), then the assertion follows from Theorem 3.1. The remaining case is \(\dim R = 1 \). Theorem 6.3 implies that \(H^1_m(R)_{\text{st}} \) has a vector space basis \(\eta_1, \ldots, \eta_r \) such that \(F(\eta_i) = \eta_i \).

Let \(\eta \in H^1_m(R)_{\text{st}} \) be an element with \(F(\eta) = \eta \). Considering \(H^1_m(R) \) as the cohomology of a suitable Čech complex, let \(\eta \) be the class of \(y/x \) in \(R_x/R = H^1_m(R) \), where \(y \in R \) and \(x \in m \). Since \(F(\eta) = \eta \), there exists \(r \in R \) such that

\[
\left(\frac{y}{x} \right)^p - \frac{y}{x} - r = 0,
\]

and so \(y/x \in R_x \) is a root of the polynomial \(f(T) = T^p - T - r \in R[T] \). The polynomial \(f(T) \in K[T] \) is separable and \(R \) is strictly Henselian, so \(f(T) \) splits in \(R[T] \). Since \(y/x \) is a root of \(f(T) \) in the fraction field of \(R \), it must then be an element of \(R \), and hence \(\eta = 0 \). □

Proof of Theorem 1.2. We may assume \(R \) to be reduced by Proposition 6.5. First consider the case where the punctured spectrum of \(R \) is connected. If \(\dim R \geq 2 \), then \(H^1_m(R) \) is \(F \)-torsion by Theorem 3.2, so \(H^1_m(R)_{\text{st}} = 0 \). If \(\dim R = 1 \), then \(R \) is a domain, and Lemma 3.3 implies that \(H^1_m(R)_{\text{st}} = 0 \).

We continue by induction on the number of connected components of the punctured spectrum of \(R \). If the punctured spectrum of \(R \) is disconnected, then \(R = \ldots
$A/(\mathfrak{A} \cap \mathfrak{B})$, where (A, \mathfrak{M}) is a power series ring over the field K, and \mathfrak{A} and \mathfrak{B} are radical ideals of A which are not \mathfrak{M}-primary, but $\mathfrak{A} + \mathfrak{B}$ is \mathfrak{M}-primary. There is a short exact sequence

$$0 \to A/(\mathfrak{A} \cap \mathfrak{B}) \to A/\mathfrak{A} \oplus A/\mathfrak{B} \to A/(\mathfrak{A} + \mathfrak{B}) \to 0.$$

Since $H^0_{\mathfrak{M}}(A/\mathfrak{A}) = H^0_{\mathfrak{M}}(A/\mathfrak{B}) = H^1_{\mathfrak{M}}(A/(\mathfrak{A} + \mathfrak{B})) = 0$, the resulting exact sequence of local cohomology gives us

$$0 \to H^0_{\mathfrak{M}}(A/(\mathfrak{A} + \mathfrak{B})) \to H^1_{\mathfrak{M}}(A/(\mathfrak{A} \cap \mathfrak{B})) \to H^1_{\mathfrak{M}}(A/\mathfrak{A}) \oplus H^1_{\mathfrak{M}}(A/\mathfrak{B}) \to 0.$$

By Theorem 6.4 we have a K-vector space isomorphism $H^1_m(R)_{\text{st}} = H^1_{\mathfrak{M}}(A/(\mathfrak{A} \cap \mathfrak{B}))_{\text{st}} \cong H^0_{\mathfrak{M}}(A/(\mathfrak{A} + \mathfrak{B}))_{\text{st}} \oplus H^1_{\mathfrak{M}}(A/\mathfrak{A})_{\text{st}} \oplus H^1_{\mathfrak{M}}(A/\mathfrak{B})_{\text{st}}$. Since $H^1_{\mathfrak{M}}(A/(\mathfrak{A} + \mathfrak{B}))_{\text{st}} = K$ by Proposition 6.2 the inductive hypothesis completes the proof.

We next record the graded versions of the results proved in this section:

Theorem 3.4. Let R be an \mathbb{N}-graded ring of positive dimension, which is finitely generated over a field $R_0 = K$ of characteristic $p > 0$.

1. If R is a domain with $\dim R \geq 2$, and K is separably closed, then $H^1_m(R)$ is F-torsion.
2. The module $H^1_m(R)$ is F-torsion if and only if $\dim R \geq 2$ and $\text{Proj} R$ is geometrically connected.
3. Let K be a perfect field, and let \overline{K} denote its algebraic closure. Then the number of connected components of $\text{Proj}(R \otimes_K \overline{K})$ is

$$1 + \dim_K H^1_m(R)_{\text{st}} = 1 + \dim_K ([H^1_m(R)]_0)_{\text{st}}.$$

Proof. (1) Note that $H^1_m(R)$ is a \mathbb{Z}-graded R-module, and that

$$F: [H^1_m(R)]_n \to [H^1_m(R)]_{n+1}$$

for all $n \in \mathbb{Z}$. The module $H^1_m(R)$ has finite length, so all elements of $H^1_m(R)$ of positive or negative degree are F-torsion; it remains to show that elements $\eta \in [H^1_m(R)]_0$ are F-torsion as well. Let η be a element of $[H^1_m(R)]_0$ which is not F-torsion. As in the proof of Theorem 3.1 after a change of notation we may assume that

$$F^e(\eta) + r_1 F^{e-1}(\eta) + \cdots + r_e \eta = 0$$

where all r_i are in $[R]_0 = K$, and r_e is nonzero. Let $\eta = [(y_1/x_1, \ldots, y_d/x_d)]$ where $H^1_m(R)$ is regarded as the cohomology of a homogeneous Čech complex. Then there exists $r_{e+1} \in K$ such that $y_j/x_i \in R_{x_i}$ is a root of the polynomial

$$f(T) = T^{e^e} + r_1 T^{e^{e-1}} + \cdots + r_e T + r_{e+1} \in K[T].$$

But $f(T)$ is a separable polynomial, so it splits in $K[T]$. The element $y_i/x_i = y_j/x_j$ is a root of $f(T)$ in the fraction field of R, so it must be one of the roots of $f(T)$ in K. It follows that $\eta = 0$, which completes the proof of (1).

The proof of (2) is now similar to that of Theorem 3.2 and is left to the reader. For (3), note that $F^e(H^1_m(R))$ is a K-vector space since K is perfect, and that

$$\dim_K H^1_m(R)_{\text{st}} = \dim_{\overline{K}} H^1_m(R \otimes_K \overline{K})_{\text{st}}.$$

Thus we may assume $K = \overline{K}$, and the proof is similar to that of Theorem 1.2. \qed
Remark 3.5. Theorem 3.4(3) generalizes, in the case of positive characteristic, the well-known fact that the number of connected components of \(X = \text{Proj} \, R\) is
\[
\dim_K H^0(X, \mathcal{O}_X) = 1 + \dim_K [H^1_m(R)]_0,
\]
where \(R\) is an \(\mathbb{N}\)-graded reduced ring of positive dimension, which is finitely generated over an algebraically closed field \(R_0 = K\). The point is that in this case the Frobenius is bijective on \([H^1_m(R)]_0\). To see this, let
\[
\eta = \left(\frac{y_1}{x_1}, \ldots, \frac{y_d}{x_d}\right) \in [H^1_m(R)]_0
\]
be an element with \(F(\eta) = 0\), where \(H^1_m(R)\) is computed as the cohomology of a suitable Čech complex. Then there exists a homogeneous element \(r \in R\) with \((y_i/x_i)^p = r\) in \(R_x\) for all \(1 \leq i \leq d\). Such an element \(r\) must have degree zero, and hence must be an element of \(K\). But then \(r^{1/p} \in K\), and, since \(R\) is reduced, \(y_i/x_i = r^{1/p}\) for all \(i\). It follows that
\[
\eta = [(r^{1/p}, \ldots, r^{1/p})] = 0.
\]
To complete the argument, note that \([H^1_m(R)]_0\) is a finite dimensional \(K\)-vector space, and that if \(\eta_1, \ldots, \eta_n \in [H^1_m(R)]_0\) are linearly independent, then so are \(F(\eta_1), \ldots, F(\eta_n)\). It follows that \(F: [H^1_m(R)]_0 \rightarrow [H^1_m(R)]_0\) is surjective.

4. \(F\)-Purity

A ring homomorphism \(\varphi: R \rightarrow S\) is pure if \(\varphi \otimes 1: R \otimes_R M \rightarrow S \otimes_R M\) is injective for every \(R\)-module \(M\). If \(R\) is a ring containing a field of characteristic \(p > 0\), then \(R\) is \(F\)-pure if the Frobenius homomorphism \(F: R \rightarrow R\) is pure. The notion was introduced by Hochster and Roberts in the course of their study of rings of invariants in \([HR1, HR2]\).

Examples of \(F\)-pure rings include regular rings of positive characteristic and their pure subrings. If \(a\) is generated by square-free monomials in the variables \(x_1, \ldots, x_n\) and \(K\) is a field of positive characteristic, then \(K[x_1, \ldots, x_n]/a\) is \(F\)-pure.

Goto and Watanabe \([GW]\) classified one-dimensional \(F\)-pure rings: let \((R, m)\) be a local ring of positive characteristic such that \(R/m = K\) is algebraically closed, \(F: R \rightarrow R\) is finite, and \(\dim R = 1\). Then \(R\) is \(F\)-pure if and only if
\[
\check{R} \cong K[[x_1, \ldots, x_n]]/(x_i x_j \mid i < j).
\]

Two-dimensional \(F\)-pure rings have attracted a lot of attention: Watanabe \([Wat1]\) proved that \(F\)-pure normal Gorenstein local rings of dimension two are either rational double points, simple elliptic singularities, or cusp singularities. He also classified two-dimensional normal \(\mathbb{N}\)-graded rings \(R\) over an algebraically closed field \(R_0\), in terms of \(\mathbb{Q}\)-divisors on the curve \(\text{Proj} \, R\), \([Wat2]\). In \([MS]\) Mehta and Srinivas obtained a classification of two-dimensional \(F\)-pure normal singularities in terms of the resolution of the singularity. Hara completed the classification of two-dimensional normal \(F\)-pure singularities in terms of the dual graph of the minimal resolution of the singularity, \([HaN]\).

The results of Section 3 imply that over separably closed fields, \(F\)-pure domains of dimension two are Cohen-Macaulay. The point is that if \(R\) is an \(F\)-pure ring, then the Frobenius action \(F: H^1_m(R) \rightarrow H^1_m(R)\) is an injective map.
Corollary 4.1. Let R be a local ring with $\dim R \geq 2$, which contains a field of positive characteristic. If R is F-pure and the punctured spectrum of R is formally geometrically connected, then depth $R \geq 2$.

In particular, if R is a complete local F-pure domain of dimension two, with a separably closed coefficient field, then R is Cohen-Macaulay.

Proof. An F-pure ring is reduced, so $H^0_m(R) = 0$. By Theorem 5.1 $H^1_m(R)$ is F-torsion. Since R is F-pure, it follows that $H^1_m(R) = 0$. \hfill \Box

In the graded case, we similarly have:

Corollary 4.2. Let R be an \mathbb{N}-graded ring with $\dim R \geq 2$, which is finitely generated over a field R_0 of positive characteristic. If R is F-pure and Proj R is geometrically connected, then depth $R \geq 2$.

The ring R below is a graded F-pure domain of dimension two, and depth one. The issue is that Proj R is connected though not geometrically connected.

Example 4.3. Let K be a field of characteristic $p > 2$, and $a \in K$ an element such that $\sqrt{a} \notin K$. Let $R = K[x, y, x\sqrt{a}, y\sqrt{a}]$. The domain R has a presentation

$$R = K[x, y, u, v]/(u^2 - ax^2, v^2 - ay^2, uv - axy, vx - uy),$$

and if K^{sep} denotes the separable closure of K, then

$$R \otimes_K K^{\text{sep}} \cong K^{\text{sep}}[x, y, u, v]/(u - x\sqrt{a}, v - y\sqrt{a})(u + x\sqrt{a}, v + y\sqrt{a}).$$

Using a change of variables, $R \otimes_K K^{\text{sep}} \cong K^{\text{sep}}[x', y', u', v']/((x', y')(u', v'))$. Since $(x', y')(u', v')$ is a square-free monomial ideal, $R \otimes_K K^{\text{sep}}$ is F-pure and it follows that R is F-pure. However, R is not Cohen-Macaulay since x, y is a homogeneous system of parameters with a non-trivial relation

$$(x\sqrt{a})y = (y\sqrt{a})x.$$

Using the Cech complex on x, y to compute $H^1_m(R)$, we see that it is a 1-dimensional K-vector space generated by the element

$$\eta = \left[\frac{x\sqrt{a}}{x}, \frac{y\sqrt{a}}{y}\right] \in H^1_m(R)$$

corresponding to the relation above. Given $e \in \mathbb{N}$, let $p^e = 2k + 1$. Then

$$F^e(\eta) = a^k \eta,$$

which is a nonzero element of $H^1_m(R)$. Consequently $H^1_m(R)$ is not F-torsion, corresponding to the fact that Proj R is not geometrically connected.

The corollaries obtained in this section imply that over a separably closed field, a graded or complete local F-pure domain of dimension two is Cohen-Macaulay. We record an example which shows that this is not true for rings of higher dimension.

Example 4.4. Let K be a field of characteristic $p > 0$, and take

$$A = K[x_1, \ldots, x_d]/(x_1^d + \cdots + x_d^d)$$

where $d \geq 3$. Let R be the Segre product of A and the polynomial ring $B = K[s, t]$. Then $\dim R = d$, and the Künneth formula for local cohomology implies that

$$H^{d-1}_{m_R}(R) \cong [H^{d-1}_{m_A}(A)]_0 \otimes_K [B]_0 \cong K,$$

so R is not Cohen-Macaulay. If $p \equiv 1 \pmod{d}$, then A is F-pure by [HR2 Proposition 5.21]; hence $A \otimes_K B$ and its direct summand R are F-pure as well.
5. Algorithmic aspects

Let R be an \mathbb{N}-graded ring, which is finitely generated over a finite field $R_0 = K$. We wish to determine the number of geometrically connected components of the scheme $\text{Proj} R$, i.e., the number of connected components of $\text{Proj}(R \otimes_K \overline{K})$, or, equivalently, of $\text{Proj}(R \otimes_K K^{\text{sep}})$. While primary decomposition algorithms such as those of [EHV], [GTZ], or [SY], may be used to determine the connected components over the algebraic closure, \overline{K}. However, simply finding their number is much easier: by Theorem 3.4, this is $1 + \dim_K([H^1_m(R)]_0)_{st}$. Computing this number involves three steps.

1. Finding a good presentation of $[H^1_m(R)]_0$;
2. Determining the Frobenius action on $[H^1_m(R)]_0$ in terms of this presentation;
3. Computing the dimension of the F-stable part, $([H^1_m(R)]_0)_{st}$.

If $R = A/\mathfrak{A}$ for a polynomial ring A, we first replace \mathfrak{A} by an ideal that has the same radical as \mathfrak{A}, but does not have the homogeneous maximal ideal \mathfrak{M} as an associated prime. This can be done by saturating \mathfrak{A} with respect to \mathfrak{M}; if desired, one may simply compute the radical of \mathfrak{A}, but this is often computationally expensive. Now, since \mathfrak{M} is not associated to \mathfrak{A}, one can find a homogeneous system of parameters x_1, \ldots, x_d for R such that each x_i is a nonzerodivisor on R.

The length ℓ of $[H^1_m(R)]_0$ may be computed by computing the length of its graded dual $[\text{Ext}_A^{n-1}(R, A(-n))]_0$, where $\dim A = n$. Of course, if this length is zero, then $X_{\overline{K}}$ is connected. Consider the Koszul cohomology modules

$$H^1(x_1^i, \ldots, x_d^i; R) = \frac{\{(a_1, \ldots, a_d) \in R^d \mid a_i x_j^i = a_j x_i^i \text{ for all } i < j\}}{\{(r x_1^i, \ldots, r x_d^i) \mid r \in R\}}.$$

These modules have an \mathbb{N}-grading, where for homogeneous elements $a_i \in R$, we define the degree of $[(a_1, \ldots, a_d)] \in H^1(x_1^i, \ldots, x_d^i; R)$ as

$$\deg[(a_1, \ldots, a_d)] = \deg a_i - \deg x_i^i,$$

which is independent of i. This ensures that for each t, the map

$$H^1(x_1^i, \ldots, x_d^i; R) \rightarrow H^1(x_1^{i+1}, \ldots, x_d^{i+1}; R)$$

$$[(a_1, \ldots, a_d)] \mapsto [(a_1 x_1^i, \ldots, a_d x_i^i)]$$

preserves degrees. The module $H^1_m(R)$ is the direct limit of these Koszul cohomology modules, and the assumption that the x_i are nonzerodivisors ensures that the maps in the direct limit system are injective. The modules $H^1(x_1^1, \ldots, x_d^1; R)$ may be computed for increasing values of t, until we arrive at an integer N such that

$$\ell\left([H^1(x_1^N, \ldots, x_d^N; R)]_0\right) = \ell.$$

This gives us a presentation for $[H^1_m(R)]_0 = [H^1(x_1^N, \ldots, x_d^N; R)]_0$, in terms of which we now analyze the Frobenius map. Replacing the x_i by their powers if needed, assume that $N = 1$. Let

$$\alpha = [(a_1, \ldots, a_d)] \in [H^1(x_1, \ldots, x_d; R)]_0,$$

in which case, $F(\alpha) = [(a_1^p, \ldots, a_d^p)] \in [H^1(x_1^p, \ldots, x_d^p; R)]_0$. Since the map

$$[H^1(x_1, \ldots, x_d; R)]_0 \rightarrow [H^1(x_1^p, \ldots, x_d^p; R)]_0$$

...
Proposition 6.1. coming from the direct limit system is bijective, it follows that \(a_i^p \in x_i^{p-1}R \) for each \(1 \leq i \leq d \). Setting \(b_i = a_i^p / x_i^{p-1} \), we arrive at

\[
F(\alpha) = \left[(b_1, \ldots, b_d) \right] \in \left[H^1(x_1, \ldots, x_d; R) \right]_0.
\]

Using this description of Frobenius action on the finite dimensional \(K \)-vector space \(\left[H^1_m(R) \right]_0 = \left[H^1(x_1, \ldots, x_d; R) \right]_0 \), it is now straightforward to compute the ranks of the vector spaces

\[
\left[H^1_m(R) \right]_0 \supseteq F(\left[H^1_m(R) \right]_0) \supseteq F^2(\left[H^1_m(R) \right]_0) \supseteq \ldots,
\]

and hence of the \(F \)-stable part, \((\left[H^1_m(R) \right]_0)_{\text{st}} \).

6. Appendix: \(F \)-torsion modules and \(F \)-stable vector spaces

Let \(R \) be a commutative ring containing a field \(K \) of characteristic \(p > 0 \). A Frobenius action on an \(R \)-module \(M \) is an additive map \(F : M \to M \) such that \(F(rm) = r^pF(m) \) for all \(r \in R \) and \(m \in M \). In this case, \(\ker F \) is a submodule of \(M \), and we have an ascending sequence of submodules of \(M \),

\[
\ker F \subseteq \ker F^2 \subseteq \ker F^3 \subseteq \ldots.
\]

The union of these is the \(F \)-nilpotent submodule of \(M \), denoted \(M_{\text{nil}} = \bigcup_{e \in \mathbb{N}} \ker F^e \). We say \(M \) is \(F \)-torsion if \(M_{\text{nil}} = M \).

Proposition 6.1. Let \((R, \mathfrak{m}) \) be a local ring containing a field of positive characteristic, and let \(M \) be an Artinian \(R \)-module with a Frobenius action. Then there exists \(e \in \mathbb{N} \) such that \(F^e(M_{\text{nil}}) = 0 \).

Hence an Artinian module \(M \) is \(F \)-torsion if and only if \(F^e(M) = 0 \) for some \(e \).

Proof. This is proved in [HS Proposition 1.11] under the hypothesis that \(R \) is a complete local ring with a perfect coefficient field. The general case may be concluded from this, but a more elegant approach is via Lyubeznik’s theory of \(F \)-modules; see [Ly1 Proposition 4.4].

If \(R \) is a ring containing a perfect field \(K \) of positive characteristic and \(M \) is an \(R \)-module with a Frobenius action, then \(F(M) \) is a \(K \)-vector space, and we have a descending sequence of \(K \)-vector spaces

\[
F(M) \supseteq F^2(M) \supseteq F^3(M) \supseteq \ldots.
\]

The \(F \)-stable part of \(M \) is the vector space \(M_{\text{st}} = \bigcap_{e \in \mathbb{N}} F^e(M) \).

Proposition 6.2. Let \((R, \mathfrak{m}, K) \) be a local ring of dimension \(d \) which contains a field of positive characteristic.

1. \(H^0_m(R) \) is \(F \)-torsion if and only if \(d > 0 \).
2. \(H^d_m(R) \) is not \(F \)-torsion.
3. If \(d = 0 \) and \(K \) is perfect, then \(H^0_m(R)_{\text{st}} = R_{\text{st}} = K \).

Proof. (1) If \(d = 0 \), then \(H^0_m(R) = R \), which is not \(F \)-torsion. If \(d > 0 \), then \(H^0_m(R) \) is contained in \(\mathfrak{m} \). Since every element of \(H^0_m(R) \) is killed by a power of \(\mathfrak{m} \), it follows that each element is nilpotent. (See also [Ly2 Corollary 4.6(a)].)

(2) View \(H^d_m(R) \) as the cohomology of a Čech complex on a system of parameters \(x_1, \ldots, x_d \) for \(R \), and let \(\eta = [1 + (x_1, \ldots, x_d)] \in H^d_m(R) \). For all \(e_0 \in \mathbb{N} \), the collection of elements \(F^e(\eta) \) with \(e > e_0 \) generates \(H^d_m(R) \) as an \(R \)-module. Hence \(F^{e_0}(\eta) \) cannot be zero by Grothendieck’s nonvanishing theorem.
(3) Since \(m \) is nilpotent in this case, for integers \(e \geq 0 \) we have
\[
F^e(H_m^0(R)) = F^e(R) = \{ x^{p^e} \mid x \in R \} = \{ (y + z)^{p^e} \mid y, z \in m \} = K. \tag*{\Box}
\]

Theorem 6.3. Let \((R, m)\) be a local ring with a perfect coefficient field \(K \) of positive characteristic. Let \(M \) be an Artinian \(R \)-module with a Frobenius action. Then \(M_{st} \) is a finite dimensional \(K \)-vector space, and \(F : M_{st} \to M_{st} \) is an automorphism of the Abelian group \(M_{st} \).

If \(K \) is algebraically closed, then there exists a \(K \)-basis \(e_1, \ldots, e_n \) for \(M_{st} \) such that \(F(e_i) = e_i \) for all \(1 \leq i \leq n \).

Proof. For the finiteness assertion, see [HS, Theorem 1.12] or [Ly1, Proposition 4.9]. It is easily seen that \(F \) is an isomorphism whenever \(M_{st} \) is finite dimensional. The existence of the special basis when \(K \) is algebraically closed follows from [Di, Proposition 5, page 233]. \(\Box \)

Theorem 6.4 ([HS Theorem 1.13]). Let \((R, m)\) be a complete local ring with an algebraically closed coefficient field of positive characteristic. Let \(L, M, N \) be \(R \)-modules with Frobenius actions such that we have a commutative diagram
\[
\begin{array}{ccc}
0 & \longrightarrow & L \\
\downarrow F & & \downarrow F \\
0 & \longrightarrow & L
\end{array}
\quad \begin{array}{ccc}
\longrightarrow & M & \longrightarrow & N \\
\downarrow F & & \downarrow F \\
\longrightarrow & M & \longrightarrow & N
\end{array}
\end{array}
\]
with exact rows. If \(L \) is Noetherian and \(N \) is Artinian, then the \(F \)-stable parts form a short exact sequence
\[
0 \to L_{st} \to M_{st} \to N_{st} \to 0.
\]

Proposition 6.5. Let \((R, m, K)\) be a complete local ring with an algebraically closed coefficient field of positive characteristic. Let \(n \) denote the nilradical of \(R \). Then for all \(i \geq 0 \), the natural map \(H^i_m(R) \to H^i_m(R/n) \), when restricted to \(F \)-stable subspaces, gives an isomorphism
\[
H^i_m(R)_{st} \cong H^i_m(R/n)_{st}.
\]

Proof. Let \(k \) be an integer such that \(n^{p^k} = 0 \). The short exact sequence
\[
0 \to n \to R \to R/n \to 0
\]
induces a long exact sequence of local cohomology modules
\[
\cdots \longrightarrow H^i_m(n) \overset{\alpha}{\longrightarrow} H^i_m(R) \overset{\beta}{\longrightarrow} H^i_m(R/n) \overset{\gamma}{\longrightarrow} H^{i+1}_m(n) \longrightarrow \cdots.
\]
Consider an element \(\mu \in \ker(\beta) \cap H^i_m(R)_{st} \). Then \(\mu \in \image(\alpha) \), so \(F^k(\mu) = 0 \). The Frobenius action on \(H^i_m(R)_{st} \) is an automorphism, so \(\mu = 0 \), and hence the map \(H^i_m(R)_{st} \to H^i_m(R/n)_{st} \) is injective.

To complete the proof it suffices, by Theorem 6.3, to consider an element \(\eta \in H^i_m(R/n)_{st} \) with \(F(\eta) = \eta \), and prove that it lies in the image of \(H^i_m(R)_{st} \). Now \(\gamma(\eta) \in H^{i+1}_m(n) \) so \(F^k(\gamma(\eta)) = 0 \), and therefore \(F^k(\eta) = \eta \in \ker(\gamma) \).

Let \(\eta = \beta(\mu) \) for some element \(\mu \in H^i_m(R) \). Then \(\beta(F(\mu) - \mu) = 0 \), which implies that \(F(\mu) - \mu \in \image(\alpha) \). Consequently \(F^k(F(\mu) - \mu) = 0 \), which shows that \(F^{k+1}(\mu) = F^k(\mu) \), and hence that \(F^k(\mu) \in H^i_m(R)_{st} \). Since
\[
\beta(F^k(\mu)) = F^k(\beta(\mu)) = F^k(\eta) = \eta,
\]
we are done. \(\Box \)
REFERENCES

[MS] V. B. Mehta and V. Srinivas, Normal F-pure surface singularities, J. Algebra 143 (1991), 130–143. MR1128650 (92g:13014)

Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112
E-mail address: singh@math.utah.edu

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907
E-mail address: walther@math.purdue.edu