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Abstract. Let I be a divisorial ideal of a strongly F-regular ringA.
K.-i.Watanabe raised thequestionwhether thesymbolicReesalgebraRs(I) =
⊕n≥0I

(n) is Cohen-Macaulay whenever it is Noetherian. We develop the
notion of multi-symbolic Rees algebras and use this to show thatRs(I) is in-
deed Cohen-Macaulay whenever a certain auxiliary ring is finitely generated
overA.

1 Introduction

In [Wa] K.-i. Watanabe raised the issue whether for a divisorial idealI of a
strongly F-regular ringA, the symbolic Rees algebraRs(I) =⊕

n≥0 I
(n)Un is Cohen-Macaulay whenever it is Noetherian. Watanabe

showed that this is true whenI is an anti-canonical ideali.e., an ideal
of pure height one which represents the inverse of the class of the canonical
module ofA in the divisor class groupCl(A). In this paper we work in the
more general setting of multi-symbolic Rees algebras and as a corollary of
our main result, Theorem 5.1, we obtain the following positive answer to
Watanabe’s question:

Theorem 1.1 Let(A,m) be a strongly F-regular ring with canonical ideal
ω. Given an idealI of A of pure height one, chooseJ of pure height one
such that[I] + [J ] + [ω] = 0 in Cl(A). If the multi-symbolic Rees algebra
Rs(I, J) is finitely generated overA, thenRs(I) is Cohen-Macaulay.

The hypothesis thatA is strongly F-regular is indeed used in an essential
way: Watanabe has constructed an example of an F-rational ringA with a
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divisorial idealI such that the symbolic Rees algebraRs(I) is not Cohen-
Macaulay, see [Wa, Example 4.4].

In general, of course, the symbolic Rees algebraRs(I) for a divisorial
idealI of a normal ringA need not be Noetherian, e.g., ifA is the coordinate
ring of an elliptic curve, andI is a prime ideal of height one, which has
infinite order in the divisor class group,Cl(A). However if we specialize
to the case whenA is F-rational, a two-dimensional example is easily ruled
out since, by a result of J. Lipman, [Li], the divisor class group of a two
dimensional rational singularity (and hence by [Sm2] of a two dimensional
F-rational ring) is a torsion group. In dimension three the hypothesis thatA
has rational singularities is no longer sufficient: S. D. Cutkosky has shown
that a symbolic Rees algebra over a three dimensional ring with rational
singularities need not be Noetherian, see [Cu, Theorem 6]. It should be
noted that ifA is a Gorenstein ring of dimension three overC with rational
singularities, then symbolic Rees algebras at divisorial ideals ofAare finitely
generated by [Ka, Theorem 6.1].

2 Preliminaries

Throughout our discussion all rings are commutative and have a unit ele-
ment. Unless stated otherwise, we shall assume our rings contain a fieldK
of characteristicp > 0. We use the lettere to denote a variable nonnegative
integer, andq to denote thee th power ofp. We denote byF the Frobenius
endomorphism ofA, i.e.,F (a) = ap. For a reduced ringA of characteristic
p > 0, A1/q shall denote the ring obtained by adjoining allq th roots of
elements ofA. The ringA is said to beF-finite if A1/p is module-finite over
A. Note that a finitely generated algebraA over a fieldK is F-finite if and
only if K1/p is a finite field extension ofK.

In the notation(A,m), the ringA is either a Noetherian local ring with
maximal idealm, or anN-graded ring with homogeneous maximal ideal
m = ⊕i>0Ai which is finitely generated over a fieldA0 = K.

By a normal domain, we shall mean a Noetherian domain which is inte-
grally closed in its field of fractions.

Our references for the theory of tight closure are [HH1], [HH2], [HH3],
and [HH4]. We next recall some definitions and well known facts.

Definition 2.1 A ring A is said to be F-pure if for allA-modulesM , the
Frobenius homomorphismF :M → F (M) is injective.
An F-finite domainA is strongly F-regular if for every nonzero element

c ∈ A, there existsq = pe such that theA-linear inclusionA → A1/q

sending1 to c1/q splits as a map ofA-modules.
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Regular rings are strongly F-regular, and strongly F-regular rings are
Cohen-Macaulay. IfB is a strongly F-regular ring andA is a subring which
is a direct summand ofB as anA-module, thenA is also strongly F-regular.

Let (A,m) be an F-finite local domain, and letE = EA(A/m) denote
the injective hull of the residue fieldA/m. K. E. Smith has shown thatA is
strongly F-regular if and only if the zero submodule ofE is tightly closed,
see [Sml, Proposition 7.1.2]. Hence ifζ ∈ E is a socle generator,A is
strongly F-regular if and only if for every nonzero elementc ∈ R, there
exists a positive integere such thatcF e(ζ) �= 0.

Definition 2.2 LetA be a normal domain andI an ideal of pure height one.
ThenI(n) denotes then th symbolic power of the idealI, i.e., the reflexive
hull of In. If F is the set of minimal primes ofI, we have

I(n) =

( ⋂
P∈F

InAP

)
∩A.

3 Multi-symbolic Rees algebras

Let (A,m) be a Noetherian normal local domain, andI an ideal of pure
height one. The symbolic Rees algebra

Rs(I) =
⊕
n≥0

I(n)Un ⊆ A[U ]

is an object that has been studied extensively. We generalize this construction
to a finite family of idealsI1, I2, . . . , Ik, each of pure height one, by defining

Rs(I1, I2, . . . , Ik) =
⊕

n1,...,nk∈N

(In1
1 I

n2
2 · · · Ink

k )∗∗ Un1
1 U

n2
2 · · ·Unk

k

as a subring of the polynomial ringA[U1, . . . , Uk]. Here ∗ denotes the
dualHomA(−, A). In this notation(In1

1 · · · Ink
k )∗∗ is the reflexive hull of

In1
1 · · · Ink

k .

Proposition 3.1 Let (A,m) be a normal domain andI1, . . . , Ik be ide-
als ofA of pure height one. Then the multi-symbolic Rees algebraB =
Rs(I1, . . . , Ik) is a Krull domain. Hence the ringB is a normal domain
whenever it is Noetherian.

Proof. Let F be the set of all minimal prime ideals ofI1, . . . , Ik. We then
have

Rs(I1, . . . , Ik) =

( ⋂
P∈F

A[I1APU1, . . . , IkAPUk]

)
∩A[U1, . . . , Uk]

which, being a finite intersection of Krull domains, is a Krull domain.��
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Proposition 3.2 Let (A,m) be a normal domain, andI1, . . . , Ik be ide-
als of A of pure height one such that the multi-symbolic Rees algebra
B = Rs(I1, I2, . . . , Ik−1) is Noetherian. Let̃Ik = (IkB)∗∗ denote the
reflexivization ofIkB as aB-module, i.e.,∗ denotesHomB(−, B). Then
there is a natural isomorphism

Rs(Ĩk) = B ⊕ Ĩk ⊕ Ĩ(2)k ⊕ · · · ∼= Rs(I1, I2, . . . , Ik).

Proof. There is a natural inclusion

B ⊕ IkUkB ⊕ I2kU2
kB ⊕ · · · → Rs(I1, . . . , Ik).

To obtain the isomorphism asserted, we need to verify that a reflexiveB-
module is reflexive when considered as anA-module. For this it suffices to
verify thatB is a reflexiveA-module, but this follows sinceB is a direct
sum of reflexiveA-modules. ��

This gives us the immediate corollary:

Corollary 3.3 Let (A,m) be a normal domain, andI1, . . . , Ik ideals ofA
of pure height one such thatB = Rs(I1, I2, . . . , Ik) is Noetherian. ThenB
arises by a successive construction of symbolic Rees algebras starting with
the ringA.

Theorem 3.4 Let (A,m) be a normal domain, andI1, . . . , Ik be ideals
of A of pure height one such that the multi-symbolic Rees algebraB =
Rs(I1, I2, . . . , Ik) is Noetherian. Then the inclusionA ⊆ B satisfies
Samuel’s PDE condition, i.e., for a height one primeP ∈ SpecB, we
haveheight(P ∩A) ≤ 1. This gives a natural map of divisor class groups,
i : Cl(A) → Cl(B), which is an isomorphism.
Furthermore ifA andB are homomorphic images of regular local rings

andωA andωB denote the canonical modules ofA andB respectively, we
have the relation

[ωB] = i([ωA] + [I1] + · · · + [Ik]).

Proof. The corresponding statements for symbolic Rees algebras (i.e., the
casek = 1) are covered by [GHNV, Lemma 4.3 (2), Proposition 4.4, The-
orem 4.5], see also [ST, Proposition 2.6]. The assertions here follow by
combining these results with Corollary 3.3 above.��
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Determining when symbolic Rees algebras are Cohen-Macaulay is a
subtle issue: as remarked earlier, Watanabe has constructed examples where
A is a ring with rational singularities andI is an anti-canonical ideal, but the
symbolic Rees ringRs(I) is not Cohen-Macaulay. However if the divisorial
idealsI1, . . . , Ik have finite order as elements of the divisor class group
Cl(A), we have the following extension of [GHNV, Theorem 4.1]:

Theorem 3.5 Let (A,m) be a normal domain, andI1, . . . , Ik be ideals of
pure height one which have finite order as elements of the divisor class
groupCl(A). Then the multi-symbolic Rees algebraB = Rs(I1, . . . , Ik) is
Cohen-Macaulay if and only if for allni ∈ N the ideals(In1

1 · · · Ink
k )∗∗ are

maximal Cohen-MacaulayA-modules.

Proof. Letai denote the order of[Ii] in Cl(A), and fix elementsxi such that

I
(ai)
i = xiA, for 1 ≤ i ≤ k. The elementsx1U

a1 , . . . , xkU
ak form part of

a system of parameters forB, and it is easily verified that this is a regular
sequence onB. Next note that

B/(x1U
a1 , . . . , xkU

ak) =
⊕

0≤nij<ai

(In1j

1 · · · Inkj

k )∗∗Un1j

1 · · ·Unkj

k

and soB is a Cohen-Macaulay ring if and only every system of param-
eters forA is a regular sequence on the ideals(In1

1 I
n2
2 · · · Ink

k )∗∗ for all
n1, . . . , nk ∈ N. ��

4 Examples

Example 4.1Consider the subringA = K[ax, ay, bx, by]of the polynomial
ringK[a, b, x, y] and the height one prime idealsPi = (ax, ay) andQj =
(ax, bx) where1 ≤ i ≤ n and1 ≤ j ≤ m. Then the multi-symbolic Rees
algebra

B = A(P1, . . . , Pn, Q1, . . . , Qm)

is isomorphic to the Segre product of two polynomial rings,

K[X1, . . . , Xn+2]#K[Y1, . . . , Ym+2].

We haveCl(A) = Cl(B) = Z, and

[ωB] = i(n[P ] +m[Q]) = i((n−m)[P ]).

In particular,B is Gorenstein if and only ifn = m.
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Example 4.2LetA = K[X1, . . . , Xm](n) denote then th Veronese subring
of the polynomial ringK[X1, . . . , Xm]. We compute all multi-symbolic
Rees algebras over the ringA. The divisor class group ofA isCl(A) = Z/nZ

and we fix as a generator, the height one prime ideal

P = (X1K[X1, . . . , Xm]) ∩A

Divisorial ideals ofA are of the formP (i) up to isomorphism, and the multi-
symbolic Rees algebraA(P (α1), . . . , P (αk)) is determined by thek-tuple
of integersα1, . . . , αk. We claim thatA(P (α1), . . . , P (αk)) is isomorphic to
then th Veronese subring of the polynomial ring

K[X1, . . . , Xm, X
α1
1 U1, . . . , X

αk
1 Uk]

where the variablesU1, . . . , Uk have weight zero. To see this, note that by
definition we have

A(P (α1), . . . , P (αk)) =
⊕
ni≥0

P (n1α1+···+nkαk)Un1
1 · · ·Unk

k

and that a monomial inX1, . . . , Xm is an element ofP (n1α1+···+nkαk) pre-
cisely if it is a multiple ofXn1α1+···+nkαk

1 whose degree is a multiple of
n.

5 An application to tight closure theory

Let(A,m) be a strongly F-regular domain with canonical moduleω. In [Wa]
Watanabe showed that the anti-canonical symbolic Rees algebraRs(I) is
Cohen-Macaulay (in fact, strongly F-regular) whenever it is Noetherian,
and raised the question whether this is true for an arbitrary idealI of pure
height one. As an application of the construction of multi-symbolic Rees
algebras, we show thatRs(I) is strongly F-regular, and in particular is
Cohen-Macaulay, whenever a certain auxiliary algebra is finitely generated
overA. Our main theorem is:

Theorem 5.1 Let (A,m) be an F-finite normal ring with canonical ideal
ω. Given an idealI of A of pure height one, chooseJ of pure height one
such that[I] + [J ] + [ω] = 0 in the divisor class groupCl(A). Assume
that the multi-symbolic Rees algebraRs(I, J) is finitely generated overA.
If A is F-pure, then the ringsRs(I) andRs(I, J) are also F-pure. IfA is
strongly F-regular, thenRs(I) andRs(I, J) are strongly F-regular, and in
particular, are Cohen-Macaulay.
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Proof. Let B = Rs(I) = ⊕i≥0I
(i)U i and J̃ = (JB)∗∗ where∗ denotes

HomB(−, B). If R = Rs(I, J) ⊆ A[U, V ], by Proposition 3.2 we have

R = Rs(J̃) = B ⊕ J̃ ⊕ J̃ (2) ⊕ · · ·
Settingd = dimA, we havedimR = d + 2. Consider the maximal ideal
of B,

m = m+ IU + I(2)U2 + · · ·
and the maximal ideal ofR,

M = m + J̃V + J̃ (2)V 2 + · · · .
In [Wa, Theorem 2.2] Watanabe has computed the highest local cohomology
module of a symbolic Rees ring, and furthermore determined the Frobenius
action on it. Using this we have

Hd+2
M (R) ∼=

⊕
j<0

Hd+1
m (J̃ (j))V j .

Again using Watanabe’s result we get

Hd+2
M (R) ∼=

⊕
i<0,j<0

Hd
m(I(i)J (j))U iV j .

By Theorem 3.4 and the fact that[I] + [J ] + [ω] = 0 in Cl(A) we see
thatR = A(I, J) is quasi-Gorenstein, i.e., has a trivial canonical module.
HenceHd+2

M (R) is the injective hull ofR/M, and so the strong F-regularity
or F-purity ofR can be determined by studying the action of the Frobenius
onHd+2

M (R).
Let ζ be a socle generator ofHd

m(ω). Then the socle ofHd+2
M (R) is

generated byζU−1V −1. If A is F-pure, thenF (ζ) �= 0 and so

F (ζU−1V −1) = F (ζ)U−pV −p �= 0,

by whichR is F-pure. ConsequentlyB = Rs(I), being a direct summand
of R, is also F-pure.

Next assume thatA is strongly F-regular. LetcUnV m ∈ R be a nonzero
element wherec ∈ (InJm)∗∗. To show thatR is also strongly F-regular, it
suffices to show that(cUnV m)F e(ζU−1V −1) �= 0 for some positive integer
e. Choosing a suitable multiple, if necessary, we may assume thatn = m.
We may choose a canonical moduleω for A such that(IJ)∗∗ = ω(−1).
Thenc ∈ (InJn)∗∗ = ω(−n). SinceA is strongly F-regular we may choose
e such thatq = pe > n andcF e(ζ) �= 0 inHd

m(ω(q)). But thencF e(ζ) �= 0
as an element ofHd

m(ω(q−n)). Hence

cUnV n · F e(ζU−1V −1) = cF e(ζ)(UV )n−q ∈ Hd
m(ω(q−n))(UV )n−q

is nonzero, and soR is strongly F-regular. Hence its direct summandB is
also strongly F-regular, and therefore is Cohen-Macaulay.��
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6 Rees rings

So far in our discussion, we had been considering symbolic Rees rings at
ideals of pure height one. In this section we switch to the other extreme and
consider the Rees ring at the homogeneous maximal idealm of anN-graded
normal ring(A,m). (In this case the Rees ringR = A[mT ] agrees with the
symbolic Rees ringRs(m).) Although the relation between the properties
of A and those ofR = A[mT ] seems to be very mysterious, there is one
case where easy answers are available:

Proposition 6.1 Let(A,m)beanN-gradednormal ringwhich is generated
by its degree one elements over the fieldA0 = K. Consider the Rees ring
R = A[mT ]. If A is strongly F-regular, F-pure, or a ring of characteristic
zero with rational singularities, then the same is true forR.

Proof. Note thatR = A[mT ] is isomorphic to the Segre productA#B
whereB = K[S, T ] is a polynomial ring in two variables. ConsequentlyR
is a direct summand ofA[S, T ]. If A has rational singularities, then so does
A[S, T ], and consequentlyR has rational singularities (in characteristic0)
by Boutot’s result, [Bo]. Similarly ifA is strongly F-regular or F-pure, the
same is true forA[S, T ], and its direct summand,R. ��

In the following exampleA is a normal monomial ring, i.e., a normal sub-
ring of a polynomial ring which is generated by monomials. Consequently
A is strongly F-regular but we shall see that the Rees ringA[mT ] fails to be
normal.

Example 6.2Consider the monomial ring

A = K[W 3X, X3Y, Y 3Z, Z3W, W 2X2Y 2Z2] ⊆ K[W,X, Y, Z]

whereK is a field. It is not difficult to see thatA is isomorphic to the the
hypersurface

K[U0, U1, U2, U3, U4]/(U2
0 − U1U2U3U4)

and is a normal ring. Consequently by the main result of [Ho],A is a direct
summand of a regular ring, and so is strongly F-regular. Take the Rees ring
beR = A[mT ]. The elementW 2X2Y 2Z2T 2 is in the fraction field ofR,
although it is not inR itself. However

(W 2X2Y 2Z2T 2)2 = (W 3XT )(X3Y T )(Y 3ZT )(Z3WT ) ∈ R
and soR is not normal. Furthermore, when the characteristic of the fieldK
is 2, it is easily verified thatR is not F-pure, although the ringA is F-pure.
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In the next exampleA is an F-rational hypersurface, but the Rees ring
A[mT ], while being Gorenstein and normal, is not F-rational.

Example 6.3LetA = K[W,X, Y, Z]/(W 2 +X3 + Y 6 + Z7). ThenA is
F-rational whenever the characteristic of K isp ≥ 7. We show that the Rees
ringR = A[mT ], while being Gorenstein and normal, is not F-rational.

First note that the Rees ringR is Gorenstein. This holds, for example,
by [GS, Theorem 1.2] since the associated graded ring

grm(R) ∼= K[W,X, Y, Z]/(W 2)

is Gorenstein witha-invarianta(grm(R)) = −2.
We next examineR on the punctured spectrum. Forf ∈ m, the local-

izationRf
∼= Af [T ] is a polynomial ring overAf . For an elementfT with

f ∈ m, note that

RfT
∼= K

[
w

f
,
x

f
,
y

f
,
z

f
, f, fT,

1
fT

]
.

Examining these localizations asf ranges through the set{w, x, y, z}, we
can see thatR is indeed normal.

To see thatR is not F-rational, takef = z above and letU1 = w
z ,U2 = x

z
andU3 = y

z . ThenRzT
∼= S[zT, 1/zT ] where

S = K[U1, U2, U3, Z]/(U2
1 + U3

2Z + U6
3Z

4 + Z5).

It suffices to show thatS is not F-rational. Consider the grading onS where
the variablesU1, U2, U3, Z have weights15, 8, 1, 6 respectively. Thea-
invariant ofS is easily computed to bea(s) = 0, and soS cannot be
F-rational.
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