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1. introduction

Throughout, R will denote a commutative Noetherian ring with a unit element.
Let a be an ideal of R, and i a non-negative integer. The local cohomology module
Hi

a(R) is defined as
Hi

a(R) = lim−→
k∈N

Exti
R

(
R/ak, R

)
,

where the maps in the direct limit system are those induced by the natural surjec-
tions R/ak+1 −→ R/ak. If a is generated by elements x1, . . . , xn, then Hi

a(R) is
isomorphic to the ith cohomology module of the extended Čech complex

0 −→ R −→
n⊕

i=1

Rxi
−→

⊕
i<j

Rxixj
−→ · · · −→ Rx1···xn

−→ 0.

For an element f ∈ R and a positive integer m, we use [f +(xm
1 , . . . , xm

n )] to denote
the cohomology class[

f

xm
1 · · ·xm

n

]
∈ Rx1···xn∑

i Rx1···x̂i···xn

∼= Hn
a (R).

It is easily seen that [f + (xm
1 , . . . , xm

n )] = 0 in Hn
a (R) if and only if there exists an

integer k ≥ 0, such that

fxk
1 · · ·xk

n ∈
(
xm+k

1 , . . . , xm+k
n

)
R.

Consequently Hn
a (R) may be also identified with the direct limit

lim−→
m∈N

R/(xm
1 , . . . , xm

n )R,

where the map R/(xm
1 , . . . , xm

n ) −→ R/(xm+1
1 , . . . , xm+1

n ) is multiplication by the
image of the element x1 · · ·xn.

As these descriptions suggest, Hi
a(R) is usually not finitely generated as an

R-module. However local cohomology modules have useful finiteness properties in
certain cases, e.g., for a local ring (R,m), the modules Hi

m(R) satisfy the descending
chain condition. This implies, in particular, that for all i ≥ 0,

HomR

(
R/m,Hi

m(R)
) ∼= 0 :Hi

m(R) m
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is a finitely generated R-module. Grothendieck conjectured that for all ideals a ⊂ R,
the modules

HomR

(
R/a,Hi

a(R)
) ∼= 0 :Hi

a(R) a

are finitely generated, [SGA2, Exposé XIII, page 173]. In [Ha, §3] Hartshorne gave
a counterexample to this conjecture: Let K be a field and R be the hypersurface

K[w, x, y, z]/(wx− yz).

Set a = (x, y) and consider the local cohomology module H2
a(R). It is easily seen

that the elements

[ynzn + (xn+1, yn+1)R] ∈ H2
a(R) for n ≥ 0

are nonzero, and are killed by the maximal ideal m = (w, x, y, z). In fact, they span
the module 0 :H2

a(R) m which is a vector space of countably infinite dimension, and
so it cannot be finitely generated as an R-module. It follows that 0 :H2

a(R) a is not
finitely generated as well.

In [Ha] Hartshorne also began the study of the cofiniteness of local cohomology
modules: An R-module M is a-cofinite if Supp(M) ⊆ V (a) and Exti

R(R/a,M) is
finitely generated for all i ≥ 0. Some of the work on cofiniteness may be found
in the papers [Ch, DM, HK, HM, Kw, Me, Ya], and [Yo]. A related question on
the torsion in local cohomology modules was raised by Huneke at the Sundance
Conference in 1990, and will be our main focus here.

Question 1.1. [Hu1] Is the number of associated prime ideals of a local cohomology
module Hi

a(R) always finite?

The first results were obtained by Huneke and Sharp.

Theorem 1.2. [HS, Corollary 2.3] Let R be a regular ring containing a field of
positive characteristic, and a ⊂ R an ideal. Then for all i ≥ 0,

Ass Hi
a(R) ⊆ Ass Exti

R(R/a, R) (∗)

In particular, Ass Hi
a(R) is a finite set.

Remark 1.3. The proof of the above theorem relies heavily on the flatness of
the Frobenius endomorphism which, by [Ku, Theorem 2.1], characterizes regular
rings of positive characteristic. The containment (∗) may fail for regular rings of
characteristic zero: Let R = C[u, v, w, x, y, z], and a be the ideal generated by the
2× 2 minors ∆i of the matrix

M =
(

u v w

x y z

)
.

Then Ext3R(R/a, R) = 0 since R/a has projective dimension two as an R-module.
However, as observed by Hochster, the module H3

a(R) is nonzero: To see this,
consider the linear action of G = SL2(C) on R, where an element g ∈ G maps the
entries of the matrix M to those of the matrix g ×M . The ring of invariants for
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this action is the polynomial ring RG = C[∆1,∆2,∆3]. Since SL2(C) is linearly
reductive, the inclusion RG ↪→ R splits via an RG-linear retraction, and so

H3
(∆1,∆2,∆3)

(RG) −→ H3
a(R)

is a split inclusion. Since the module H3
(∆1,∆2,∆3)

(RG) is nonzero, it follows that
H3

a(R) must be nonzero as well.

While Ass Hi
a(R) may not be a subset of Ass Exti

R(R/a, R), Question 1.1 does
have an affirmative answer for all unramified regular local rings by combining the
result of Huneke-Sharp with the following two theorems of Lyubeznik.

Theorem 1.4. [Ly1, Corollary 3.6 (c)] Let R be a regular ring containing a field of
characteristic zero and a an ideal of R. Then for every maximal ideal m of R, the
set of associated primes of a local cohomology module Hi

a(R), which are contained
in the ideal m, is finite.

If the regular ring R is finitely generated over a field of characteristic zero, then
Ass Hi

a(R) is a finite set.

To illustrate the key point here, consider the case where R = C[x1, . . . , xn], and
let D be the ring of C-linear differential operators on R. It turns out that D is
left and right Noetherian, that Hi

a(R) is a finitely generated D-module, and con-
sequently that Ass Hi

a(R) is finite. Lyubeznik’s result below also uses D-modules,
though the situation in mixed characteristic is more subtle.

Theorem 1.5. [Ly2, Theorem 1] If R is an unramified regular local ring of mixed
characteristic, and a is an ideal of R, then Ass Hi

a(R) is a finite set.

So far we have restricted the discussion to local cohomology modules of the form
Hi

a(R). For an R-module M , the local cohomology modules Hi
a(M) are defined

similarly as

Hi
a(M) = lim−→

k∈N
Exti

R

(
R/ak,M

)
, where i ≥ 0.

If M is a finitely generated R-module, then H0
a(M) may be identified with the

submodule of M consisting of elements which are killed by a power of the ideal
a, and consequently H0

a(M) is a finitely generated R-module. If i is the smallest
integer for which Hi

a(M) is not finitely generated, then the set Ass Hi
a(M) is also

finite, as proved in [BF] and [KS]. Other positive answers to Question 1.1 include
results in small dimensions such as the following theorem due to Marley:

Theorem 1.6. [Ma, Corollary 2.7] Let R be a local ring and M a finitely generated
R-module of dimension at most three. Then Ass Hi

a(M) is finite for all ideals a ⊂ R.

For some of the other work on this question, we refer the reader to the papers
[BKS, BRS, He, Ly3] and [MV].
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2. p-torsion

In [Si1] the author constructed a hypersurface for which a local cohomology
module has infinitely many associated prime ideals, thereby demonstrating that
Question 1.1, in general, has a negative answer. Since the argument is quite ele-
mentary, we include it here.

Theorem 2.1. [Si1, §4] Consider the hypersurface

R = Z[u, v, w, x, y, z]/(ux + vy + wz)

and the ideal a = (x, y, z)R. Then for every prime integer p, the local cohomology
module H3

a(R) has a p-torsion element. Consequently H3
a(R) has infinitely many

associated prime ideals.

Proof. We identify H3
a(R) with the direct limit

lim−→
k∈N

R/(xk, yk, zk)R,

where the maps are induced by multiplication by the element xyz. For a prime
integer p, the fraction

λp =
(ux)p + (vy)p + (wz)p

p
has integer coefficients, and is therefore an element of R. We claim that the element

ηp = [λp + (xp, yp, zp)R] ∈ H3
a(R)

is nonzero and p-torsion. Note that p · ηp = [pλp + (xp, yp, zp)R] = 0, and what
remains to be checked is that ηp is nonzero, i.e., that

λp(xyz)k /∈
(
xp+k, yp+k, zp+k

)
R for all k ∈ N.

We assign weights to the Z-algebra generators of the ring R as follows:

x : (1, 0, 0, 0), u : (−1, 0, 0, 1),

y : (0, 1, 0, 0), v : (0,−1, 0, 1),

z : (0, 0, 1, 0), w : (0, 0,−1, 1).

With this grading, λp is a homogeneous element of degree (0, 0, 0, p). Now suppose
we have a homogeneous equation of the form

λ(xyz)k = c1x
p+k + c2y

p+k + c3z
p+k,

then we must have deg(c1) = (−p, k, k, p), i.e., c1 must be an integer multiple of the
monomial upykzk. Similarly c2 is an integer multiple of vpzkxk and c3 of wpxkyk.
Consequently

λ(xyz)k ∈
(
upykzkxp+k, vpzkxkyp+k, wpxkykzp+k

)
R

= (xyz)k (upxp, vpyp, wpzp)R,

and so λ ∈ (upxp, vpyp, wpzp)R. After specializing u 7→ 1, v 7→ 1, w 7→ 1, this
implies that

xp + yp + (−1)p(x + y)p

p
∈ (p, xp, yp) Z[x, y],
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which is easily seen to be false. �

This example, however, does not shed light on Question 1.1 in the case of local
rings or rings containing a field. Katzman constructed the first examples to demon-
strate that Huneke’s question has a negative answer in these cases as well, [Ka2].
The equicharacteristic case is discussed here in §3. We next recall a conjecture of
Lyubeznik.

Conjecture 2.2. [Ly1, Remark 3.7 (iii)] If R is a regular ring and a an ideal, then
the local cohomology modules Hi

a(R) have finitely many associated prime ideals.

This conjecture has been settled for unramified regular local rings by the results
of Huneke-Sharp and Lyubeznik mentioned earlier. However it remains open for
polynomial rings over the integers, and we discuss some of its implications in this
case.

Remark 2.3. Let R be a polynomial ring in finitely many variables over the
integers, and let a be an ideal of R. Then for every prime integer p, we have a short
exact sequence

0 −→ R
p−→ R −→ R/pR −→ 0,

which induces a long exact sequence of local cohomology modules,

· · · −→ Hi−1
a (R/pR)

δi−1
p−→ Hi

a(R)
p−→ Hi

a(R) −→ Hi
a(R/pR)

δi
p−→ Hi+1

a (R)
p−→ · · · .

The image of each connecting homomorphism δi
p is annihilated by p, and hence every

nonzero element of δi
p(H

i
a(R/pR)) is a p-torsion element. Consequently Lyubeznik’s

conjectures implies that for all but finitely many prime integers p, we must have
δi
p = 0 for all i ≥ 0.

Remark 2.4. Again, let R be a polynomial ring over the integers. Let fi, gi be
elements of R such that

f1g1 + f2g2 + · · ·+ fngn = 0.

Consider the ideal a = (g1, . . . , gn)R and the local cohomology module

Hn
a (R) = lim−→

k∈N
R/(gk

1 , . . . , gk
n)R,

where the maps in the direct system are induced by multiplication by the element
g1 · · · gn. For a prime integer p and prime power q = pe, let

λq =
(f1g1)q + · · ·+ (fngn)q

p
.

Then λq ∈ R, and we set

ηq = [λq + (gq
1, . . . , g

q
n)R] ∈ Hn

a (R).

It is immediately seen that p · ηq = 0 and so if ηq is a nonzero element of Hn
a (R),

then it must be a p-torsion element. Hence Lyubeznik’s conjecture implies that for
all but finitely many prime integers p, the elements ηq must be zero, i.e., for some
k ∈ N, which may depend on q = pe, we have

λq(g1 · · · gn)k ∈ (gq+k
1 , . . . , gq+k

n )R.
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This motivates the following conjecture:

Conjecture 2.5. Let R be a polynomial ring over the integers, and let fi, gi be
elements of R such that

f1g1 + · · ·+ fngn = 0.

Then for every prime power q = pe, there exists k ∈ N such that

(f1g1)q + · · ·+ (fngn)q

p
(g1 · · · gn)k ∈ (gq+k

1 , . . . , gq+k
n )R.

The above conjecture is easily established if n = 2, or if the elements g1, . . . , gn

form a regular sequence. The conjecture is also true if n = 3, provided the elements
f1, f2, f3 form a regular sequence:

Theorem 2.6. [Si2, Theorem 2.1] Let R be a polynomial ring over the integers and
fi, gi be elements of R such that f1, f2, f3 form a regular sequence in R and

f1g1 + f2g2 + f3g3 = 0.

Let q = pe be a prime power. Then for k = q − 1, we have

(f1g1)q + (f2g2)q + (f3g3)q

p
(g1g2g3)k ∈ (gq+k

1 , gq+k
2 , gq+k

3 )R.

3. The equicharacteristic case

Recently Katzman constructed the following example in [Ka2]: Let K be an
arbitrary field, and consider the hypersurface

R = K[s, t, u, v, x, y]/
(
su2x2 − (s + t)uxvy + tv2y2

)
.

Katzman showed that the local cohomology module H2
(x,y)(R) has infinitely many

associated prime ideals. Since the defining equation of this hypersurface factors as

su2x2 − (s + t)uxvy + tv2y2 = (sux− tvy)(ux− vy),

the ring in Katzman’s example is not an integral domain. In [SS] Swanson and the
author generalize Katzman’s construction and obtain families of examples which
include examples over normal domains and, in fact, over hypersurfaces with rational
singularities:

Theorem 3.1. [SS, Theorem 1.1] Let K be an arbitrary field, and consider the
hypersurface

S =
K[s, t, u, v, w, x, y, z](

su2x2 + sv2y2 + tuxvy + tw2z2
)

Then S is a standard N-graded normal domain for which the local cohomology mod-
ule H3

(x,y,z)(S) has infinitely many associated prime ideals.
If m denotes the homogeneous maximal ideal (s, t, u, v, w, x, y, z), then the local

cohomology module H3
(x,y,z)(Sm) has infinitely many associated prime ideals as well.

If K has characteristic zero, then S has rational singularities. If K has positive
characteristic, then S is F-regular.



ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES 7

While we refer to [SS] for details as well as more general constructions, we would
like to sketch a proof of the above theorem.

Sketch of the proof. Let K be arbitrary field, and consider the hypersurface

A = K[s, t, a, b]/(sa2 + tab + b2).

We use the N-grading on A where A0 = K[s, t], and a and b have degree 1. For
an integer n ≥ 2, the presentation matrix of the A0-module [A/(an, bn)]n is the
(n− 1)× (n− 1) matrix

Mn−1 =


t s

s t s
. . . . . . . . .

s t s

s t

 ,

where the elements s, t, s occur along the three central diagonals, and the other
entries are zero. These are special cases of Toeplitz matrices, and the determinants
of these matrices will be the source of the infinitely many associated primes.

It is convenient to define det M0 = 1, and setting Qn(s, t) = det Mn, it is easily
seen that we have

Q0 = 1, Q1 = t, and Qn+2 = tQn+1 − s2Qn for all n ≥ 0.

This recursion enables us to compute a generating function for the polynomials
Qn(s, t), and to check that the polynomials {Qn(s, t)}n∈N have infinitely many
distinct irreducible factors. For example, if K = C it may be verified that Qn(s, t)
factors as

Qn(s, t) =
n∏

r=1

(
t− serπi/(n+1) − se−rπi/(n+1)

)
for all n ∈ N.

This implies that the set ⋃
n∈N

AssA0 [A/(an, bn)]n

is infinite and, in fact, a straightforward computation shows that

(an, bn) :A0 sabn−1 = (Qn−1)A0 for all n ∈ N.

We next consider the ring

B = K[s, t, a, b, c]/
(
sa2 + sb2 + tab + tc2

)
with the N-grading where B0 = K[s, t] = A0, and a, b, and c have degree 1. Note
that B/cB ∼= A, and so

(an, bn, c) :B0 sabn−1 = (Qn−1)B0 for all n ∈ N.

We identify B with the subring of S which is generated, as a K-algebra, by the
elements s, t, a = ux, b = vy, and c = wz. For a fixed integer n ≥ 1, let

ηn =
[
s(ux)(vy)n−1zn−1 + (xn, yn, zn)

]
∈ H3

(x,y,z)(S),
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where we are using the identification

H3
(x,y,z)(S) = lim−→

n∈N
S/(xn, yn, zn)S.

By a multigrading argument, it may be verified that

annS0ηn = (an, bn, c)B :B0 sabn−1 = (Qn−1)B0

where S0 = B0 = K[s, t]. Since the polynomials {Qn(s, t)}n∈N have infinitely many
distinct irreducible factors, it follows that the set

AssS0H
3
(x,y,z)(S)

is infinite. For every prime ideal p of S0 with p ∈ AssS0H
3
(x,y,z)(S), there exists a

prime ideal P ∈ Spec S such that P ∈ AssSH3
(x,y,z)(S) and P ∩ S0 = p. Conse-

quently the set AssS H3
(x,y,z)(S) must be infinite as well.

It remains to verify that the hypersurface S has rational singularities (in char-
acteristic zero) or is F-regular (in positive characteristic). In [SS] we show that S

is F-regular for an arbitrary field K of positive characteristic. This implies that for
all prime integers p, the fiber over pZ of the map

Z −→ Z[s, t, u, v, w, x, y, z](
su2x2 + sv2y2 + tuxvy + tw2z2

)
is an F-rational ring. By [Sm, Theorem 4.3], it then follows that S has rational
singularities when K has characteristic zero.

We would like to include here a different proof that S has rational singularities
in characteristic zero based on a result from [SW]. We first note that

S ∼= B[u, v, w, x, y, z]/(ux− a, vy − b, wz − c),

and that B is a normal domain. By a result of [BS], if a local (or graded) domain
R has rational singularities, then so does R[u, x]/(ux − a), where a 6= 0 is a (ho-
mogeneous) element of R, see also [HWY, Lemma 3.3]. By repeated use of this, to
show that S has rational singularities, it suffices to show that the subring B has
rational singularities. In [SW] we obtain a criterion for multigraded rings to have
rational singularities. The bigraded case of this criterion is:

Theorem 3.2. Let R be a normal N2-graded ring where R0 is a field of charac-
teristic zero, and R is generated over R0 by elements of degrees (1, 0) and (0, 1).
Then R has rational singularities if and only if

(i) R is a Cohen-Macaulay ring for which the multigraded a-invariant satisfies
a(R) < 0, and

(ii) the localizations Rp have rational singularities for all primes p in the set

Spec R \ V (R++), where R++ =
⊕

i>0,j>0

Ri,j .

To apply the theorem, we consider the N2-grading on B where s and t have
degree (1, 0) and a, b, and c have degree (0, 1). Then a(B) = (−1,−1), and a
straightforward computation using the Jacobian criterion shows that Bp is regular
for all primes p ∈ Spec B \ V (B++). �
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4. An application

Let R be a ring of characteristic p > 0, and R◦ denote the complement of the
minimal primes of R. For an ideal a = (x1, . . . , xn) of R and a prime power q = pe,
we use the notation a[q] = (xq

1, . . . , x
q
n). The tight closure of a is the ideal

a∗ = {z ∈ R : there exists c ∈ R◦ for which czq ∈ a[q] for all q � 0},

see [HH1]. A ring R is F-regular if a∗ = a for all ideals a of R and its localizations.
More generally, let F denote the Frobenius functor, and F e its eth iteration.

If an R-module M has presentation matrix (aij), then F e(M) has presentation
matrix (aq

ij), where q = pe. For modules N ⊆ M , we use N
[q]
M to denote the image

of F e(N) → F e(M). We say that an element m ∈ M is in the tight closure of N

in M , denoted N∗
M , if there exists an element c ∈ R◦ such that cF e(m) ∈ N

[q]
M for

all q � 0. While the theory has found several applications, the question whether
tight closure commutes with localization remains open even for finitely generated
algebras over fields of positive characteristic.

Let W be a multiplicative system in R, and N ⊆ M be finitely generated R-
modules. Then

W−1(N∗
M ) ⊆ (W−1N)∗W−1M ,

where W−1(N∗
M ) is identified with its image in W−1M . When this inclusion is

an equality, we say that tight closure commutes with localization at W for the pair
N ⊆ M . It may be checked that this occurs if and only if tight closure commutes
with localization at W for the pair 0 ⊆ M/N . Following [AHH], we set

Ge(M/N) = F e(M/N)/(0∗F e(M/N)).

An element c ∈ R◦ is a weak test element if there exists q0 = pe0 such that for every
pair of finitely generated modules N ⊆ M , an element m ∈ M is in N∗

M if and only
if cF e(m) ∈ N

[q]
M for all q ≥ q0. By [HH2, Theorem 6.1], if R is of finite type over

an excellent local ring, then R has a weak test element.

Proposition 4.1. [AHH, Lemma 3.5] Let R be a ring of characteristic p > 0
and N ⊆ M be finitely generated R-modules. Then the tight closure of N ⊆ M

commutes with localization at any multiplicative system W which is disjoint from
the set

⋃
e∈N Ass F e(M)/N [q]

M .
If R has a weak test element, then the tight closure of N ⊆ M also commutes with

localization at multiplicative systems W disjoint from the set
⋃

e∈N Ass Ge(M/N).

Consider a bounded complex P• of finitely generated projective R-modules,

0 −→ Pn
dn−→ Pn−1 −→ · · · d1−→ P0 −→ 0.

The complex P• is said to have phantom homology at the ith spot if

Ker di ⊆ (Im di+1)∗Pi
.

The complex P• is stably phantom acyclic if F e(P•) has phantom homology at the
ith spot for all i ≥ 1, for all e ≥ 1. An R-module M has finite phantom projective
dimension if there exits a bounded stably phantom acyclic complex P• of projective
R-modules, with H0(P•) ∼= M .
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Theorem 4.2. [AHH, Theorem 8.1] Let R be an equidimensional ring of positive
characteristic, which is of finite type over an excellent local ring. If N ⊆ M are
finitely generated R-modules such that M/N has finite phantom projective dimen-
sion, then the tight closure of N in M commutes with localization at W for every
multiplicative system W of R.

The key points of the proof are that for M/N of finite phantom projective di-
mension, the set

⋃
e Ass Ge(M/N) has finitely many maximal elements, and that if

(R,m) is a local ring, then there a positive integer B such that for all q = pe, the
ideal mBq kills the local cohomology module

H0
m (Ge(M/N)) .

For more details on this approach to the localization problem, we refer the reader
to the papers [AHH, Ho, Ka1, SN], and [Hu2, §12]. Specializing to the case where
M = R and N = a is an ideal, we note that

Ge(R/a) ∼= R/
(
a[q]

)∗
, where q = pe.

Consider the questions:

Question 4.3. Let R be a Noetherian ring of characteristic p > 0, and a an ideal
of R.

(1) Is the set
⋃

q=pe Ass R/a[q] finite?
(2) Is the set

⋃
q=pe Ass R/

(
a[q]

)∗ finite?
(3) For a local domain (R,m) and an ideal a ⊂ R, is there a positive integer B

such that

mBqH0
m

(
R/(a[q])∗

)
= 0 for all q = pe ?

Katzman proved that affirmative answers to Questions 4.3 (2) and 4.3 (3) imply
that tight closure commutes with localization:

Theorem 4.4. [Ka1] Assume that for every local ring (R,m) of characteristic p > 0
and ideal a ⊂ R, the set

⋃
q Ass R/

(
a[q]

)∗ has finitely many maximal elements. Also,
if for every ideal a ⊂ R, there exists a positive integer B such that mBq kills

H0
m

(
R/(a[q])∗

)
for all q = pe,

then tight closure commutes with localization for all ideals in Noetherian rings of
characteristic p > 0.

These issues are the source of our interest in associated primes of Frobenius
powers of ideals. It should be mentioned that the situation for ordinary powers is
well-understood: the set

⋃
n∈N Ass R/an is finite for any Noetherian ring R, see [Br]

or [Ra]. In [Ka1] Katzman constructed the first example where
⋃

q=pe Ass R/a[q] is
not finite, thereby settling Question 4.3 (1): For

R = K[t, x, y]/
(
xy(x− y)(x− ty)

)
,

he proved that the set
⋃

q Ass R/(xq, yq) is infinite. In this example, and some
others, (xq, yq)∗ = (x, y)q for all q = pe, and so

⋃
q Ass R/(xq, yq)∗ is finite. However
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we show that Question 4.3 (2) also has a negative answer using the local cohomology
examples recorded earlier.

Theorem 4.5 (Singh-Swanson). Let K be a field of characteristic p > 0, and
consider the hypersurface

S =
K[s, t, u, v, w, x, y, z](

su2x2 + sv2y2 + tuxvy + tw2z2
) .

Then S is F-regular, and the set⋃
q=pe

Ass S/
(
xq, yq, zq

)
=

⋃
q=pe

Ass S/
(
xq, yq, zq

)∗
is infinite.

Proof. The direct system {S/(xq, yq, zq)}q=pe is cofinal with the direct system
{S/(xn, yn, zn)}n∈N, and so we have

H3
(x,y,z)(S) ∼= lim−→

q=pe

S/(xq, yq, zq)S.

Using this, it is easily seen that

Ass H3
(x,y,z)(S) ⊆

⋃
q=pe

Ass S/(xq, yq, zq)S.

By Theorem 3.1 H3
(x,y,z)(S) has infinitely many associated prime ideals, and so⋃

q Ass S/(xq, yq, zq)S must be infinite as well. Since the hypersurface S is F-
regular, we have (xq, yq, zq)∗ = (xq, yq, zq) for all q = pe. �

Remark 4.6. In [SS] we actually prove a stronger result: There exists an F-regular
hypersurface R of characteristic p > 0, with an ideal a, for which the set⋃

q=pe

Ass R/a[q] =
⋃

q=pe

Ass R/
(
a[q]

)∗
has infinitely many maximal elements.

References

[AHH] I. M. Aberbach, M. Hochster, and C. Huneke, Localization of tight closure and modules

of finite phantom projective dimension, J. Reine Angew. Math. 434 (1993), 67–114.

[BS] J. Bingener and and U. Storch, Uwe Zur Berechnung der Divisorenklassengruppen kom-

pletter lokaler Ringe, Leopoldina Symposium: Singularities (Thüringen, 1978), Nova Acta
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