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Abstract. Let R be a polynomial ring in finitely many variables over the integers.
Fix an ideal a of R. We prove that for all but finitely many prime integers p, the Bockstein
homomorphisms on local cohomology, Hk

a ðR=pRÞ ! Hkþ1
a ðR=pRÞ, are zero. This vanish-

ing of Bockstein homomorphisms is predicted by Lyubeznik’s conjecture which states that
when R is a regular ring, the modules H �a ðRÞ have finitely many associated prime ideals.

We further show that when R is replaced by a hypersurface ring, the vanishing of
Bockstein homomorphisms—as well as the analogue of Lyubeznik’s conjecture—need not
hold.

Bockstein homomorphisms have their origins in algebraic topology; we establish
a connection between algebraic and topological Bockstein homomorphisms through
Stanley–Reisner theory.

1. Introduction

Let R be a polynomial ring in finitely many variables over Z, the ring of integers. Fix
an ideal a of R. For each prime integer p, applying the local cohomology functor H �a ð�Þ to

0! R=pR!p R=p2R! R=pR! 0;

one obtains a long exact sequence; the connecting homomorphisms in this sequence are the
Bockstein homomorphisms for local cohomology,

bk
p : Hk

a ðR=pRÞ ! Hkþ1
a ðR=pRÞ:

We prove that for all but finitely many prime integers p, the Bockstein homomorphisms bk
p

are zero, Theorem 3.1.
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Our study here is motivated by Lyubeznik’s conjecture [11], Remark 3.7, which states
that for regular rings R, each local cohomology module Hk

a ðRÞ has finitely many associated
prime ideals. This conjecture has been verified for regular rings of positive characteristic by
Huneke and Sharp [4], and for regular local rings of characteristic zero as well as unrami-
fied regular local rings of mixed characteristic by Lyubeznik [11], [12]. It remains unre-
solved for polynomial rings over Z, where it implies that for fixed aLR, the Bockstein ho-
momorphisms bk

p are zero for almost all prime integers p; Theorem 3.1 provides strong
supporting evidence for Lyubeznik’s conjecture.

The situation is quite di¤erent when, instead of regular rings, one considers hypersur-
faces. In Example 4.2 we present a hypersurface R over Z, with ideal a, such that the Bock-
stein homomorphism H 2

a ðR=pRÞ ! H 3
a ðR=pRÞ is nonzero for each prime integer p.

Huneke [6], Problem 4, asked whether local cohomology modules of Noetherian rings
have finitely many associated prime ideals. The answer to this is negative: in [15] the first
author constructed an example where, for R a hypersurface, H 3

a ðRÞ has p-torsion elements
for each prime integer p, and hence has infinitely many associated primes; see also Example
4.2. The issue of p-torsion is central in studying Lyubeznik’s conjecture for finitely gener-
ated algebras over Z, and the Bockstein homomorphism is a first step towards understand-
ing p-torsion.

For local or graded rings R, the first examples of local cohomology modules Hk
a ðRÞ

with infinitely many associated primes were produced by Katzman [9]; these are not inte-
gral domains. Subsequently, Singh and Swanson [17] constructed families of graded hyper-
surfaces R over arbitrary fields, for which a local cohomology module Hk

a ðRÞ has infinitely
many associated primes; these hypersurfaces are unique factorization domains that have
rational singularities in the characteristic zero case, and are F -regular in the case of positive
characteristic.

In Section 2 we establish some properties of Bockstein homomorphisms that are used
in Section 3 in the proof of the main result, Theorem 3.1. Section 4 contains various exam-
ples, and Section 5 is devoted to Stanley–Reisner rings: for D a simplicial complex, we re-
late Bockstein homomorphisms on reduced simplicial cohomology groups ~HH �ðD;Z=pZÞ
and Bockstein homomorphisms on local cohomology modules H �a ðR=pRÞ, where a is the
Stanley–Reisner ideal of D. We use this to construct nonzero Bockstein homomorphisms
on H �a ðR=pRÞ, for R a polynomial ring over Z.

2. Bockstein homomorphisms

Definition 2.1. Let R be a commutative Noetherian ring, and M an R-module. Let p
be an element of R that is a nonzerodivisor on M.

Let F� be an R-linear covariant d-functor on the category of R-modules. The exact
sequence

0!M !p M !M=pM ! 0

then induces an exact sequence

FkðM=pMÞ �!
dkp

Fkþ1ðMÞ �!p Fkþ1ðMÞ �!
pkþ1
p

Fkþ1ðM=pMÞ:
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The Bockstein homomorphism bk
p is the composition

pkþ1
p � dkp : FkðM=pMÞ ! Fkþ1ðM=pMÞ:

It is an elementary verification that b�p agrees with the connecting homomorphisms in
the cohomology exact sequence obtained by applying F� to the exact sequence

0!M=pM !p M=p2M !M=pM ! 0:

Let a be an ideal of R, generated by elements f1; . . . ; ft. The covariant d-functors of
interest to us are are local cohomology H �a ð�Þ and Koszul cohomology H �ð f1; . . . ; ft;�Þ
discussed next.

Setting f e ¼ f e
1 ; . . . ; f

e
t , the Koszul cohomology modules H �ð f e;MÞ are the coho-

mology modules of the Koszul complex K �ð f e;MÞ. For each ef 1, one has a map of com-
plexes

K �ð f e;MÞ ! K �ð f eþ1;MÞ;

and thus a filtered direct system fK �ð f e;MÞgef1. The direct limit of this system can be
identified with the Čech complex �CC �ð f ;MÞ displayed below:

0!M !
L
i

Mfi !
L
i< j

Mfi fj ! � � � !Mf1���ft ! 0:

The local cohomology modules H �a ðMÞ may be computed as the cohomology modules of
�CC �ð f ;MÞ, or equivalently as direct limits of the Koszul cohomology modules H �ð f e;MÞ.
There is an isomorphism of functors

Hk
a ð�ÞG lim�!

e

H kð f e;�Þ;

and each element of Hk
a ðMÞ lifts to an element of Hkð f e;MÞ for eg 0.

Remark 2.2. Let F� and G� be covariant d-functors on the category of R-modules,
and let t : F� ! G� be a natural transformation. Since the Bockstein homomorphism is
defined as the composition of a connecting homomorphism and reduction mod p, one has
a commutative diagram

FkðM=pMÞ ���! Fkþ1ðM=pMÞ

t

???y ???yt

GkðM=pMÞ ���! Gkþ1ðM=pMÞ;

where the horizontal maps are the respective Bockstein homomorphisms. The natural
transformations of interest to us are

H �ð f e;�Þ ! H �ð f eþ1;�Þ
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and

H �ð f e;�Þ ! H �a ð�Þ;

where a ¼ ð f1; . . . ; ftÞ.

Let M be an R-module, let p be an element of R that is a nonzerodivisor on M, and
let f ¼ f1; . . . ; ft and g ¼ g1; . . . ; gt be elements of R such that fi 1 gi mod p for each i.
One then has isomorphisms

H �ð f ;M=pMÞGH �ðg;M=pMÞ;

though the Bockstein homomorphisms on H �ð f ;M=pMÞ and H �ðg;M=pMÞ may not
respect these isomorphisms; see Example 2.3. A key point in the proof of Theorem 3.1 is
Lemma 2.4, which states that upon passing to the direct limits lim�!

e

H �ð f e;M=pMÞ and
lim�!
e

H �ðge;M=pMÞ, the Bockstein homomorphisms commute with the isomorphisms

lim�!
e

H �ð f e;M=pMÞG lim�!
e

H �ðge;M=pMÞ:

Example 2.3. Let p be a nonzerodivisor on R. Let x be an element of R. The Bock-
stein homomorphism on Koszul cohomology H �ðx;R=pRÞ is

ð0 :R=pR xÞ ¼ H 0ðx;R=pRÞ ! H 1ðx;R=pRÞ ¼ R=ðp; xÞR;

rmodðpÞ 7! rx=pmodðp; xÞ:

Let y be an element of R with x1 y mod p. Comparing the Bockstein homomorphisms b,
b 0 on H �ðx;R=pRÞ and H �ðy;R=pRÞ respectively, one sees that the diagram

ð0 :R=pR xÞ ���!b R=ðp; xÞR���� ����
ð0 :R=pR yÞ ���!b 0 R=ðp; yÞR

does not commute if rx=p and ry=p di¤er modulo the ideal ðp; yÞR; for an explicit example,
take R ¼ Z½w; x; z�=ðwx� pzÞ and y ¼ xþ p. Then bðwÞ ¼ z, whereas b 0ðwÞ ¼ zþ w.

Nonetheless, the diagram below does commute, hinting at Lemma 2.4:

H 0ðx;R=pRÞ ���!b H 1ðx;R=pRÞ ���!x H 1ðx2;R=pRÞ���� ����
H 0ðy;R=pRÞ ���!b 0 H 1ðy;R=pRÞ ���!y H 1ðy2;R=pRÞ:

Lemma 2.4. Let M be an R-module, and let p be an element of R that is M-regular.

Suppose a and b are ideals of R with radðaþ pRÞ ¼ radðbþ pRÞ. Then there exists a com-

mutative diagram
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� � � ���! Hk
a ðM=pMÞ ���! Hkþ1

a ðM=pMÞ ���! � � �???y ???y
� � � ���! Hk

b ðM=pMÞ ���! Hkþ1
b ðM=pMÞ ���! � � �

where the horizontal maps are the respective Bockstein homomorphisms, and the vertical

maps are natural isomorphisms.

Proof. It su‰ces to consider the case a ¼ bþ yR, where y A radðbþ pRÞ. For each
R-module N, one has an exact sequence

! Hk�1
b ðNÞy ! Hk

a ðNÞ ! Hk
b ðNÞ ! Hk

b ðNÞy !

which is functorial in N; see for example [8], Exercise 14.4. Using this for

0!M !p M !M=pM ! 0;

one obtains the commutative diagram below, with exact rows and columns:

Hk�1
b ðM=pMÞy ���! Hk

b ðMÞy ���!p Hk
b ðMÞy ���! Hk

b ðM=pMÞy???y ???y ???y ???y
Hk

a ðM=pMÞ ���! Hkþ1
a ðMÞ ���!p Hkþ1

a ðMÞ ���! Hkþ1
a ðM=pMÞ

yk

???y ???y ???y ???yykþ1

Hk
b ðM=pMÞ ���! Hkþ1

b ðMÞ ���!p Hkþ1
b ðMÞ ���! Hkþ1

b ðM=pMÞ???y ???y ???y ???y
Hk

b ðM=pMÞy ���! Hkþ1
b ðMÞy ���!p H kþ1

b ðMÞy ���! Hkþ1
b ðM=pMÞy:

Since H �b ðM=pMÞ is y-torsion, it follows that H �b ðM=pMÞy ¼ 0. Hence the maps y� are
isomorphisms, and the desired result follows. r

3. Main theorem

Theorem 3.1. Let R be a polynomial ring in finitely many variables over the ring of

integers. Let a ¼ ð f1; . . . ; ftÞ be an ideal of R.

If a prime integer p is a nonzerodivisor on the Koszul cohomology Hkþ1ð f ;RÞ, then the

Bockstein homomorphism Hk
a ðR=pRÞ ! Hkþ1

a ðR=pRÞ is zero.

In particular, the Bockstein homomorphisms on H �a ðR=pRÞ are zero for all but finitely

many prime integers p.

We use the following notation in the proof, and also later in Section 5.
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Notation 3.2. Let R be a ring with an endomorphism j. Set Rj to be the R-bimodule
with R as its underlying Abelian group, the usual action of R on the left, and the right
R-action defined by r 0r ¼ jðrÞr 0 for r A R and r 0 A Rj. One thus obtains a functor

M 7! Rj nRM

on the category of R-modules, where RjnR M is viewed as an R-module via the left
R-module structure on Rj.

Proof of Theorem 3.1. The R-modules Hkð f ;RÞ are finitely generated, soS
k

AssHkð f ;RÞ

is a finite set of prime ideals. These finitely many prime ideals contain finitely many prime
integers, so the latter assertion follows from the former.

Fix a prime p that is a nonzerodivisor on Hkþ1ð f ;RÞ. Suppose R ¼ Z½x1; . . . ; xn�, set
c to be the endomorphism of R determined by cðxiÞ ¼ x

p
i for each i. For each positive in-

teger e, consider Rc e

as in Notation 3.2. The module Rce

is R-flat, so applying Rc e

nR ð�Þ
to the injective homomorphism

Hkþ1ð f ;RÞ !p H kþ1ð f ;RÞ

one obtains an injective homomorphism

Hkþ1�ceð f Þ;R
�
!p Hkþ1�ceð f Þ;R

�
;

where ceð f Þ ¼ ceð f1Þ; . . . ;ceð ftÞ. Thus, the connecting homomorphism in the exact se-
quence

Hk
�
ceð f Þ;R=pR

�
!d Hkþ1�ceð f Þ;R

�
!p H kþ1�ceð f Þ;R

�
is zero, and hence so is the Bockstein homomorphism

Hk
�
ceð f Þ;R=pR

�
! Hkþ1�ceð f Þ;R=pR

�
:ð3:2:1Þ

The families of ideals��
ceð f Þ

�
R=pR

�
ef1

and faeR=pRgef1

are cofinal, so

Hk
a ðR=pRÞG lim�!

e

H k
�
ceð f Þ;R=pR

�
:

Let h be an element of Hk
a ðR=pRÞ. There exists an integer e and an element

~hh A Hk
�
ceð f Þ;R=pR

�
such that ~hh 7! h. By Remark 2.2 and Lemma 2.4, one has a commu-

tative diagram
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Hk
�
ceð f Þ;R=pR

� ���! Hkþ1�ceð f Þ;R=pR
�???y ???y

Hk
a ðR=pRÞ ���! Hkþ1

a ðR=pRÞ;

where the map in the upper row is zero by (3.2.1). It follows that h maps to zero in
Hkþ1

a ðR=pRÞ. r

4. Examples

Example 4.1 shows that the Bockstein b0
p : H 0

a ðR=pRÞ ! H 1
a ðR=pRÞ need not be zero

for R a regular ring. In Example 4.2 we exhibit a hypersurface R over Z, with ideal a, such
that b2

p : H 2
a ðR=pRÞ ! H 3

a ðR=pRÞ is nonzero for each prime integer p. Example 4.3 is
based on elliptic curves, and includes an intriguing open question.

Example 4.1. Let a ¼ ð f1; . . . ; ftÞLR and let ½r� A H 0
a ðR=pRÞ. There exists an inte-

ger n and ai A R such that rf n
i ¼ pai for each i. Using the Čech complex on f to compute

H �a ðR=pRÞ, one has

b0
pð½r�Þ ¼ ½ða1=f n

1 ; . . . ; at=f
n
t Þ� A H 1

a ðR=pRÞ:

For an example where b0
p is nonzero, take R ¼ Z½x; y�=ðxy� pÞ and a ¼ xR. Then

½y� A H 0
xRðR=pRÞ, and

b0
pð½y�Þ ¼ ½1=x� A H 1

xRðR=pRÞ:

We remark that R is a regular ring: since Rx ¼ Z½x; 1=x� and Ry ¼ Z½y; 1=y� are regular, it
su‰ces to observe that the local ring Rðx;yÞ is also regular. Note, however, that R is ramified

since Rðx;yÞ is a ramified regular local ring.

Example 4.2. We give an example where b2
p is nonzero for each prime integer p; this

is based on [15], Section 4, and [16]. Consider the hypersurface

R ¼ Z½u; v;w; x; y; z�=ðuxþ vyþ wzÞ

and the ideal a ¼ ðx; y; zÞR. Let p be an arbitrary prime integer. Then the element
ðu=yz;�v=xz;w=xyÞ A Ryz lRxzlRxy gives a cohomology class

h ¼ ½ðu=yz;�v=xz;w=xyÞ� A H 2
a ðR=pRÞ:

It is easily seen that b2
pðhÞ ¼ 0; we verify below that b2

p

�
FðhÞ

�
is nonzero, where F denotes

the Frobenius action on H 2
a ðR=pRÞ. Indeed, if

b2
�
FðhÞ

�
¼ ðuxÞ

p þ ðvyÞp þ ðwzÞp

pðxyzÞp
� �
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is zero, then there exists k A N and elements ci A R=pR such that

ðuxÞp þ ðvyÞp þ ðwzÞp

p
ðxyzÞk ¼ c1x

pþk þ c2y
pþk þ c3z

pþkð4:2:1Þ

in R=pR. Assign weights as follows:

x : ð1; 0; 0; 0Þ; u : ð�1; 0; 0; 1Þ;

y : ð0; 1; 0; 0Þ; v : ð0;�1; 0; 1Þ;

z : ð0; 0; 1; 0Þ; w : ð0; 0;�1; 1Þ:

There is no loss of generality in taking the elements ci to be homogeneous, in which case
deg c1 ¼ ð�p; k; k; pÞ, so c1 must be a scalar multiple of upykzk. Similarly, c2 is a scalar
multiple of vpzkxk and c3 of w

pxkyk. Hence

ðuxÞp þ ðvyÞp þ ðwzÞp

p
ðxyzÞk A ðxyzÞkðupxp; vpyp;wpzpÞR=pR:

Canceling ðxyzÞk and specializing u 7! 1, v 7! 1, w 7! 1, we have

xp þ yp þ ð�x� yÞp

p
A ðxp; ypÞZ=pZ½x; y�;

which is easily seen to be false.

Example 4.3. Let EHP2
Q be a smooth elliptic curve. Set R ¼ Z½x0; . . . ; x5� and let

aHR be an ideal such that ðR=aÞnZ Q is the homogeneous coordinate ring of E � P1
Q for

the Segre embedding E � P1
Q HP5

Q. For all but finitely many prime integers p, the reduc-
tion mod p of E is a smooth elliptic curve Ep, and R=ðaþ pRÞ is a homogeneous coordi-
nate ring for Ep � P1

Z=p; we restrict our attention to such primes.

The elliptic curve Ep is said to be ordinary if the Frobenius map

H 1ðEp;OEp
Þ ! H 1ðEp;OEp

Þ

is injective, and is supersingular otherwise. By well-known results on elliptic curves [2], [3],
there exist infinitely many primes p for which Ep is ordinary, and infinitely many for which
Ep is supersingular. The local cohomology module H 4

a ðR=pRÞ is zero if Ep is supersingular,
and nonzero if Ep is ordinary, see [4], page 75, [13], page 219, [18], Corollary 2.2, or [8],
Section 22.1. It follows that the multiplication by p map

H 4
a ðRÞ !

p
H 4

a ðRÞ

is surjective for infinitely many primes p, and not surjective for infinitely many p. Lyubez-
nik’s conjecture implies that this map is injective for almost all primes p, equivalently that
the connecting homomorphism

H 3
a ðR=pRÞ !

d
H 4

a ðRÞ
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is zero for almost all p. We do not know if this is true. However, Theorem 3.1 implies that
b3
p , i.e., the composition of the maps

H 3
a ðR=pRÞ !

d
H 4

a ðRÞ !
p
H 4

a ðR=pRÞ

is zero for almost all p. It is known that the ideal aR=pR is generated up to radical by four
elements, [18], Theorem 1.1, and that it has height 3. Hence bk

p ¼ 0 for k3 3.

5. Stanley–Reisner rings

Bockstein homomorphisms are originated in algebraic topology where they were
used, for example, to compute the cohomology rings of lens spaces. In this section, we
work in the context of simplicial complexes and associated Stanley–Reisner ideals, and re-
late Bockstein homomorphisms on simplicial cohomology groups to those on local coho-
mology modules; see Theorem 5.8. We use this to construct nonzero Bockstein homomor-
phisms Hk

a ðR=pRÞ ! Hkþ1
a ðR=pRÞ, for R a polynomial ring over Z.

Definition 5.1. Let D be a simplicial complex with vertices 1; . . . ; n. Set R to be the
polynomial ring Z½x1; . . . ; xn�. The Stanley–Reisner ideal of D is

a ¼ ðxs j s B DÞR;

i.e., a is the ideal generated by monomials xs ¼
Qn
i¼1

xsi
i such that s is not a face of D. In

particular, if fig B D, then xi A a.

The ring R=a is the Stanley–Reisner ring of D.

Example 5.2. Consider the simplicial complex corresponding to a triangulation of
the real projective plane RP2 depicted in Figure 1.

Figure 1. A triangulation of the real projective plane.
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The associated Stanley–Reisner ideal in Z½x1; . . . ; x6� is generated by

x1x2x3; x1x2x4; x1x3x5; x1x4x6; x1x5x6; x2x3x6;

x2x4x5; x2x5x6; x3x4x5; x3x4x6:

Remark 5.3. Let D be a simplicial complex with vertex set f1; . . . ; ng. Let a be the
associated Stanley–Reisner ideal in R ¼ Z½x1; . . . ; xn�, and set n to be the ideal ðx1; . . . ; xnÞ.
The ring R has a Zn-grading where deg xi is the i-th unit vector; this induces a grading on
the ring R=a, and also on the Čech complex �CC � ¼ �CC �ðx;R=aÞ. Note that a module

ðR=aÞxi1 ���xik

is nonzero precisely if xi1 � � � xik B a, equivalently fi1; . . . ; ikg A D. Hence ½ �CC ��0, the
ð0; . . . ; 0Þ-th graded component of �CC �, is the complex that computes the reduced simpli-
cial cohomology ~HH �ðD;ZÞ, with the indices shifted by one. This provides natural identifica-
tions

½Hk
n ðR=aÞ�0 ¼ ~HHk�1ðD;ZÞ for kf 0:ð5:3:1Þ

Similarly, for p a prime integer, one has	
Hk

n

�
R=ðaþ pRÞ

�

0
¼ ~HHk�1ðD;Z=pZÞ;

and an identification of Bockstein homomorphisms

~HHk�1ðD;Z=pZÞ ���!b ~HHkðD;Z=pZÞ���� ����	
Hk

n

�
R=ðaþ pRÞ

�

0
���!b 	

Hkþ1
n

�
R=ðaþ pRÞ

�

0
:

Proposition 5.5 extends these natural identifications.

Definition 5.4. Let D be a simplicial complex, and let t be a subset of its vertex set.
The link of t in D is the set

linkDðtÞ ¼ fs A D j sX t ¼ j and sW t A Dg:

Proposition 5.5. Let D be a simplicial complex with vertex set f1; . . . ; ng, and let a in

R ¼ Z½x1; . . . ; xn� be the associated Stanley–Reisner ideal.

Let G be an Abelian group. Given u A Zn, set ~uu ¼ fi j ui < 0g. Then

Hk
n ðR=anZ GÞu ¼

~HHk�1�j~uuj�linkDð~uuÞ;G� if ue 0;

0 if uj > 0 for some j;

�
where n ¼ ðx1; . . . ; xnÞ. Moreover, for ue 0, there is a natural identification of Bockstein

homomorphisms
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Hk

n

�
R=ðaþ pRÞ

�

u

���!b 	
Hkþ1

n

�
R=ðaþ pRÞ

�

u���� ����

~HHk�1�j~uuj�linkDð~uuÞ;Z=pZ� ���!b ~HHk�j~uuj�linkDð~uuÞ;Z=pZ�:
This essentially follows from Hochster [5], though we sketch a proof next; see also [1],

Section 5.3. Note that ~00 ¼ j and linkDðjÞ ¼ D, so one recovers (5.3.1) by setting u ¼ 0 and
G ¼ Z.

Proof. We may assume G is nontrivial; set T ¼ R=anZ G. As in Remark 5.3, we
compute Hk

n ðTÞ as the cohomology of the Čech complex �CC � ¼ �CC �ðx;TÞ.

We first consider the case where uj > 0 for some j. If the module

½Txi1 ���xik �u

is nonzero, then xj 3 0 in Txi1 ���xik , and so f j; i1; . . . ; ikg A D. Hence, if the complex ½ �CC ��u
is nonzero, then it computes—up to index shift—the reduced simplicial cohomology of a
cone, with j the cone vertex. It follows that ½Hk

n ðTÞ�u ¼ 0 for each k.

Next, suppose ue 0. Then the module ½Txi1 ���xik �u is nonzero precisely if fi1; . . . ; ikg A D

and ~uuL fi1; . . . ; ikg. Hence, after an index shift of j~uuj þ 1, the complex ½ �CC ��u agrees with
a complex C �

�
linkDð~uuÞ;G

�
that computes the reduced simplicial cohomology groups

~HH �
�
linkDð~uuÞ;G

�
.

The assertion about Bockstein maps now follows, since the complexes

0! ½ �CC �ðx;R=aÞ�u !
p ½ �CC �ðx;R=aÞ�u !

	
�CC �
�
x;R=ðaþ pRÞ

�

u
! 0

and

0! C �
�
linkDð~uuÞ;Z

�
!p C �

�
linkDð~uuÞ;Z

�
! C �

�
linkDð~uuÞ;Z=p

�
! 0

agree after an index shift. r

Thus far, we have related Bockstein homomorphisms on reduced simplicial coho-
mology groups to those on H �n

�
R=ðaþ pRÞ

�
. Our interest, however, is in the Bockstein

homomorphisms on H �a ðR=pRÞ. Towards this, we need the following duality result:

Proposition 5.6. Let ðS;mÞ be a Gorenstein local ring. Set d ¼ dimS, and let ð�Þ4
denote the functor HomSð�;EÞ, where E is the injective hull of S=m. Suppose p A S is a non-

zerodivisor on S as well as a nonzerodivisor on a finitely generated S-module M. Then there

are natural isomorphisms

Extkþ1S ðM;S=pSÞ4 ���! Extkþ1S ðM;SÞ4 ���!p Extkþ1S ðM;SÞ4 ���! ExtkSðM;S=pSÞ4???yG ???yG ???yG ???yG
Hd�k�2

m ðM=pMÞ ���! Hd�k�1
m ðMÞ ���!p H d�k�1

m ðMÞ ���! Hd�k�1
m ðM=pMÞ;

157Singh and Walther, Bockstein homomorphisms in local cohomology



where the top row originates from applying HomSðM;�Þ4 to the sequence

0! S !p S ! S=pS ! 0;

and the bottom row from applying H 0
mð�Þ to the sequence

0!M !p M !M=pM ! 0:

Proof. Let F� be a free resolution of M. The top row of the commutative diagram in
the proposition is the homology exact sequence of

0  ��� HomSðF�;SÞ4  ���p
HomSðF�;SÞ4  ��� HomSðF�;S=pSÞ4  ��� 0���� ���� ����

0  ��� F�nS E  ���p
F�nS E  ��� F�nS Ep  ��� 0;

where Ep ¼ HomSðS=pS;EÞ.

Let �CC � be the Čech complex on a system of parameters of S. Since S is Gorenstein,
�CC � is a flat resolution of Hdð �CC �Þ ¼ E, and therefore

HkðF�nS EÞ ¼ TorSk ðM;EÞ ¼ HkðMnS
�CC �Þ ¼ Hd�k

m ðMÞ:ð5:6:1Þ

Since p is M-regular, the complex F�=pF� is a resolution of M=pM by free S=pS-
modules. Hence

F�nS Ep ¼ F�nS ðS=pSÞnS=pS Ep ¼ ðF�=pF�ÞnS=pS Ep:

Repeating the proof of (5.6.1) over the Gorenstein ring S=pS, which has dimension d � 1,
we see that

HkðF�nS EpÞ ¼ Hd�1�k
m ðM=pMÞ: r

Remark 5.7. Let R ¼ Z½x1; . . . ; xn� be a polynomial ring. Fix an integer tf 2, and
set j to be the endomorphism of R with jðxiÞ ¼ xt

i for each i; note that j is flat. Consider
Rj as in Notation 3.2; the functor F with

FðMÞ ¼ Rj nRM

is an exact functor F on the category of R-modules. There is an isomorphism FðRÞGR

given by r 0n r 7! jðrÞr 0. More generally, for M a free R-module, one has FðMÞGM.
For a map a of free modules given by a matrix ðaijÞ, the map FðaÞ is given by the matrix�
jðaijÞ

�
. Since F takes finite free resolutions to finite free resolutions, it follows that for

R-modules M and N, one has natural isomorphisms

F
�
ExtkRðM;NÞ

�
GExtkR

�
FðMÞ;FðNÞ

�
;

see [13], §2, or [19], Remark 2.6.
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Let a be an ideal generated by square-free monomials. Since jðaÞL a, there is an
induced endomorphism j of R=a. The image of j is spanned by those monomials in
xt
1; . . . ; x

t
d that are not in a. Using the map that is the identity on these monomials, and kills

the rest, one obtains a splitting of j. It follows that the endomorphism j : R=a! R=a is
pure.

Since the family of ideals fjeðaÞRg is cofinal with the family faeg, the module Hk
a ðRÞ

is the direct limit of the system

ExtkRðR=a;RÞ ! F
�
ExtkRðR=a;RÞ

�
! F2

�
ExtkRðR=a;RÞ

�
! � � � :

The maps above are injective; see [10], Theorem 1, [14], Theorem 1.1, or [19], Theorem 1.3.
Similarly, one has injective maps in the system

lim�!
e

Fe
�
ExtkRðR=a;R=pRÞ

�
GHk

a ðR=pRÞ;

and hence a commutative diagram with injective rows and exact columns:

ExtkRðR=a;R=pRÞ ���! F
�
ExtkRðR=a;R=pRÞ

� ���! � � � ���! Hk
a ðR=pRÞ???y ???y ???y

Extkþ1R ðR=a;RÞ ���! F
�
Extkþ1R ðR=a;RÞ

� ���! � � � ���! Hkþ1
a ðRÞ

p

???y p

???y ???yp

Extkþ1R ðR=a;RÞ ���! F
�
Extkþ1R ðR=a;RÞ

� ���! � � � ���! Hkþ1
a ðRÞ???y ???y ???y

Extkþ1R ðR=a;R=pRÞ ���! F
�
Extkþ1R ðR=a;R=pRÞ

� ���! � � � ���! Hkþ1
a ðR=pRÞ:

It follows that the vanishing of the Bockstein homomorphism

Hk
a ðR=pRÞ ! Hkþ1

a ðR=pRÞ

is equivalent to the vanishing of the Bockstein homomorphism

ExtkRðR=a;R=pRÞ ! Extkþ1R ðR=a;R=pRÞ:

Theorem 5.8. Let D be a simplicial complex with vertices 1; . . . ; n. Set

R ¼ Z½x1; . . . ; xn�, and let aLR be the Stanley–Reisner ideal of D. For each prime integer

p, the following are equivalent:

(1) The Bockstein Hk
a ðR=pRÞ ! Hkþ1

a ðR=pRÞ is zero.

(2) The Bockstein homomorphism

~HHn�k�2�j~uuj�linkDð~uuÞ;Z=pZ�! ~HHn�k�1�j~uuj�linkDð~uuÞ;Z=pZ�
is zero for each u A Zn with ue 0.
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Setting u ¼ 0 immediately yields:

Corollary 5.9. If the Bockstein homomorphism

~HH jðD;Z=pZÞ ! ~HH jþ1ðD;Z=pZÞ

is nonzero, then so is the Bockstein homomorphism

Hn�j�2
a ðR=pRÞ ! Hn�j�1

a ðR=pRÞ:

Proof of Theorem 5.8. By Remark 5.7, condition (1) is equivalent to the vanishing
of the Bockstein homomorphism

ExtkRðR=a;R=pRÞ ! Extkþ1R ðR=a;R=pRÞ:

Set m ¼ ðp; x1; . . . ; xnÞ. Using Proposition 5.6 for the Gorenstein local ring Rm, this is
equivalent to the vanishing of the Bockstein homomorphism

Hn�k�1
m

�
R=ðaþ pRÞ

�
! Hn�k

m

�
R=ðaþ pRÞ

�
;

which, by Lemma 2.4, is equivalent to the vanishing of the Bockstein

Hn�k�1
n

�
R=ðaþ pRÞ

�
! Hn�k

n

�
R=ðaþ pRÞ

�
;

where n ¼ ðx1; . . . ; xnÞ. Proposition 5.5 now completes the proof. r

Example 5.10. Let D be the triangulation of the real projective plane RP2 from
Example 5.2, and a the corresponding Stanley–Reisner ideal. Let p be a prime integer.
We claim that the Bockstein homomorphism

H 3
a ðR=pRÞ ! H 4

a ðR=pRÞð5:10:1Þ

is nonzero if and only if p ¼ 2.

For the case p ¼ 2, first note that the cohomology groups in question are

~HH 0ðRP2;ZÞ ¼ 0; ~HH 1ðRP2;ZÞ ¼ 0; ~HH 2ðRP2;ZÞ ¼ Z=2;

~HH 0ðRP2;Z=2Þ ¼ 0; ~HH 1ðRP2;Z=2Þ ¼ Z=2; ~HH 2ðRP2;Z=2Þ ¼ Z=2;

so 0! Z!2 Z! Z=2! 0 induces the exact sequence

0 ��! ~HH 1ðRP2;Z=2Þ ��!d ~HH 2ðRP2;ZÞ ��!2 ~HH 2ðRP2;ZÞ ��!p ~HH 2ðRP2;Z=2Þ ��! 0���� ���� ���� ����
0 ������! Z=2 ���������!d

Z=2 �������!2
Z=2 ���������!p

Z=2 ������! 0:
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Since d and p are isomorphisms, so is the Bockstein homomorphism

~HH 1ðRP2;Z=2Þ ! ~HH 2ðRP2;Z=2Þ:

By Corollary 5.9, the Bockstein homomorphism (5.10.1) is nonzero in the case p ¼ 2.

If p is an odd prime, then R=ðaþ pRÞ is Cohen-Macaulay: this may be obtained from
Proposition 5.5, or see [5], page 180. Hence

Hk
m

�
R=ðaþ pRÞ

�
¼ 0 for each k3 3 and p > 2:

By [13], Theorem 1.1, it follows that

H 6�k
a ðR=pRÞ ¼ 0 for each k3 3 and p > 2;

so the Bockstein homomorphism (5.10.1) must be zero for p an odd prime.

We mention that the arithmetic rank of the ideal aR=pR in R=pR is 4, independent of
the prime characteristic p; see [20], Example 2.

Example 5.11. Let Lm be the m-fold dunce cap, i.e., the quotient of the unit disk
obtained by identifying each point on the boundary circle with its translates under rotation
by 2p=m; specifically, for each y, the points

eiðyþ2pr=mÞ for r ¼ 0; . . . ;m� 1

are identified. The 2-fold dunce cap L2 is homeomorphic to the real projective plane from
Examples 5.2 and 5.10.

The complex 0! Z!m Z! 0, supported in homological degrees 1, 2, computes the
reduced simplicial homology of Lm. Let lf 2 be an integer; l need not be prime. The re-
duced simplicial cohomology groups of Lm with coe‰cients in Z and Z=l are

~HH 0ðLm;ZÞ ¼ 0; ~HH 1ðLm;ZÞ ¼ 0; ~HH 2ðLm;ZÞ ¼ Z=m;

~HH 0ðLm;Z=lÞ ¼ 0; ~HH 1ðLm;Z=lÞ ¼ Z=g; ~HH 2ðLm;Z=lÞ ¼ Z=g;

where g ¼ gcdðl;mÞ. Consequently, 0! Z!l Z! Z=l! 0 induces the exact sequence

0 ���! ~HH 1ðLm;Z=lÞ ���!d ~HH 2ðLm;ZÞ ���!l ~HH 2ðLm;ZÞ ���!p ~HH 2ðLm;Z=lÞ ���! 0���� ���� ���� ����
0 ������! Z=g ���������!d

Z=m �������!l
Z=m ���������!p

Z=g ������! 0:

The image of d is the cyclic subgroup of Z=m generated by the image of m=g. Consequently
the Bockstein homomorphism

~HH 1ðLm;Z=lÞ ! ~HH 2ðLm;Z=lÞ

is nonzero if and only if g does not divide m=g, equivalently, g2 does not divide m.
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Suppose m is the product of distinct primes p1; . . . ; pr. By the above discussion, the
Bockstein homomorphisms ~HH 1ðLm;Z=piÞ ! ~HH 2ðLm;Z=piÞ are nonzero. Let D be a simpli-
cial complex corresponding to a triangulation of Lm, and let a in R ¼ Z½x1; . . . ; xn� be the
corresponding Stanley–Reisner ideal. Corollary 5.9 implies that the Bockstein homomor-
phism

Hn�3
a ðR=piRÞ ! Hn�2

a ðR=piRÞ

is nonzero for each pi. It follows that the local cohomology module Hn�2
a ðRÞ has a pi-

torsion element for each i ¼ 1; . . . ; r.

Example 5.12. We record an example where the Bockstein homomorphism
Hk

a ðR=pRÞ ! Hkþ1
a ðR=pRÞ is zero though Hkþ1

a ðRÞ has p-torsion; this torsion is detected
by ‘‘higher’’ Bockstein homomorphisms

Hk
a ðR=peRÞ ! Hkþ1

a ðR=peRÞ;

i.e., those induced by 0! Z!p
e

Z! Z=pe ! 0.

Consider the 4-fold dunce cap L4. It follows from Example 5.11 that the Bockstein
homomorphism

Z=2 ¼ ~HH 1ðL4;Z=2Þ ! ~HH 2ðL4;Z=2Þ ¼ Z=2

is zero, whereas the Bockstein homomorphism

Z=4 ¼ ~HH 1ðL4;Z=4Þ ! ~HH 2ðL4;Z=4Þ ¼ Z=4

is nonzero. Let a in R ¼ Z½x1; . . . ; x9� be the Stanley–Reisner ideal corresponding to the
triangulation of L4 depicted in Figure 2. While we have restricted to p-Bockstein homo-
morphisms, corresponding results may be derived for pe-Bockstein homomorphisms; it
then follows that the Bockstein homomorphism H 6

a ðR=2RÞ ! H 7
a ðR=2RÞ is zero, whereas

the Bockstein H 6
a ðR=4RÞ ! H 7

a ðR=4RÞ is nonzero.

Figure 2. A triangulation of the 4-fold dunce cap.
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Given finitely many prime integers p1; . . . ; pr, Example 5.11 provides a polynomial
ring R ¼ Z½x1; . . . ; xn� with monomial ideal aLR such that, for some k, the Bockstein
homomorphism

Hk�1
a ðR=piRÞ ! Hk

a ðR=piRÞ

is nonzero for each pi, in particular, Hk
a ðRÞ has nonzero pi-torsion elements. The following

theorem shows that for a a monomial ideal, each Hk
a ðRÞ has nonzero p-torsion elements

for at most finitely many primes p.

Theorem 5.13. Let R ¼ Z½x1; . . . ; xn� be a polynomial ring, and a an ideal that is

generated by monomials. Then each local cohomology module Hk
a ðRÞ has at most finitely

many associated prime ideals. In particular, Hk
a ðRÞ has nonzero p-torsion elements for at

most finitely many prime integers p.

Proof. Consider the Nn-grading on R where deg xi is the i-th unit vector. This in-
duces an Nn-grading on Hk

a ðRÞ, and it follows that each associated prime of Hk
a ðRÞ must

be Nn-graded, hence of the form ðxi1 ; . . . ; xikÞ or ðp; xi1 ; . . . ; xikÞ for p a prime integer. Thus,
it su‰ces to prove that Hk

a ðRÞ has nonzero p-torsion elements for at most finitely many
primes p.

After replacing a by its radical, assume a is generated by square-free monomials. Fix
an integer tf 2 and, as in Remark 5.7, let j be the endomorphism of R with jðxiÞ ¼ xt

i for
each i. Then

Hk
a ðR=pRÞG lim�!

e

Fe
�
ExtkRðR=a;RÞ

�
;

where the maps in the direct system are injective. It su‰ces to verify that M has nonzero
p-torsion if and only if FðMÞ has nonzero p-torsion; this is indeed the case since F is an
exact functor. r
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