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of invariants, the Briançon-Skoda Theorem in complex analytic geometry, and uniform
bounds on symbolic powers of ideals due to Ein-Lazarsfeld-Smith and Hochster-Huneke.

My warmest thanks to the organizers and speakers, H. Ananthnarayan, R. V. Gurjar,
M. Kummini, and J. K. Verma, for all the work that they put in, and to the participants,
who made this an enjoyable and lively workshop. Special thanks are due to Eloı́sa Grifo
and Jack Jeffries for their help with the preparation of these lecture notes.

Version: July 17, 2017. The author was supported by NSF grant DMS 1500613.
These lecture notes are expanded from those prepared for four lectures at ICTP, Trieste, in June 2004.

1



2 ANURAG K. SINGH

1. MAGIC SQUARES

A magic square is a matrix with nonnegative integer entries such that each row and each
column has the same sum, called the line sum. Let Hn(r) denote the number of n×n magic
squares with line sum r. Then

Hn(0) = 1, Hn(1) = n! and ∑
n>0

Hn(2)xn

(n!)2 =
ex/2
√

1− x
,

where the first two formulae are elementary, and the third was proved by Anand, Dumir,
and Gupta [ADG]. On the other hand, viewing Hn(r) as a function of r > 0, one has

H1(r) = 1, H2(r) = r+1, and H3(r) =
(

r+4
4

)
+

(
r+3

4

)
+

(
r+2

4

)
.

Once again, the first two are trivial, bearing in mind that H2(r) counts the matrices(
i r− i

r− i i

)
, 06 i6 r,

while the formula for H3(r) is due to MacMahon [Mac, § 407]; we compute it here in
Example 1.2. It was conjectured1 in [ADG] that Hn(r) agrees with a degree (n− 1)2

polynomial in r for all integers r > 0. This—and more—was proved by Stanley [St1]; see
also [St2, St3]. We start with a tight closure proof of the following:

Theorem 1.1. Let Hn(r) be the number of n×n magic squares with line sum r. Then Hn(r)
agrees with a degree (n−1)2 polynomial in r for all integers r > 0.

Counting using rings. Let F be a field. Let (xi j) be an n× n matrix of indeterminates,
for n a fixed positive integer, and set R to be the polynomial ring

R := F[xi j | 16 i, j 6 n].

Set S to be the F-subalgebra of R generated by the monomials

∏
i, j

x
ai j
i j such that

(
ai j
)

is an n×n magic square.

For example, in the case n = 2, the magic squares are(
i r− i

r− i i

)
= i

(
1 0
0 1

)
+(r− i)

(
0 1
1 0

)
, 06 i6 r,

and it follows that

S = F[xi
11 xr−i

12 xr−i
21 xi

22 | 06 i6 r]

= F[(x11x22)
i (x12x21)

r−i | 06 i6 r] = F[x11x22, x12x21].

1Or, at least, “It thus appears that . . . ”
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More generally, the Birkhoff-von Neumann theorem yields that each magic square is a sum
of permutation matrices. Thus, S is generated over F by the n! monomials

n

∏
i=1

xiσ(i) for σ a permutation of {1, . . . ,n}.

Consider the Q-grading on R with R0 := F and degxi j := 1/n for each i, j. Then

deg
( n

∏
i=1

xiσ(i)
)
= 1,

so S is a standard graded F-algebra, i.e., S is N-graded with S0 = F and S = F[S1]. Let

HS(t) := ∑
r>0

(rankF Sr) tr

which is the Hilbert series of S. Then Hn(r) is the coefficient of tr in the series HS(t).

Example 1.2. In the case n = 3, the permutation matrices satisfy the linear relation1 0 0
0 1 0
0 0 1

+

0 1 0
0 0 1
1 0 0

+

0 0 1
1 0 0
0 1 0



=

0 0 1
0 1 0
1 0 0

+

1 0 0
0 0 1
0 1 0

+

0 1 0
1 0 0
0 0 1

 ,

so S has a presentation

S = F [y1,y2,y3,y4,y5,y6]/(y1y2y3− y4y5y6)

where

y1 7−→ x11x22x33, y2 7−→ x12x23x31, y3 7−→ x13x21x32,

y4 7−→ x13x22x31, y5 7−→ x11x23x32, y6 7−→ x12x21x33.

Since S is a hypersurface of degree 3, its Hilbert series is

HS(t) =
1− t3

(1− t)6 =
1+ t + t2

(1− t)5 .

The coefficient of tr in this series is readily seen to be

H3(r) =

(
r+4

4

)
+

(
r+3

4

)
+

(
r+2

4

)
. �

Exercise 1.3. Determine the number of 3×3 magic squares, with line sum r, of the form0 − −
− − −
− − −

 .

Exercise 1.4. Determine the number of 3×3 symmetric magic squares with line sum r.
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Hilbert series. Returning to the case of n×n magic squares, since the ring S generated by
monomials corresponding to permutation matrices is standard graded, one has

(1.4.1) HS(t) =
f (t)

(1− t)d

where d = dimS and f (t) is a polynomial with f (1) 6= 0. Since Hn(r) is the coefficient of tr

in HS(t), it follows that Hn(r) agrees with a degree d−1 polynomial in r for large positive
integers r. It remains to compute the dimension of the ring S, and to show that Hn(r) agrees
with a polynomial in r for each integer r > 0.

The dimension of S may be computed as the transcendence degree of the fraction field
of S over F; this equals the number of monomials in S that are algebraically independent
over F. Since monomials are algebraically independent precisely if their exponent vectors
are linearly independent, the dimension d of S is the rank of the Q-vector space spanned
by the n× n magic squares. The rank of this vector space may be computed by counting
the choices “−” that may be made when forming an n×n matrix over Q with constant line
sum; the remaining entries “∗” below are then forced:

− − ·· · − −
− − ·· · − ∗
− − ·· · − ∗
...

...
...

...
...

− − ·· · − ∗
∗ ∗ ∗ ∗ ∗


.

Hence d = (n−1)2+1. It follows that Hn(r) agrees with a degree (n−1)2 polynomial in r
for large positive integers r. To see that Hn(r) agrees with a polynomial in r for each r> 0,
it suffices to show that the degree of the polynomial f (t) in (1.4.1) is at most d−1; indeed,
if this is the case, we may write

f (t) =
d−1

∑
i=0

ai(1− t)i

with ai ∈Q, and so

HS(t) =
d−1

∑
i=0

ai

(1− t)d−i =
d

∑
i=1

ad−i

(1− t)i ,

which is a power series where the coefficient of tr agrees with a polynomial in r for each
integer r > 0. We shall prove that deg f (t)6 d−1, and develop the requisite tight closure
theory along the way.

Consider the F-linear map ρ : R −→ S that fixes a monomial ∏x
ai j
i j if (ai j) is a magic

square, and maps it to 0 otherwise. Since the sum of two magic squares is a magic square,
and the sum of a magic square and a non-magic square is a non-magic square, ρ is a
homomorphism of S-modules. As ρ fixes S, it is an S-linear splitting of the inclusion S⊆R,
which implies that S is a direct summand of R as an S-module.
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Thus far, the field F was arbitrary; for the rest of this section, assume F is an alge-
braically closed field of positive characteristic p. Since it suffices for the goal at hand, we
will also assume that all rings, ideals, and elements in question are homogeneous.

Definition 1.5. Let A be a domain of characteristic p > 0, and let q denote a varying
positive integer power of p. For an ideal a of A, define

a[q] := (aq | a ∈ a).

The tight closure of a is the ideal

a∗ :=
{

z ∈ A | there exists a nonzero c in A with czq ∈ a[q] for each q = pe
}
.

While the results hold in greater generality, the following will suffice for now:

Lemma 1.6. Let R be a polynomial ring over an algebraically closed field F. Let S be
an F-subalgebra of R that is a direct summand of R as an S-module. Then:

(1) For each homogeneous ideal a of R, one has a∗ = a.
(2) For each homogeneous ideal a of S, one has a∗ = a.
(3) The ring S is Cohen-Macaulay, i.e., each homogeneous system of parameters for S

is a regular sequence on S.
(4) If yyy = y1, . . . ,yd is a homogeneous system of parameters for S consisting of elements

of degree 1, then S>d ⊆ yyyS.

Proof of Theorem 1.1. The ring S is standard graded, with S0 an algebraically closed field.
Hence S indeed has a homogeneous system of parameters yyy consisting of degree 1 ele-
ments. Using (3), it follows that

HS(t) =
HS/yyyS(t)
(1− t)d .

The polynomial f (t) = HS/yyyS(t) has degree at most d− 1 by (4). Thus, the lemma above
completes the proof. �

Proof of Lemma 1.6. (1) Let z be an element of a∗. Without loss of generality, assume z
is homogeneous. Then there exists a nonzero homogeneous element c of positive degree
such that czq ∈ a[q] for each q = pe. Let R = F[x1, . . . ,xm], in which case the ring consisting
of q-th roots of elements of R, is

R1/q := F[x1/q
1 , . . . ,x1/q

m ].

Since R1/q is a free R-module with basis

xi1/q
1 · · ·xim/q

m

where 06 i j 6 q−1, one has

(aR1/q :R1/q z) = (a :R z)R1/q.
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Taking q-th roots in an equation exhibiting czq ∈ a[q] one sees that c1/qz ∈ aR1/q, so

c1/q ∈ (aR1/q :R1/q z) = (a :R z)R1/q.

But then the ideal (a :R z)R1/q contains elements of arbitrarily small positive degree, which
is only possible if (a :R z) equals R.

(2) If z∈ a∗ for a homogeneous ideal a of S, then z∈ (aR)∗. But (aR)∗ = aR by (1), so z
belongs to aR∩S. This ideal equals a since S is a direct summand of R.

(3) Let yyy be a homogeneous system of parameters for S. Then A := F[yyy] is a Noether
normalization for S, i.e., the elements yyy are algebraically independent over F, and S is
integral over F[yyy]. Let N be the largest integer with AN ⊆ S, i.e., such that S contains a
free A-module of rank N. Then S/AN is a finitely generated A-torsion module, and is thus
annihilated by a nonzero element c of A.

Suppose syi+1 ∈ (y1, . . . ,yi)S for a homogeneous element s of S. Taking Frobenius
powers, one has

sqyq
i+1 ∈ (yq

1, . . . ,y
q
i )S

for each q = pe. Since cS⊆ AN , multiplying the above by c yields

csqyq
i+1 ∈ (yq

1, . . . ,y
q
i )A

N

for each q = pe. But yyy is a regular sequence on the free A-module AN , so

csq ∈ (yq
1, . . . ,y

q
i )A

N ⊆ (yq
1, . . . ,y

q
i )S

for each q = pe. Hence s ∈
(
(y1, . . . ,yi)S

)∗
= (y1, . . . ,yi)S, where the equality is by (2).

(4) Let z be a homogeneous element of S having degree at least d. Since z is integral
over A, there exists a homogeneous equation

zk +a1zk−1 + · · ·+ak = 0

with ai ∈ A. But then

zN ∈ A+Az+ · · ·+Azk−1

for all N > 0. In particular, for each q = pe, one has a homogeneous equation of the form

zq+k−1 = b0 +b1z+ · · ·+bk−1zk−1

where bi ∈ A. Note that

degbi > degbk−1 = degzq > qd,

i.e., bi ∈ A>qd . This implies that

bi ∈ (yyyA)qd ⊆ (yq
1, . . . ,y

q
d)A,

where the containment is explained by the pigeonhole principle. Consequently

zq+k−1 ∈ (yq
1, . . . ,y

q
d)S

for each q, so z ∈ (yyyS)∗. But (yyyS)∗ = yyyS by (2). �
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Exercise 1.7. Let Z denote a fixed collection of indices in an n×n matrix, and let HZ
n (r)

denote the number of n× n magic squares, with line sum r, that have 0 in the Z-indices;
for example, Exercise 1.3 counts magic squares with Z := {(1,1)}. Prove that HZ

n (r) is a
polynomial in r for each integer r > 0.

Hilbert series revisited. Recall that the Hilbert series of a standard graded ring S may be
written as a rational function

HS(t) =
h0 +h1t +h2t2 + · · ·+hktk

(1− t)dimS where hk 6= 0.

The coefficients of the numerator form the h-vector (h0, . . . ,hk) of S. When S is Cohen-
Macaulay, it is readily seen that each hi is positive:

The Hilbert series is unchanged when replacing the field S0 = F by a larger field, so we
may assume that S has a homogeneous system of parameters yyy consisting of linear forms.
Since yyy is a regular sequence on S, one has

HS(t) =
HS/yyyS(t)
(1− t)dimS .

But the numerator is the Hilbert series of the standard graded Artinian ring S/yyyS, and hence
is a polynomial with nonnegative coefficients. Moreover, the standard graded hypothesis
shows that if [S/yyyS]i = 0 for some i, then [S/yyyS]>i = 0.

The Hilbert series of the affine semigroup rings corresponding to magic squares of size
up to 6 are recorded below:

∑H1(r)tr =
1

1− t
,

∑H2(r)tr =
1

(1− t)2 ,

∑H3(r)tr =
1+ t + t2

(1− t)5 ,

∑H4(r)tr =
1+14t +87t2 +148t3 +87t4 +14t5 + t6

(1− t)10 ,

∑H5(r)tr = (1+103t +4306t2 +63110t3 +388615t4 +1115068t5 +1575669t6

+1115068t7 +388615t8 +63110t9 +4306t10 +103t11 + t12)/(1− t)17

∑H6(r)tr = (1+694t +184015t2 +15902580t3 +567296265t4 +9816969306t5

+91422589980t6 +490333468494t7 +1583419977390t8 +3166404385990t9

+3982599815746t10 +3166404385990t11 +1583419977390t12

+490333468494t13 +91422589980t14 +9816969306t15 +567296265t16

+15902580t17 +184015t18 +694t19 + t20)/(1− t)26
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The Cohen-Macaulay property explains the positive coefficients in the numerators. An-
other immediate observation is that the h-vector in each case is a palindrome. This is
explained by the fact that, in each case, the corresponding affine semigroup ring is Goren-
stein; this comes down to the calculation of the canonical module:

By a theorem of Danilov [Da, § 4] and Stanley [St3, § 13], the canonical module of a nor-
mal affine semigroup ring is generated by monomials in the interior of the polytope; thus

ωS = x11x12 · · ·xnn S,

i.e., ωS is generated by the monomial corresponding to the matrix in which each entry
equals 1. This may be used to prove the following result, also conjectured in [ADG]:

Theorem 1.8. For each n> 1, the polynomials Hn(r) satisfy

Hn(−1) = Hn(−2) = · · · = Hn(−n+1) = 0,

and

Hn(r) = (−1)n−1Hn(−n− r).

Proof. By the calculation of the canonical module, S is Gorenstein, with a(S) = −n. The
first statement follows from this, as does the equation

(−1)dimSHS(t−1) = tnHS(t).

It is a formal consequence of this that

Hn(−n− r) = (−1)dimS−1Hn(r). �

Yet another observation is that each h-vector is unimodal, i.e., the entries are weakly
increasing, then weakly decreasing. In view of the symmetry, this can be summarized as

h0 6 h1 6 · · ·6 hbk/2c.

Following his proof of the Anand-Dumir-Gupta conjectures, Stanley [St3, p. 26] conjec-
tured that the h-vector of the affine semigroup ring associated to magic squares is unimodal.
This was indeed proved to be the case by Athanasiadis [At]. It thus appears natural to ask:

Question 1.9. Let A be a standard graded Gorenstein domain in which each ideal equals
its tight closure. Then, is the h-vector of A unimodal?

Mustaţǎ and Payne [MP] have constructed examples of Gorenstein normal affine semi-
group rings for which the h-vector is not unimodal, but these are not standard graded. An
example of a standard graded Gorenstein ring whose h-vector is not unimodal may be con-
structed by taking a trivial extension of a Cohen-Macaulay ring by its canonical module,
but then such a ring is not a domain:
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Example 1.10. Let X be a 4× 6 matrix of indeterminates over a field F. Consider the
determinantal ring R :=F[X ]/I4(X), where I4(X) is the ideal generated by the size 4 minors
of the matrix X . Then the Hilbert series of R is

HR(t) =
1+3t +6t2 +10t3

(1− t)21 .

The canonical module ω of R can be described by [BV, Theorem 8.8]: let q be the prime
ideal generated by the size 3 minors of the first three columns of X . Then ω = q2. Consider

S := R⊕ω,

where ω is regarded as an ideal of S, generated by elements of degree 1, with ω2 = 0.
Then S is a Gorenstein ring, with Hilbert series

HS(t) = HR(t)+Hω(t)

=
1+3t +6t2 +10t3

(1− t)21 +
10t +6t2 +3t3 + t4

(1− t)21

=
1+13t +12t2 +13t3 + t4

(1− t)21 .

Evidently, the h-vector (1,13,12,13,1) is not unimodal. �

The unimodality results of [At] have been extended by Bruns and Römer [BR], but
Question 1.9 is unresolved—to the best of our knowledge—even for Gorenstein standard
graded normal affine semigroup rings.

Linear diophantine equations. Let R := F[x1, . . . ,xm] be a polynomial ring, and G a
group acting linearly on R, i.e., by degree preserving F-algebra automorphisms. Then
the ring of invariant polynomials

RG := {r ∈ R | g(r) = r for all g ∈ G}

is a graded F-subalgebra of R.
Now suppose that each of the rank 1 vector spaces Fxi is G-stable. Then each element

of G maps a monomial in R to a scalar multiple of that monomial. It follows that if f is an
invariant polynomial, then each monomial that occurs in f is also invariant.

Example 1.11. Consider the representation G := F× −→ GL2(F) with λ 7−→
(

λ 0
0 λ−1

)
,

giving the action of G on R := F[x,y] where

λ : xiy j 7−→ λ
i− jxiy j.

To determine the invariant ring RG, it suffices to determine the invariant monomials. Note
that a monomial xiy j is invariant precisely if λ i− j = 1 for each λ ∈ F×. If F= Fp, then

RG = Fp[xp−1, xy, yp−1].

On the other hand, if F is an infinite field, then λ i− j = 1 for each λ ∈G if and only if i = j.
Thus, in this case,

RG = Fp[xy]. �
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Let R := F[x1, . . . ,xm] be a polynomial ring over a field F, and let G be the algebraic
torus (F×)`, i.e., the product of ` copies of the multiplicative group of the field. Let (hi j)

be an `×m matrix of integers. This matrix defines an F-linear action of G on R as follows:

(λ1, . . . ,λ`) : x j 7−→ λ
h1 j
1 · · ·λ

h` j
` x j.

Note that an element (λ1, . . . ,λ`) of G maps a monomial xb1
1 · · ·xbm

m to the scalar multiple(
λ

h11b1
1 · · ·λ h`1b1

` xb1
1

)
· · ·
(

λ
h1mbm
1 · · ·λ h`mbm

` xbm
m

)
= λ

h11b1+···+h1mbm
1 · · ·λ h`1b1+···+h`mbm

` xb1
1 · · ·x

bm
m .

When F is an infinite field, the invariant monomials xb1
1 · · ·xbm

m are precisely those for which

(1.11.1)


h11 . . . h1m

...
...

h`1 . . . h`m




b1
...

bm

 =


0
...
0

 .

Thus, the monomials that generate RG correspond precisely to the Nm-solutions of a linear
homogeneous system of equations over Z. Consider the F-linear map ρ : R −→ RG that
fixes the monomials that are in RG, and maps other monomials to 0; this is readily seen
to be a homomorphism of RG-modules that splits the inclusion RG ⊆ R. Using this, it is
a routine exercise that RG is a finitely generated F-algebra, and hence that the set of Nm-
solutions to (1.11.1) is a finitely generated monoid.

Magic squares are solutions of such linear homogeneous diophantine equations, with
the permutation matrices being a minimal set of generators for the monoid.

Example 1.12. Translating the five equations that spell out the equality of the line sums,
it follows that a 3×3 matrix (ai j) is a magic square precisely if


1 1 1 −1 −1 −1 0 0 0
1 1 1 0 0 0 −1 −1 −1
0 1 1 −1 0 0 −1 0 0
1 0 1 0 −1 0 0 −1 0
1 1 0 0 0 −1 0 0 −1





a11

a12

a13

a21

a22

a23

a31

a32

a33


=


0
0
0
0
0

 .

As it happens, the last row is a linear combination of the previous. �
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2. TIGHT CLOSURE

We saw a first glimpse of tight closure theory in the previous section. The theory was
developed by Hochster and Huneke [HH2], and has had enormous impact. It is a closure
operation on ideals, first defined for rings of prime characteristic using the Frobenius map,
and then extended to rings of characteristic zero by reduction mod p methods. The the-
ory leads to powerful results on unrelated topics such as rings of invariants—this is the
appropriate framework for much of the previous section—integral closure of ideals and
Briançon-Skoda theorems, and symbolic powers of ideals; each of these will be discussed
in the coming sections.

All rings considered in these notes are assumed to be commutative, with a unit element;
for the most part, they are Noetherian as well, with a few exceptions such as R+, R∞,
and R+sep. Let R be a ring containing a field of positive characteristic p. While the main
case of interest is certainly the one where R is an integral domain, the definition of tight
closure from the previous section can be extended as follows:

Definition 2.1. Let a be an ideal of R, and z a ring element. Then z is in a∗, the tight
closure of a, if for each minimal prime p of R, the image of z in R/p lies in (aR/p)∗.

For an equivalent formulation, let q denote a varying power of p, and a[q] := (aq | a∈ a).
Set R◦ to be the complement of the minimal primes of R. Then the tight closure of a is

a∗ :=
{

z ∈ R | there exists c ∈ R◦ with czq ∈ a[q] for all q = pe� 0
}
.

Exercise 2.2. Verify the above equivalence, and also the following elementary facts; you
may assume that the ring is Noetherian, wherever needed.

(1) The tight closure a∗ is indeed an ideal, and contains a.
(2) The tight closure of an ideal is tightly closed, i.e., (a∗)∗ = a∗.
(3) The nilradical is the tight closure of the zero ideal.
(4) If a is tightly closed, then so is a : b, for b an arbitrary ideal.
(5) The intersection of an arbitrary family of tightly closed ideals is tightly closed.

Example 2.3. Take R := Fp[x2,x3]. Then x3 /∈ (x2), though x3 ∈ (x2)
∗ since

x3q = xqx2q ∈ (x2q) for each q = pe. �

Exercise 2.4. Let R := Fp[x,y,z]/(x3 + y3 + z3). Show that

(1) z2 ∈ (x,y)∗ and, if you like a challenge, that
(2) xyz ∈ (x2,y2,z2)

∗.

Example 2.5. Consider the hypersurface

Fp[x,y,z,u,v,w]/(xp−uyp− vzp−wxyp−1zp−1).

We claim that x ∈ (y,z)∗. To see this, verify inductively that

xq ∈ (yq, zq, xyq−1zq−1)

for each q = pe, and choose, for example, c := y as in the definition of tight closure. �
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F-regular rings. In Lemma 1.6 we saw that a∗ = a for each homogeneous ideal a in a
polynomial ring over an algebraically closed field. Rings of positive characteristic in which
all ideals are tightly closed are weakly F-regular, while R is F-regular if each localization
of R is weakly F-regular. The class of F-regular rings includes regular rings, determinan-
tal rings, Plücker embeddings of Grassmannians, normal affine semigroup rings such as
the magic squares rings of the previous section, and, more generally, rings of invariants of
linearly reductive groups acting linearly on polynomial rings. While Brenner and Mon-
sky [BM] have constructed striking examples demonstrating that the operation of taking
the tight closure need not commute with localization, the following remains unanswered:

Question 2.6. Does weak F-regularity localize, i.e., if R is a weakly F-regular ring, is
each localization Rp also weakly F-regular?

By Lyubeznik-Smith [LS], the answer is affirmative for N-graded rings R with R0 a
field of positive characteristic. We discuss an approach to Question 2.6 via splitting in
module-finite extensions later; let us first establish that regular rings are weakly F-regular.

For a ring R of prime characteristic p > 0, the map F : R −→ R with F(r) = rp is the
Frobenius endomorphism. Note that R may be viewed as an R-algebra via F , or via any
iteration of F . We write Fe(R) to denote R viewed as an R-algebra via the iteration Fe. For
an ideal a= (r1, . . . ,rn) of R, consider the exact sequence

Rn (r1 ··· rn )−−−−−→ R −−−→ R/a −−−→ 0.

Applying Fe(R)⊗R−, the right exactness of tensor gives the exact sequence

Rn (rq
1 ··· rq

n )−−−−−−→ R −−−→ Fe(R)⊗R R/a −−−→ 0,

where q = pe, which shows that Fe(R)⊗R R/a∼= R/a[q].
If R is the polynomial ring Fp[x1, . . . ,xd ], then F : R−→ R may be identified with

(2.6.1) Fp[x
p
1 , . . . ,x

p
d ] ⊂ Fp[x1, . . . ,xd ].

The monomials

xi1
d · · ·x

im
d

in which each exponent is less than p form a basis for Fp[x1, . . . ,xd ] as an Fp[x
p
1 , . . . ,x

p
d ]-

module, so the inclusion (2.6.1) is free, in particular, flat. More generally:

Proposition 2.7. Let R be a regular ring of positive prime characteristic. Then the Frobe-
nius endomorphism of R is flat.

Proof. The issue is local, so assume that R is a regular local ring of characteristic p > 0.
Since R−→ R̂ is faithfully flat, it suffices to verify the assertion after taking the completion
of R at its maximal ideal. Thus, we may assume that R = F[[x1, . . . ,xd ]]. Akin to (2.6.1),
the map F : R−→ R may be identified with

Fp[[xp
1 , . . . ,x

p
d ]] ⊂ F[[x1, . . . ,xd ]].
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Since F is flat over Fp, it follows that F[[x1, . . . ,xd ]] is flat over Fp[[x1, . . . ,xd ]]. Lastly, the
ring Fp[[x1, . . . ,xd ]] is flat over Fp[[xp

1 , . . . ,x
p
d ]] as in the polynomial case. �

The converse holds by a theorem of Kunz; thus, a ring R of positive prime characteristic
is regular if and only if the Frobenius endomorphism F : R−→ R is flat, see [Ku1, Her].

Theorem 2.8. A regular ring of positive prime characteristic is F-regular.

Proof. Since a regular ring is a product of domains, assume without loss of generality that
the regular ring R is a domain of characteristic p > 0. Since a localization of a regular ring
is regular, it suffices to prove that R is weakly F-regular.

The key point is the flatness of the Frobenius endomorphism, Proposition 2.7. Given an
ideal a of R and an element z ∈ R, consider the exact sequence

0 −−−→ R/(a : z) z−−−→ R/a −−−→ R/(a+ zR) −−−→ 0.

Tensoring with the flat R-module Fe(R), we obtain the exact sequence

0 −−−→ R/(a : z)[q] zq
−−−→ R/a[q] −−−→ R/(a[q]+ zqR) −−−→ 0,

which implies that
(a[q] : zq) = (a : z)[q].

If z ∈ a∗ then, by definition, there exists c 6= 0 with czq ∈ a[q] for all q� 0. But then

c ∈ (a[q] : zq) = (a : z)[q]

for all q� 0. It follows that
c ∈

⋂
n>1

(a : z)n.

In a Noetherian domain, the powers of a proper ideal have intersection 0, so (a : z) must be
the unit ideal, i.e., z ∈ a. �

Exercise 2.9. In a regular ring of characteristic p > 0, prove that (a : b)[q] = a[q] : b[q].

Direct summands. Let S be a subring of a ring R. Then S is a direct summand of R, more
precisely, a direct summand of R as an S-module, if there exists an S-linear map ρ : R−→ S
with ρ(s) = s for all s ∈ S. In this case, there exists an S-module isomorphism R∼= S⊕M,
for M an S-module, and for each ideal a of S, one has

aR∩S = a,

since, if s = ∑airi with ai ∈ a and ri ∈ R, applying ρ gives

s = ρ(s) = ∑aiρ(ri) ∈ a.

When R is a finitely generated S-module, the converse holds under mild hypotheses by a
result of Hochster, [Ho2, Proposition 5.5]:

Theorem 2.10. Let S⊆ R be a module-finite ring extension, where S is a reduced excellent
ring. Then S is a direct summand of R if (and only if) aR∩S = a for all ideals a of S.
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Exercise 2.11. This is a special case [BC, Example 1]. Let S := F2[x,y]/(x3, y2, x2y), and
consider the module-finite extension R := S[t]/(t2, yt, x2 + xt).

Prove that aR∩S = a for each ideal a of S, though S is not a direct summand of R.

Now let G be a group acting on a Noetherian ring R, and consider the ring of invariants

RG := {r ∈ R | g(r) = r for all g ∈ G}.

If RG is a direct summand of R, then aR∩RG = a for all ideals a of RG. This has several
strong consequences, as we shall see. For a start, it implies that RG is a Noetherian ring:
consider a chain of ideals in RG,

a1 ⊆ a2 ⊆ a3 ⊆ . . . .

Expanding these to ideals of R, we have a chain

a1R⊆ a2R⊆ a3R⊆ . . . ,

that stabilizes since R is Noetherian. But aiR∩RG = ai, so the original chain must stabilize.
Hilbert’s fourteenth problem roughly asks whether RG is Noetherian when R is. The an-

swer turns out to be negative, with the first counterexamples constructed by Nagata [Na1].
We shall say more about these issues later; for the moment, we focus on the case where R
is a polynomial ring over a field F, and G is a finite group acting on R by F-algebra auto-
morphisms. In this case, RG is Noetherian, [AM, Exercise 7.5].

When the order G is invertible in R, consider the Reynolds operator ρ : R−→ RG with

(2.11.1) ρ(r) :=
1
|G| ∑g∈G

g(r).

It is easily verified that ρ is an RG-module homomorphism, and that ρ(s) = s for all s∈ RG.
Hence RG is a direct summand of R whenever the order of G is invertible in R.

Example 2.12. Consider the symmetric group Sn acting on R :=F[x1, . . . ,xn] by permuting
the variables. The invariant ring is RSn = F[e1, . . . ,en], where ei is the i-th elementary
symmetric polynomial. Moreover, R is a free RSn -module with basis

xm1
1 xm2

2 · · ·x
mn
n where 06 mi 6 i−1,

see, for example, [Ar, Chapter II.G]. Consequently RSn is a direct summand of R, indepen-
dent of the characteristic of the field F. �

Example 2.13. Let F be a field of characteristic other than 2. For n > 3, consider the
alternating subgroup An of Sn acting on R := F[x1, . . . ,xn] by permuting the variables. Set

∆ := ∏
i< j

(xi− x j) .

Then σ(∆) = sgn(σ) ·∆ for every permutation σ ∈ Sn, so ∆ is fixed by even cycles. It is not
hard to see that RAn = F[e1, . . . ,en,∆]. Since ∆2 is fixed by all elements of Sn, it must be a
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polynomial in the elementary symmetric polynomials ei, so RAn is a hypersurface defined
by a polynomial of the form

∆
2− f (e1, . . . ,en).

It turns out that RAn is a direct summand of R if and only if |An|= n!/2 is invertible in F.
We examine the case p= 3= n here, and refer to any of [Si1, SmL, Je] for the general case.
The ring of invariants is

RA3 = F[e1,e2,e3,∆],

where e1 = ∑i xi, e2 = ∑i< j xix j, e3 = x1x2x3, and ∆ = (x1 − x2)(x2 − x3)(x1 − x3).
Since RA3 is a hypersurface defined by ∆2− f (e1,e2,e3), it follows that ∆ /∈ (e1,e2,e3)RA3 .
On the other hand, one may easily verify that

∆ = (x1− x2)(x3e1 + e2) ∈ (e1,e2,e3)R,

so RA3 is not a direct summand of R. �

Exercise 2.14. Given that the invariant ring RA3 above has a presentation

F3[e1,e2,e3,∆]/(∆
2− e2

1e2
2 + e3

1e3 + e3
2),

use the definition of tight closure to show that ∆ ∈ (e1,e2)
∗.

It is natural to ask: for a finite group G, when is RG a direct summand of R? One answer
comes from tight closure theory:

Theorem 2.15. Let R be a polynomial ring over a field of positive characteristic, and let G
be a finite group acting linearly on R. Then RG is a direct summand of R if and only if RG

is weakly F-regular.

The proof uses Theorem 2.8 and basic properties of weakly F-regular rings:

Theorem 2.16. The following hold for rings of positive characteristic:

(1) Direct summands of weakly F-regular domains are weakly F-regular.
(2) If S⊆ R is a module-finite extension of domains, then aR∩S⊆ a∗ for ideals a of S.
(3) An excellent weakly F-regular domain is a direct summand of each module-finite

extension ring.

Proof. (1) Let S be a direct summand of a weakly F-regular domain R. Suppose a is an
ideal of S, and z ∈ a∗. Then czq ∈ a[q] for all q� 0, where c ∈ S is a nonzero element. This
implies that czq ∈ a[q]R as well for all q� 0, so z ∈ (aR)∗. But (aR)∗ = aR as R is weakly
F-regular. Since S is a direct summand of R, one has aR∩S = a, so z ∈ a.

(2) Let S ⊆ R be a module-finite extension of domains. At the level of fraction fields,
one has a finite extension [fracR : fracS]< ∞. Choose a fracS-linear map

ϕ0 : fracR−→ fracS
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with ϕ0(1) 6= 0. Since ϕ0(R) is a finitely generated S-submodule of fracS, there exists a
nonzero element d of S with dϕ0(R)⊆ S. Set ϕ := dϕ0, which is an S-linear map R−→ S
with ϕ(1) nonzero. Set c := ϕ(1).

Let a= (x1, . . . ,xn) be an ideal of S, and let z ∈ aR∩S. There exist ri ∈ R with

z = r1x1 + · · ·+ rnxn.

Taking q = pe-th powers, one has

zq = rq
1xq

1 + · · ·+ rq
nxq

n,

and applying ϕ gives

czq = ϕ(1 · zq) = ϕ(rq
1)x

q
1 + · · ·+ϕ(rq

n)x
q
n ∈ a[q]

for all q = pe, so z ∈ a∗ as desired.
(3) Let R be a module-finite extension of an excellent weakly F-regular domain S. Take

a minimal prime p of R such that dimR/p= dimR, and consider

S−→ R−→ R/p.

The composition must be injective, and a splitting of S−→ R/p gives a splitting of S−→ R
by composition. Thus, we reduce to the case where R is a domain. Let a be an ideal of S.
Then (2) gives aR∩S ⊆ a∗, while a∗ equals a since S is weakly F-regular. Theorem 2.10
completes the proof. �

Proof of Theorem 2.15. If RG is a direct summand of R, then it is weakly F-regular by
Theorems 2.8 and 2.16 (1).

For the converse, note that for a finite group G acting on R, the extension RG ⊆ R is
integral since an element r ∈ R is a root of the monic polynomial

∏
g∈G

(t−g(r))

that has coefficients in RG. Hence RG ⊆ R is module-finite; now use Theorem 2.16 (3). �

The following is a conjecture of Shank and Wehlau [ShW, Conjecture 1.1], reformulated
using a result of Broer [Br1]. See [Br1, § 6] as well as [Br2] for more general conjectures
regarding the splitting of RG ⊆ R.

Conjecture 2.17. Let R := F[x1, . . . ,xn] be a polynomial ring over a field F of positive
characteristic p. Let G be a p-subgroup of GLn(F), acting linearly on R. If RG is a direct
summand of R, then RG is a polynomial ring.

We have proved the converse: if RG is polynomial, then it is a direct summand of R
by Theorems 2.8 and 2.15; alternatively, use that RG provides a homogeneous Noether
normalization for R, and that R is Cohen-Macaulay and hence free over RG, Theorem 3.3.
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Splinters. A Noetherian integral domain is a splinter ring if it is a direct summand of each
module-finite extension domain. Splinters are normal: Suppose a fraction a/b is integral
over a splinter R. Since R⊆ R[a/b] is finite, it must be R-split. But then a/b ∈ R, since

a ∈ bR[a/b]∩R = bR.

(1) Characteristic zero: If a normal domain S contains the field of rational numbers,
and R is a module-finite extension domain, then the trace map of fraction fields can be
used to construct a splitting

1
[fracR : fracS]

TrfracR/ fracS : R−→ S.

Consequently, an integral domain of characteristic zero is splinter if and only if it is normal.
(2) Positive characteristic: As we saw, excellent weakly F-regular domains of positive

characteristic are splinter, and Hochster and Huneke also proved the converse for Goren-
stein rings, [HH5, Theorem 6.7]. This was later extended to the class of Q-Gorenstein rings
in [Si2], and to rings whose anti-canonical cover is Noetherian, [CEM+]. There seems to
be increasing evidence for the conjecture:

Conjecture 2.18. Let R be an excellent domain containing a field of positive characteristic.
Then R is weakly F-regular if (and only if) it is splinter.

One of the incentives for proving that the splinter property and weak F-regularity agree
for rings of positive characteristic is that it is easy to show that the localization of a splinter
is splinter. It is open whether weak F-regularity localizes in general, Question 2.6.

The splinter property can be formulated in terms of the plus closure of an ideal a, namely

a+ := aR+∩R,

where R+ denotes the integral closure of R in an algebraic closure of its fraction field: by
Theorem 2.10, an excellent domain R is splinter if and only if a+ = a for all ideals a of R.
By Theorem 2.16 (2), one has the containment

a+ ⊆ a∗,

and Smith [Sm1] proved the equality a+ = a∗ for parameter ideals; see Definition 3.26. On
the other hand, Brenner and Monsky [BM] constructed examples where a+ ( a∗, ending
speculation whether equality holds in general. Note that an equivalent definition of a+ is

a+ = {z ∈ R | there exists a module-finite extension domain T with z ∈ aT} .

Exercise 2.19. Consider Fp[x,y,z]/(x3 + y3 + z3) for p 6= 3. Show that z2 ∈ (x,y)+.

A study of plus closure led Hochster and Huneke to the theorem that for an excellent
local domain R of positive characteristic, R+ is a big Cohen-Macaulay algebra, i.e., an R-
algebra, not necessarily finitely generated, that is a Cohen-Macaulay R-module, [HH4]. A
refinement of this was obtained subsequently by Huneke and Lyubeznik, see Theorem 2.27.
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It turns out that R+sep, the subalgebra of separable elements of R+, is also a big Cohen-
Macaulay algebra, [Si3, SS], while the purely inseparable part

R∞ :=
⋃

R
1
pe

need not be Cohen-Macaulay.
(3) Mixed characteristic: For rings of mixed characteristic, the canonical element con-

jecture, the improved new intersection conjecture, and the monomial conjecture are equiv-
alent to the conjecture that every regular local ring is splinter, which is the direct summand
conjecture. These and related homological questions have motivated a tremendous amount
of activity including the papers [Dut, EG, Hei, Ho1, Ho3, PS, Ro1, Ro2]. The conjectures
have their roots in the work of Serre [Se] and Peskine and Szpiro [PS], and grew to include
conjectures due to Auslander, Bass, Hochster, and others.

In his influential CBMS lecture notes [Ho1], Hochster laid out a body of conjectures,
and proved that the existence of big Cohen-Macaulay modules implies most of these. He
proved that every local ring containing a field has a big Cohen-Macaulay module, thereby
settling the conjectures in the equicharacteristic case. The mixed characteristic case proved
more formidable: some of the conjectures including Auslander’s zerodivisor conjecture
and Bass’s conjecture were proved by Roberts [Ro2] for rings of mixed characteristic, us-
ing local Chern characters and the intersection theory developed by Baum, Fulton, and
MacPherson [BFM]; other conjectures such as the direct summand conjecture, and its
equivalent formulations, remained unresolved. Heitmann [Hei] achieved the next major
breakthrough, by proving these equivalent conjectures for rings of dimension up to three.
Last summer, André [An1, An2] announced proofs of these conjectures, with simplifi-
cations obtained shortly after by Bhatt [Bh]. The progress comes from systematically
applying Scholze’s theory of perfectoid spaces [ScP]:

The homological conjectures over a ring R of equicharacteristic p > 0 can be resolved
using the Frobenius endomorphism; this was one of the major insights in the work of
Peskine and Szpiro [PS] and, indeed, we saw a proof of the direct summand conjecture
for rings of positive characteristic in the form of Theorems 2.8 and 2.16 (3). In mixed
characteristic, while there is no Frobenius map, the theory of perfectoid spaces provides
a good analog of passage to the perfection: given a ring R of mixed characteristic, an
extension R−→ T , with T perfectoid, may be viewed as a substitute for the passage to the
perfection R−→ R∞ in characteristic p > 0.

Dagger closure. Let R be an integral domain of characteristic p> 0. An element z belongs
to the tight closure of a in R if, by definition, there exists a nonzero element c of R with

czq ∈ a[q]

for each q = pe. In this case, taking q-th roots in the above display, it follows that

c1/qz ∈ aR1/q,
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and hence that

c1/qz ∈ aR∞ ⊆ aR+

for each q = pe. Fix a valuation v : Rr{0} −→ Z>0, and extend to v : R+r{0} −→Q>0.
The elements c1/q in R+ have arbitrarily small positive valuation as q varies, and multiply z
into the ideal aR+. The surprising fact is that this characterizes tight closure, at least in a
complete local domain:

Definition 2.20. Let (R,m) be a complete local domain of arbitrary characteristic. Fix a
valuation v that is positive on mr {0}, and extend to v : R+r {0} −→ Q>0. The dagger
closure a† of an ideal a is the ideal consisting of all elements z ∈ R for which there exist
elements u ∈ R+, having arbitrarily small positive valuation, with uz ∈ aR+.

Theorem 2.21. [HH3, Theorem 3.1] Let (R,m) be a complete local domain of positive
characteristic; fix a valuation as above. Then, for each ideal a of R, one has a† = a∗.

While tight closure is defined in characteristic zero by reduction to prime characteristic,
the definition of dagger closure is characteristic-free. However, dagger closure is quite
mysterious in characteristic zero and in mixed characteristic. We work out one example
in characteristic zero; as this example is graded, we use the grading in lieu of a valuation,
working with elements of R+ that can be assigned a Q-degree such that they satisfy a
homogeneous equation of integral dependence over R.

Example 2.22. In Exercise 2.4 (1) we saw that z2 ∈ (x,y)∗ in the hypersurface defined
by x3 +y3 + z3 over Fp. In characteristic 0, one may ask if z2 ∈ (x,y)† over the correspond-
ing hypersurface. This is indeed the case by [RSS, Example 2.4], as we sketch next:

Let θ ∈ C be a primitive cube root of unity. For notational convenience, we replace the
variables by scalar multiples and work instead with the hypersurface

R := C[x, y, z]/
(
θx3 +θ

2y3 + z3).
Let R1 be the extension of R obtained by adjoining x1, y1, z1, where

x3
1 = θ

1/3x+θ
2/3y, y3

1 = θ
1/3x+θ

5/3y, z3
1 = θ

1/3x+θ
8/3y.

Since x1, y1, and z1 are cube roots of linear forms, they are assigned degree 1/3. Note
that x and y can be written as C-linear combinations of x3

1 and y3
1, and that

(x1y1z1)
3 =

(
θ

1/3x+θ
2/3y

)(
θ

1/3x+θ
5/3y

)(
θ

1/3x+θ
8/3y

)
= θx3 +θ

2y3 = −z3.

Moreover,

θx3
1 +θ

2y3
1 + z3

1 = θ
(
θ

1/3x+θ
2/3y

)
+θ

2(
θ

1/3x+θ
5/3y

)
+
(
θ

1/3x+θ
8/3y

)
=
(
θ

4/3 +θ
7/3 +θ

1/3)x+ (θ 5/3 +θ
11/3 +θ

8/3)y = 0,

so R is a subring of the ring

R1 = C[x1, y1, z1]/
(
θx3

1 +θ
2y3

1 + z3
1
)
.
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We claim that

z1 · z2 ∈ (x,y)R1.

To see this, note that (x1y1z1)
3 =−z3 implies that z = λx1y1z1 for some λ ∈ C×, so

z1 · z2 = z1(λx1y1z1)
2 ∈ z3

1R1 ⊆ (x3
1, y3

1)R1 = (x, y)R1.

So far, we have constructed an element z1 of degree 1/3 that multiplies z2 into the
ideal (x,y)R+. As the notation R1 might suggest, this construction can be iterated to obtain
a tower of rings

R = R0 ⊂ R1 ⊂ R2 ⊂ . . . where Rn = C[xn, yn, zn]/
(
θx3

n +θ
2y3

n + z3
n
)
,

and each of xn, yn, zn has degree 1/3n. �

Exercise 2.23. In the notation above, show that

(xn, yn, zn)z2 ⊆ (x, y)R+.

Remark 2.24. The rings Rn are isomorphic to R as abstract rings. The composition

R ↪−→ R1
∼=−−−→ R

where x1 7−→ x, and y1 7−→ y, and z1 7−→ z, gives an endomorphism of R under which the
generators of degree 1 go to elements of degree 3. The ring R is the homogeneous coordi-
nate ring of an elliptic curve, and, indeed, has several degree-increasing endomorphisms:
if E is an elliptic curve and N a positive integer, consider the endomorphism of E that takes
a point P to N ·P under the group law. Then there exists a homogeneous coordinate ring R
of E such that the map

P 7−→ N ·P

corresponds to an endomorphism ϕ : R −→ R that takes elements of degree k to elements
of degree N2k. Arguably, Example 2.22 is atypical, in that the endomorphism exhibited
takes elements of degree k to elements of degree 3k.

Extending this circle of ideas, one has the following result from [RSS]:

Theorem 2.25. Let R be an N-graded domain that is finitely generated over a field R0 of
characteristic zero. Given a positive real number ε , there exists a Q-graded finite extension
domain T , such that the image of the induced map on local cohomology modules

H2
m(R)0 −→ H2

m(T )

is annihilated by an element of T having degree less than ε .

Heitmann proof of the direct summand conjecture for rings of dimension three [Hei]
has a similar flavor; he proves:
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Theorem 2.26. Let (R,m) be a local domain of dimension 3, and mixed characteristic p.
For each n ∈ N, there exists a finite extension domain T , such that the image of the map

H2
m(R)−→ H2

m(T )

is annihilated by p1/n.

Note that once a valuation v on R+ r {0} is fixed, v(p1/n) = v(p)/n takes arbitrarily
small positive values as n gets large.

It is in positive characteristic that such vanishing results are the strongest; we have the
theorem of Huneke and Lyubeznik [HL] mentioned earlier:

Theorem 2.27. Let (R,m) be a local domain of positive characteristic that is a homomor-
phic image of a Gorenstein ring. Then there exists a finite extension domain T such that
the image of the induced map

Hk
m(R)−→ Hk

m(T )

is zero for each k < dimR.

The hypothesis of positive characteristic in the above theorem is essential. For example,
let R be a normal domain of characteristic zero that is not Cohen-Macaulay. If T is a finite
extension of R, then field trace provides an R-linear splitting of R ↪−→ T , so

Hk
m(R) ↪−→ Hk

m(T )

is R-split as well.

Weakly F-regular rings revisited. We mentioned that the splinter property and weak
F-regularity coincide for Gorenstein rings of positive prime characteristic; moreover:

Theorem 2.28. Let (R,m) be a Gorenstein local ring of positive prime characteristic. Fix
a system of parameters xxx := x1, . . . ,xd for R, and let s be an element of R that generates the
socle in R/(xxx). Then the following are equivalent:

(1) The ring R is weakly F-regular.
(2) The ideal (xxx) is tightly closed.
(3) The element s is not in (xxx)∗.

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (2) are clear. Assume (2), i.e., that the
ideal (xxx) is tightly closed. For t > 1, the element

s(x1 · · ·xd)
t−1

generates the socle in R/(xt
1, . . . ,x

t
d). Using that (xxx)∗ = (xxx) and that xxx is a regular sequence,

it is readily seen that
s(x1 · · ·xd)

t−1 /∈ (xt
1, . . . ,x

t
d)
∗,

and hence that (xt
1, . . . ,x

t
d) is tightly closed.

Let a be an arbitrary m-primary ideal; choose an integer t > 1 such that a contains

b := (xt
1, . . . ,x

t
d).
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Since R is Gorenstein, one has
a = b : (b : a),

but then Exercise 2.2 (4) implies that a is tightly closed. Since m-primary ideals of R are
tightly closed, and each ideal is an intersection of m-primary ideals, it follows that each
ideal of R is tightly closed using Exercise 2.2 (5). �

Exercise 2.29. The ring R := F[x,y]/(x3, y5) is Gorenstein, of dimension 0. Given the
ideal a := (x2y, xy2), compute 0 : a and 0 : (0 : a).

Let W be a multiplicative set in a ring R, and a an ideal. It is easily seen that

W−1(a∗) ⊆ (W−1a)∗,

and Brenner and Monsky showed that the reverse containment may fail, [BM]. However:

Lemma 2.30. Let R be a Noetherian ring of positive prime characteristic, and a an ideal
primary to a maximal ideal m of R. Then

a∗Rm = (aRm)
∗.

Proof. If z/1 ∈ (aRm)
∗, then there exists c/1, not in any minimal prime of Rm, with

(2.30.1) czq/1 ∈ a[q]Rm

for each q� 0. Pick an element δ that lies in precisely the minimal primes of R that do not
contain c. Then the image of δ is in each minimal prime of Rm, hence is nilpotent in Rm.
Replacing δ by a power, we may assume that δ/1 = 0 in Rm. Replacing c by c+ δ , we
have equation (2.30.1) with c ∈ R◦.

Since a[q] is m-primary, its only associated prime is m. But then (2.30.1) gives czq ∈ a[q]

for each q� 0, i.e., z ∈ a∗. �

As the reader has noticed, by the associated primes of an ideal a of R, we mean the
associated primes of R/a as as R-module, denoted AssR/a. A consequence of the lemma:

Corollary 2.31. Let R be a Noetherian ring of positive prime characteristic. Then R is
weakly F-regular if and only if Rm is weakly F-regular for each maximal ideal m of R.

One also has the following theorem of Murthy; see [Hu, Theorem 12.2] for a proof:

Theorem 2.32. Let R be a finitely generated algebra over an uncountable field of positive
characteristic. Then, R is weakly F-regular if and only if it is F-regular.

Test elements. In the definition of tight closure, the multiplier c is allowed to be any
element of R◦. In several cases, there are elements c that suffice for each tight closure test:

Let R be a ring of prime characteristic p > 0. An element c in R◦ is a test element if for
each ideal a of R, and z ∈ a∗, one has czq ∈ a[q] for all q = pe.

Exercise 2.33. Verify that c ∈ R◦ is a test element if and only if ca∗ ⊆ a for each ideal a.

The following is a special case of [HH1, Theorem 3.4]:
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Theorem 2.34. Let R be a reduced ring Noetherian ring of prime characteristic p > 0,
such R⊆ R1/p is module-finite. If c is an element such that Rc is regular, then some power
of c is a test element.

The Jacobian ideal is another source of test elements; see [Ho4, § 8] for a proof of the
following theorem. If R := A[x1, . . . ,xn]/( f1, . . . , fm), then the Jacobian ideal J (R/A) may
be computed as the ideal of R generated by the size n minors of the matrix(

∂ fi

∂x j

)
.

Theorem 2.35. Let R be a Noetherian domain of characteristic p > 0 that is module-finite
over a regular subring A. If the extension of fraction fields is separable, then each nonzero
element of the Jacobian ideal J (R/A) is a test element.

Exercise 2.36. Let R := Fp[x,y,z]/(x3 + y3 + z3) where p 6= 3. Prove that z /∈ (x,y)∗.

Exercise 2.37. Consider R :=Fp[x,y,z]/(x2+y3+z5) where p> 7. Then x is a test element
by Theorem 2.35. Use this to show that x /∈ (y,z)∗. Conclude by Theorem 2.28 that the
ring R is weakly F-regular.
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3. INVARIANT RINGS AND THE COHEN-MACAULAY PROPERTY

While we encountered the Cohen-Macaulay property already in the first section, let’s
formally record some definitions:

Definition 3.1. Elements y1, . . . ,yd of R form a regular sequence on an R-module M if

(1) (y1, . . . ,yd)M 6= M, and
(2) for each i with 16 i6 d, the element yi is not a zerodivisor on M/(y1, . . . ,yi−1)M.

A local ring (R,m) is Cohen-Macaulay if some (equivalently, every) system of param-
eters is a regular sequence on R. A ring R is Cohen-Macaulay if the local ring Rm is
Cohen-Macaulay for each maximal ideal m of R.

The main case for us will be where R is an N-graded ring that is finitely generated over
a field R0. In this case, R is Cohen-Macaulay if and only if some (equivalently, every)
homogeneous system of parameters is a regular sequence. For a graded R-module M,
the depth of M is the length of a maximal sequence of homogeneous elements that form a
regular sequence on M. Hence, R is Cohen-Macaulay if and only if depthR = dimR.

Recall the Noether normalization theorem, in its graded form:

Theorem 3.2. Let R be an N-graded ring that is finitely generated over a field R0 = F,
and let xxx := x1, . . . ,xd be a homogeneous system of parameters. Then the elements xxx are
algebraically independent over F, and R is module-finite over its subring F[xxx].

This leads to another formulation of the Cohen-Macaulay property:

Theorem 3.3. Let R be as above, and xxx a homogeneous system of parameters. Then R is
Cohen-Macaulay if and only if it is a free module over F[xxx].

Proof. By Hilbert’s syzygy theorem, R has finite projective dimension over the subring

A := F[xxx].

The Auslander-Buchsbaum formula then says

depthR+pdA R = depthA.

Since depthA = dimA = dimR, it follows that depthR equals dimR precisely if pdA R = 0.
Since R is a finitely generated graded A-module, it is projective if and only if it is free. �

Exercise 3.4. Let F be a field. Find homogeneous systems of parameters for the rings
below, and determine which are Cohen-Macaulay.

(1) F[x, y]/(x2, xy)
(2) F[x, y]/(xy)
(3) F[x, y, z]/(xy, yz)
(4) F[x, y, z]/(xy, yz, zx)
(5) F[u, v, x, y]/(ux, uy, vx, vy)
(6) F[x4, x3y, xy3, y4]
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How does the Cohen-Macaulay property arise in invariant theory? First, an example:

Example 3.5. Let F be an infinite field, and R := F[x1,x2,y1,y2] a polynomial ring. Con-
sider the action of the multiplicative group G := F× on R, as follows:

λ : f (x1, x2, y1, y2) 7−→ f (λx1, λx2, λ
−1y1, λ

−1y2).

Under this action, each monomial is mapped to a scalar multiple. Thus, RG is generated by
invariant monomials, i.e., monomials xi

1x j
2yk

1yl
2 with

λ
i+ j−k−l = 1 for all λ ∈ F×.

Since F is infinite, the ring of invariants is

RG = F[x1y1, x1y2, x2y1, x2y2].

Note that dimRG = 3, for example, by examining the transcendence degree of its frac-
tion field. The polynomial ring S := F[z11,z12,z21,z22] maps onto RG via the F-algebra
homomorphism ϕ with ϕ : zi j 7−→ xiy j. It is easily seen that ϕ(z11z22 − z12z21) = 0.
Since dimS = 4, the kernel of ϕ must be a height one prime of S, and it follows that

kerϕ = (z11z22− z12z21). �

Given an action of G on a polynomial ring R, the first fundamental problem of invariant
theory, according to Hermann Weyl [We], is to find algebra generators for the ring of
invariants RG, in other words to find a polynomial ring S with a surjection ϕ : S −→ RG.
The second fundamental problem is to find relations amongst these generators, i.e., to
find a free S-module Sb1 that surjects onto kerϕ . In Example 3.5, we solved these two
fundamental problems for the prescribed group action. In general, continuing this sequence
of fundamental problems, one would like to determine the resolution of RG as an S-module,
i.e., to determine an exact sequence

(3.5.1) · · · −→ Sb3 −→ Sb2 −→ Sb1 −→ S
ϕ−→ RG −→ 0.

Hilbert’s syzygy theorem implies that a minimal such resolution is finite. (Since RG is a
graded module over the polynomial ring S, minimal can be taken to mean that the entries of
the matrices giving the maps Sbi+1 −→ Sbi are homogeneous nonunits; in this case, each bi

is least possible.) Knowing a graded resolution, it is then easy to compute the dimension,
the multiplicity and, more generally, the Hilbert series of RG. Another fundamental ques-
tion then arises: what is the length of the minimal resolution of RG as an S-module, i.e.,
the projective dimension pdS RG ? By the Auslander-Buchsbaum formula,

pdS RG = depthS−depthRG.

The polynomial ring S is Cohen-Macaulay, and depthRG 6 dimRG, so a lower bound is

pdS RG > dimS−dimRG.

Equality holds if and only if depthRG = dimRG, i.e., precisely if RG is Cohen-Macaulay.
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Example 3.6. As a variation of Example 3.5, let R :=F[x1,x2,x3,y1,y2] where F is infinite.
Take G := F× and the action

λ : f (x1, x2, x3, y1, y2) 7−→ f (λx1, λx2, λx3, λ
−1y1, λ

−1y2).

Akin to Example 3.5, the invariant ring is

RG = F[x1y1, x1y2, x2y1, x2y2, x3y1, x3y2].

Using transcendence degree, one sees that dimRG = 4. The polynomial ring

S := F[z11,z12,z21,z22,z31,z32]

maps onto RG via zi j 7−→ xiy j, and the sequence (3.5.1) takes the form

0 −−−→ S2


z11 z12

z21 z22

z31 z32


−−−−−−−−→ S3

(
∆1 ∆2 ∆3

)
−−−−−−−−−−→ S −−−→ RG −−−→ 0.

where ∆1 = z21z32− z31z22, ∆2 = z31z12− z11z32, and ∆3 = z11z22− z21z12. The verification
that the above sequence is exact is left to the reader. Since

pdS RG = 2 = dimS−dimRG,

it follows that RG is Cohen-Macaulay. Bearing in mind the degrees of the matrix entries,
one has a graded exact sequence

0 −−−→ S2(−3) −−−→ S3(−2) −−−→ S −−−→ RG −−−→ 0,

from which one sees that

HRG(t) = (1−3t2 +2t3)HS(t) =
1−3t2 +2t3

(1− t)6 =
1+2t
(1− t)4 . �

Exercise 3.7. Let S and T be algebras over a field F, and ϕ : S −→ T a surjective F-
algebra homomorphism. Let {ti} be an F-vector space basis for T , and si ∈ S be elements
with ϕ(si) = ti. Suppose a is an ideal contained in kerϕ such that each element of S is
congruent to an element in the F-span of {si} modulo a, prove that a = kerϕ . Use this to
conclude that S/(∆1,∆2,∆3)∼= RG in the previous example.

Yet another motivation for considering the Cohen-Macaulay property of RG comes from
Theorem 3.3: when RG is Cohen-Macaulay, take a homogeneous Noether normalization

A := F[ f1, . . . , fd ]

of RG, and a basis for RG as an A-module consisting of homogeneous elements a1, . . . ,am;
such a basis exists since RG is a graded free A-module. The decomposition

RG =
m⊕

i=1

ai ·F[ f1, . . . , fd ]
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says that each element of RG can be uniquely expressed in the form

m

∑
i=1

aigi( f1, . . . , fd),

where the gi are polynomials in d variables. Kempf [Ke] refers to f1, . . . , fd as fundamental
homogeneous invariants and to a1, . . . ,ar as auxiliary homogeneous invariants. Note that

HRG(t) =
∑i tdegai

∏(1− tdeg f j)
.

Hilbert described the problem of explicitly finding a set of fundamental invariants as the
hardest problem of invariant theory.

We record some classical examples, pointing the reader to [We] and [DP] for details.

Example 3.8. Extending Examples 3.5, 3.6, let X and Y be r× n and n× s matrices of
indeterminates over an infinite field F, and take R to be the polynomial ring in these rn+ns
indeterminates. Consider the action of G := GLn(F) on R where an element M of G maps
the entries of X to the corresponding entries of XM−1 and the entries of Y to those of MY .
Then RG is the F-algebra generated by the entries of the product matrix XY .

If Z is an r× s matrix of new indeterminates mapping onto the entries of XY , the kernel
of the induced F-algebra surjection F[Z] −→ RG is the ideal generated by the size n+ 1
minors of the matrix Z. These determinantal rings are the subject of [BV]. �

Exercise 3.9. Let p be a prime, and take R := Fp[x1,x2,x3,y1,y2]. Determine the invariant
ring for the action of G := Fp

×, where

λ : f (x1, x2, x3, y1, y2) 7−→ f (λx1, λx2, λx3, λ
−1y1, λ

−1y2).

Example 3.10. Let X be an n× d matrix of indeterminates over a field F, and consider
the polynomial ring R := F[X ]. Let G := SLn(F) act on R, where an element M of G maps
the (i, j)-th entry of the matrix X to the (i, j)-th entry of the matrix MX .

Since detM = 1, the size n minors of X are fixed by the action. When F is infinite, RG is
the F-algebra generated by the size n minors of X . The ring RG is the homogeneous co-
ordinate ring of the Grassmannian variety of n-dimensional subspaces of a d-dimensional
vector space. The relations between the minors are the well-known Plücker relations.

The reader is invited to prove that RG is a unique factorization domain; see the following
exercise. The key point is that since the commutator subgroup of G = SLn(F) is G itself,
any homomorphism from G to an abelian group must be trivial; in particular, there are no
nontrivial homomorphisms from G to F×.

Once we know that RG is a unique factorization domain, Murthy’s theorem [Mur] im-
plies that RG is Gorenstein. More generally, the ring of invariants of a connected semisim-
ple linear algebraic group, acting linearly on a polynomial ring, is a Cohen-Macaulay
unique factorization domain, hence also Gorenstein. For more on the Gorenstein prop-
erty of RG see [Wa1, Kn]. �
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Exercise 3.11. Let R be a polynomial ring over a field F, and G a group acting on R by F-
algebra automorphisms. If there are no nontrivial homomorphisms from G to F×, prove
that RG is a unique factorization domain.

Exercise 3.12. Let X be a 2× 3 matrix of indeterminates over F. Prove that the size 2
minors of X are algebraically independent over F. What about the minors of a 2×4 matrix?

Let us finally go through one computation in some detail:

Example 3.13. Let X = (xi j) be an n×n matrix of indeterminates over an infinite field F,
and consider the polynomial ring R := F[X ]. Let G := GLn(F) be the general linear group
acting linearly on R, where M in G maps the entries of the matrix X to the corresponding
entries of M−1XM. We determine the ring of invariants RG. This is a special case of [Pr].

The matrices X and M−1XM are conjugate, so the determinant and trace of X and, more
generally, the coefficients of its characteristic polynomial

p(t) := det(tI−X)

are fixed by G. We claim that RG is the F-algebra generated by the coefficients of p(t).
Let Y = (yi j) be an n×n matrix of new indeterminates, and set

S := R[Y, 1/detY ].

Given f (X)∈RG, consider f (Y−1XY )∈ S. When Y is specialized to any matrix in GLn(F),
the specialization of f (Y−1XY ) agrees with f (X). Since F is infinite, and

f (Y−1XY )− f (X)

vanishes for all specializations as above, it must vanish identically, i.e., f (Y−1XY ) = f (X).
Let K be an algebraic closure of the fraction field of R. When we specialize the off-

diagonal entries of X to 0, the resulting matrix has distinct eigenvalues x11, . . . ,xnn, and it
follows that X has distinct eigenvalues in K. Consequently, X is diagonalizable over K, i.e.,
there exists a matrix N ∈GLn(K) such that D := N−1XN is diagonal, with the entries of D
being the eigenvalues of X . Specializing Y to N, we see that f (D) = f (X). Hence f (X) is
a polynomial in the entries of D, i.e., a polynomial in the eigenvalues of X .

Moreover, for a permutation π ∈ Sn, consider the corresponding permutation matrix P
in GLn(K). Then f (P−1DP) = f (D), so f (X) is a symmetric function of the eigenvalues
of X . The elementary symmetric functions of the eigenvalues are, up to sign, the coeffi-
cients of the characteristic polynomial, proving the claim.

So far, we have solved the first fundamental problem for this group action. The sec-
ond fundamental problem is to determine the relations, if any, between the coefficients of
the characteristic polynomial of X . Specializing the off-diagonal entries of X to 0, the
coefficients of the characteristic polynomial of the resulting matrix are the n elementary
symmetric functions in x11, . . . ,xnn which are known to be algebraically independent. It
follows that the coefficients of p(t) are algebraically independent as well, so RG is isomor-
phic to a polynomial ring in n indeterminates. �
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In all of the examples above, RG is Cohen-Macaulay; here is one where it is not:

Example 3.14. Let G := 〈σ | σ2 = 1〉 act on R := F2[x1,x2,x3,y1,y2,y3], where

σ(xi) = yi and σ(yi) = xi

for each i. Then the invariant ring is generated by the polynomials

xi + yi, xiyi, xiy j + x jyi, x1x2x3 + y1y2y3, with 16 i 6= j 6 3

and RG is not Cohen-Macaulay: The elements xi +yi and xiyi form a homogeneous system
of parameters for RG, and satisfy the relation

(x2y3 + x3y2)(x1 + y1)+(x3y1 + x1y3)(x2 + y2)+(x1y2 + x2y1)(x3 + y3) = 0,

which is seen to be non-trivial, once one verifies that

(x2y3 + x3y2) /∈ (x2 + y2, x3 + y3)RG.

This is elementary, bearing in mind the degrees of the elements involved. �

Exercise 3.15. Theorem 2.16 (2), applied to RG ⊆ R in the example above, says that

aR∩RG ⊆ a∗

for each ideal a of RG. Find an ideal a for which aR∩RG 6= a, and verify the above.

It is no coincidence that |G| is not invertible in R in the above example; the following is
a special case of a theorem of Hochster and Eagon, [HE, Proposition 13]:

Theorem 3.16. Let R be a polynomial ring over a field, and G a finite group acting linearly
on R. If |G| is invertible in R, then RG is Cohen-Macaulay.

Proof. Take a homogeneous system of parameters yyy for RG. Since G is finite, R is an
integral extension of RG, so yyy is a homogeneous system of parameters for R as well, and
thus a regular sequence on R. Using the Reynolds operator, (2.11.1), it follows that RG is a
direct summand of R as an RG-module. But then yyy is a regular sequence on RG as well. �

The first examples of finite groups G for which RG is not Cohen-Macaulay are due to
Bertin [Be], see also Fossum-Griffith [FG]. In these, R := F[x1, . . . ,xq] is a polynomial
ring over a field of characteristic p > 0, and q = pe, and G := Z/q acts on R by a cyclic
permutation of the variables. Then, for q> 4, the ring of invariants RG is a unique factor-
ization domain that is not Cohen-Macaulay. Moreover, this is preserved if R is replaced
by its completion R̂ at the homogeneous maximal ideal, and the action on R̂ is the unique
continuous action extending the one on R.

The proof of Theorem 3.16 works more generally to show that a direct summand S of
a Cohen-Macaulay ring R is Cohen-Macaulay, provided that a system of parameters for S
forms part of a system of parameters for R. In general, a direct summand of a Cohen-
Macaulay ring need not be Cohen-Macaulay:
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Example 3.17. Let F be an infinite field of characteristic other than 3, and set

R := F[x,y,z,s, t]/(x3 + y3 + z3).

Consider the action of G := F× on R where

λ : f (x, y, z, s, t) 7−→ f (λx, λy, λ z, λ
−1s, λ

−1t).

Similar to Example 3.6, RG is the F-algebra generated by sx, sy, sz, tx, ty, and tz. While RG

is a direct summand of the Cohen-Macaulay ring R, it is not Cohen-Macaulay: the homo-
geneous system of parameters sx, ty, sy− tx has a non-trivial relation

sz · tz · (sy− tx) = (sz)2 · ty− (tz)2 · sx. �

Reductive and linearly reductive groups. A linear algebraic group is Zariski closed sub-
group of a general linear group GLn(F). A linear algebraic group G is linearly reductive if
every finite dimensional G-module is a direct sum of irreducible G-modules, equivalently,
if every G-submodule has a G-stable complement. Linearly reductive groups in character-
istic zero include finite groups, algebraic tori (i.e., products of copies of the multiplicative
group of the field), and the classical groups GLn(F), SLn(F), Sp2n(F), On(F), and SOn(F).

When a linearly reductive group G acts linearly on a finitely generated F-algebra R,
there is an RG-linear splitting given by the Reynolds operator

ρ : R−→ RG.

One way to think of the Reynolds operator is as follows: A linear algebraic group over C
is linearly reductive precisely if it has a Zariski dense subgroup that is a compact real Lie
group; the Reynolds operator corresponds to averaging over the compact subgroup with
respect to the Haar measure, akin to the averaging in (2.11.1). Elements that are fixed by
the Zariski dense subgroup are fixed by the entire group.

A linear algebraic group is reductive if its largest closed connected solvable normal sub-
group is an algebraic torus. In characteristic zero, linearly reductive groups are precisely
those that are reductive. However, reductive groups in positive characteristic typically fail
to be linearly reductive, see Example 3.23. In the preface to [Mum], Mumford conjectured
that reductive groups satisfy a weaker property that should ensure that RG is Noetherian,
and this led to the notion of geometrically reductive groups:

A linear algebraic group G is geometrically reductive if for each finite dimensional G-
module V , and each G-stable submodule W of codimension one such that G acts trivially
on V/W , there exists an integer n > 1 such that W · Symn V has a G-stable complement
in Symn V , where Symn V denotes the n-th symmetric power of V .

Nagata [Na3] proved that RG is finitely generated when G is geometrically reductive,
and Haboush [Hab] settled Mumford’s conjecture by proving that reductive groups are
geometrically reductive. It is interesting to note that for reductive groups G, though aR∩RG

may not be contained in a, one nonetheless has the following by [Na3, Lemma 5.2.B]:

aR∩RG ⊆ rada.
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The Hochster-Roberts Theorem. Though the Cohen-Macaulay property is not preserved
under taking direct summands, Example 3.17, the following theorem of Hochster and
Roberts [HR] implies that several important invariant rings are indeed Cohen-Macaulay:

Theorem 3.18. Let G be a linearly reductive group over a field F, acting linearly on a
polynomial ring R := F[x1, . . . ,xn]. Then RG is Cohen-Macaulay.

More generally, a direct summand of a polynomial ring over a field is Cohen-Macaulay.

This was extended by Hochster and Huneke to all equicharacteristic regular rings, using
their construction of big Cohen-Macaulay algebras, [HH7, Theorem 2.3]: they prove that
a direct summand of a regular ring containing a field is Cohen-Macaulay. More recently,
André’s preprint [An2] includes a construction of big Cohen-Macaulay algebras, functorial
over injective maps, for local rings of mixed characteristic. This then implies that a direct
summand of a regular local ring of mixed characteristic is Cohen-Macaulay.

In these notes, we will limit ourselves to proving Theorem 3.18 in the graded setting.
We have seen that direct summands of weakly F-regular domains are weakly F-regular,
Theorem 2.16 (1), so the positive characteristic graded case is handled by the following:

Theorem 3.19. Let R be an N-graded domain that is finitely generated over a field R0 of
positive characteristic. Let y1, . . . ,yd be a homogeneous system of parameters for R. Then

(y1, . . . ,yk) : yk+1 ⊆ (y1, . . . ,yk)
∗ for all 06 k 6 d−1.

In particular, if R is weakly F-regular, then it is Cohen-Macaulay.

Proof. We have largely seen the proof in the course of Lemma 1.6 (3), but here goes: R is
module-finite over A := F[y1, . . . ,yd ]. Let N be largest with AN ⊆ R, in which case R/AN

is annihilated by a nonzero element c of A. If

syk+1 ∈ (y1, . . . ,yk)R,

applying the Frobenius endomorphism gives

sqyq
k+1 ∈ (yq

1, . . . ,y
q
k)R

for each q = pe. Multiplying the above by c, one then has

csqyq
k+1 ∈ (yq

1, . . . ,y
q
k)A

N .

But y1, . . . ,yk+1 is a regular sequence on AN , so

csq ∈ (yq
1, . . . ,y

q
k)A

N ⊆ (yq
1, . . . ,y

q
k)R

for all q = pe, and hence s ∈ (y1, . . . ,yk)
∗. �

As we saw, a weakly F-regular is Cohen-Macaulay in the graded setting. More gener-
ally, if R is a weakly F-regular ring that is either locally excellent, or a homomorphic image
of a Cohen-Macaulay ring, then R is Cohen-Macaulay; see [HH6], but after proving:
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Exercise 3.20. Let S ⊆ R be a module-finite extension of domains of positive prime char-
acteristic. If y1, . . . ,yn is a regular sequence in S, show that for each k one has

(y1, . . . ,yk)R :R yk+1 ⊆
(
(y1, . . . ,yk)R

)∗
.

Reduction modulo p. We now work towards proving the Hochster-Roberts theorem for
graded rings of characteristic zero. The proof will be via reduction modulo p methods; the
technique is likely familiar from the proofs of Gauss’s Lemma and Eisenstein’s criterion;
another great application is Dedekind’s proof, from 1857, that cyclotomic polynomials are
irreducible. The basic idea in Dedekind’s proof, as in most reduction modulo p proofs, is
to start with a statement in characteristic zero, reduce modulo a prime p, and then exploit
the Frobenius map; the technique has proved extremely useful in commutative algebra. We
shall use reduction modulo p methods here to prove the Hochster-Roberts theorem, and,
later, the Briançon-Skoda theorem and the Ein-Lazarsfeld-Smith theorem.

There are beautiful results relating the characteristic 0 and characteristic p properties of
algebraic sets: Starting with a polynomial

f (x1, . . . ,xd) ∈ Z[x1, . . . ,xd ],

the solution set of f = 0 in Cd is a topological space. The Weil Conjectures—now theorems
of Dwork, Grothendieck, and Deligne—relate the Betti numbers of this topological space
to the number of roots of f in finite fields Fpe . Closer to the applications that we have in
mind here, is the following elementary result:

Proposition 3.21. Consider a family of polynomials f1, . . . , fn in Z[x1, . . . ,xd ]. Then this
family has a common root over C if and only if, for all but finitely many prime integers p,
their images have a common root over Fp.

Proof. If (α1, . . . ,αd) is a common root of the given polynomials in Cd , set

A := Z[α1, . . . ,αd ],

which is a subring of C. Let m be a maximal ideal of A. Then A/m is a field that is finitely
generated as a Z-algebra, and is hence a finite field, see, for example, [AM, Exercise 7.6].
Let p be the characteristic of A/m. Using to denote images modulo m, the point

(α1, . . . ,αd) ∈ (A/m)d

is a common root of the polynomials f 1, . . . , f n ∈ Fp[x1, . . . ,xd ]. It remains to verify that A
has maximal ideals containing infinitely many prime integers.

By Noether normalization, the ring

AQ :=Q[α1, . . . ,αd ]

is an integral extension of a polynomial subring Q[y1, . . . ,yt ]. Each αi satisfies an equation
of integral dependence over Q[y1, . . . ,yt ]. Each of these d equations involves finitely many
coefficients from Q, so, after inverting a suitable integer r, one has an integral extension

(3.21.1) Z[y1, . . . ,yt ,1/r] ⊆ A[1/r].
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For every prime integer p not dividing r, there is a maximal ideal of

Z[y1, . . . ,yt ,1/r]

that contains p. As the extension (3.21.1) is integral, there exists a maximal ideal of A[1/r]
lying over a given maximal ideal of Z[y1, . . . ,yt ,1/r].

Conversely, if the polynomials do not have a common root in Cd , then Hilbert’s Null-
stellensatz implies that f1, . . . , fn generate the unit ideal in C[x1, . . . ,xd ], i.e., that

C[x1, . . . ,xd ]/( f1, . . . , fn) = 0.

But C is faithfully flat over Q, so

Q[x1, . . . ,xd ]/( f1, . . . , fn) = 0

as well, i.e., f1, . . . , fn generate the unit ideal in Q[x1, . . . ,xd ]. Taking an equation and
clearing denominators, one has

f1g1 + · · ·+ fngn = m,

where g1, . . . ,gn ∈ Z[x1, . . . ,xd ], and m is a nonzero integer. For each prime integer p not
dividing m, the images of f1, . . . , fn generate the unit ideal in Fp[x1, . . . ,xd ], and hence
cannot have a common root over Fp. �

We now return to the Hochster-Roberts theorem in the following form:

Theorem 3.22. Let R be an N-graded polynomial ring over a field R0 of characteristic 0,
and S a graded R0-subalgebra that is a direct summand of R. Then S is Cohen-Macaulay.

Proof. Let R = F[x1, . . . ,xn], where xi are indeterminates. Note that S must be a finitely
generated F-algebra, say S = F[u1, . . . ,um]. Let y1, . . . ,yd be a homogeneous system of
parameters for S. If S is not Cohen-Macaulay, then there exist homogeneous si ∈ S with

(3.22.1) s1y1 + · · ·+ sk+1yk+1 = 0

and sk+1 /∈ (y1, . . . ,yk)S. Since S is a direct summand of R, it follows that

(3.22.2) sk+1 /∈ (y1, . . . ,yk)R.

Note that one has the containments

F[y1, . . . ,yd ] ⊆ F[u1, . . . ,um] ⊆ F[x1, . . . ,xn].

The elements y1, . . . ,yd are algebraically independent over F; enlarge this to a transcen-
dence basis y1, . . . ,yn for F(x1, . . . ,xn) over F, such that each yi ∈ F[x1, . . . ,xn].

Let A be a finitely generated Z-subalgebra of F such that

(i) one has A[y1, . . . ,yd ]⊆ A[u1, . . . ,um]⊆ A[x1, . . . ,xn], i.e., such that the ring A contains
coefficients needed to express u1, . . . ,um and y1, . . . ,yd as polynomials in x1, . . . ,xn,
and to express y1, . . . ,yd as polynomials in u1, . . . ,um,

(ii) the extension A[y1, . . . ,yd ]⊆ A[u1, . . . ,um] is integral,
(iii) each si ∈ A[u1, . . . ,um],
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(iv) each y1, . . . ,yn is an element of A[x1, . . . ,xn],
(v) each xi is algebraically dependent over (fracA)(y1, . . . ,yn); moreover, for each xi,

take its minimal polynomial over the field (fracA)(y1, . . . ,yn) and invert the nonzero
elements of A that occur as coefficients in these n polynomials.

The last step ensures that if m is a maximal ideal of A, then the indeterminates x1, . . . ,xn are
algebraically dependent over A/m[y1, . . . ,yn]. It then follows that the images of y1, . . . ,yn,
and hence of y1, . . . ,yd , remain algebraically independent over A/m.

Let D= degsk+1. In view of (3.22.2), one has an inclusion of finite rank F-vector spaces

F · sk+1 ↪−→
[
R/(y1, . . . ,yk)

]
D.

This restricts to an inclusion of finitely generated A-modules

(3.22.3) A · sk+1 ↪−→
[
A[x1, . . . ,xn]/(y1, . . . ,yk)

]
D.

Enlarge A by inverting a nonzero element such that the above inclusion then becomes a
split inclusion of free A-modules.

Let m be a maximal ideal of A. Then κ := A/m is a field that is finitely generated as
a Z-algebra, hence is a finite field. Set

Rκ := κ[x1, . . . ,xn] and Sκ := κ[u1, . . . ,um].

Note that we have

κ[y1, . . . ,yd ] ⊆ Sκ ⊆ Rκ ,

where κ[x1, . . . ,xn] and κ[y1, . . . ,yd ] are polynomial rings over the field κ , and the exten-
sion κ[y1, . . . ,yd ] ⊆ κ[u1, . . . ,um] is module-finite. In particular, y1, . . . ,yd is a homoge-
neous system of parameters for κ[u1, . . . ,um].

By (3.22.1), one has

sk+1yk+1 ∈ (y1, . . . ,yk)Sκ ,

so Theorem 3.19 implies that

sk+1 ∈
(
(y1, . . . ,yk)Sκ

)∗
.

But then

sk+1 ∈
(
(y1, . . . ,yk)Rκ

)∗
= (y1, . . . ,yk)Rκ .

On the other hand, applying −⊗A κ to (3.22.3) gives

κ · sk+1 ↪−→
[
Rκ/(y1, . . . ,yk)

]
D,

a contradiction. �

One subtle point in the proof above: the property that S is a direct summand of R may
not be preserved when we reduce modulo primes p, as we see in the following example:
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Example 3.23. Let F be an infinite field, and consider G := SL2(F) acting on the polyno-
mial ring R := F[u,v,w,x,y,z], where an element M of G maps the entries of the matrix

X :=

(
u v w
x y z

)
to those of the matrix MX . This is a special case of Example 3.10; the ring of invariants
is RG = F[∆1,∆2,∆3], where

∆1 := vz−wy, ∆2 := wx−uz, ∆3 := uy− vx

are the size 2 minors of the matrix X . These minors are algebraically independent over F
by Exercise 3.12, and hence RG is a polynomial ring. When F has characteristic zero, the
group G is linearly reductive, and hence RG is a direct summand of R. We shall see that RG

is not a direct summand of R when F has positive characteristic p:
Let a := (∆1,∆2,∆3)R, and consider the local cohomology module

H3
a(R) := lim−→

t
Ext3R(R/a

t , R) ∼= lim−→
q=pe

Ext3R(R/a
[q], R),

where the isomorphism holds since the sequences of ideals {at}t∈N and {a[pe]}e∈N are
cofinal. Since R/a is Cohen-Macaulay, the Auslander-Buchsbaum formula gives

pdR R/a= 2.

Tensoring a projective resolution of R/a with Fe(R) gives a projective resolution of R/a[q]

by the flatness of the Frobenius endomorphism. Thus pdR R/a[q] = 2, so

Ext3R(R/a
[q], R) = 0

for all q = pe, and hence H3
a(R) = 0. Using the alternative description of H•a(R) as the

cohomology of the Čech complex

0−→ R−→ R∆1 ⊕R∆2 ⊕R∆3 −→ R∆2∆3 ⊕R∆3∆1 ⊕R∆1∆2 −→ R∆1∆2∆3 −→ 0,

the surjectivity of the penultimate map implies that

1
∆1∆2∆3

=
r1

(∆2∆3)t +
r2

(∆3∆1)t +
r3

(∆1∆2)t

for some ri ∈ R and t ∈ N. Multiplying by (∆1∆2∆3)
t , one has

(∆1∆2∆3)
t−1 = r1∆

t
1 + r2∆

t
2 + r3∆

t
3 ∈ (∆t

1,∆
t
2,∆

t
3)R.

Since (∆1∆2∆3)
t−1 /∈ (∆t

1,∆
t
2,∆

t
3)R

G, it follows that RG is not a direct summand of R. �

We have seen that weak F-regularity is preserved under taking direct summands and
that, under mild hypotheses, it implies the Cohen-Macaulay property. Here is a class of
rings of characteristic zero with these properties:
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Definition 3.24. Let X be an irreducible normal variety over an algebraically closed field
of characteristic zero. Then X has rational singularities if for some (equivalently, every)
desingularization f : Z −→ X , one has

Ri f∗(OZ) = 0

for all i> 1. If X has rational singularities, then the local rings of X are Cohen-Macaulay.
We say that R has rational singularities if SpecR has rational singularities. There are nu-

merical criteria that detect when a graded ring has rational singularities due to Flenner [Fl]
and Watanabe [Wa2]. It is a theorem of Boutot [Bo] that the property of having rational
singularities is preserved under taking direct summands; see also Gurjar [Gu]:

Theorem 3.25. Let R be a finitely generated algebra over a field of characteristic zero,
and let S be a direct summand of R. If R has rational singularities, then so does S.

Rational singularities are related to a property that arises in tight closure theory:

Definition 3.26. An ideal a := xxxR is a parameter ideal if the images of xxx form part of a
system of parameters of Rp, for each prime ideal p containing a. A ring R of positive prime
characteristic is F-rational if each parameter ideal is tightly closed.

While it is open whether a localization of a weakly F-regular is weakly F-regular, the
situation is better with F-rationality; proofs of the following may be found in [HH6]:

Theorem 3.27. The following hold for rings of prime characteristic:

(1) An F-rational ring is normal.
(2) A Gorenstein ring is F-rational if and only if it is weakly F-regular.

Suppose, in addition, that R is a homomorphic image of a Cohen-Macaulay ring. Then:

(3) If R is F-rational, then it is Cohen-Macaulay.
(4) If R is F-rational, then so is each localization of R.
(5) If R is local, then it is F-rational if and only if it is equidimensional and the ideal

generated by one system of parameters is tightly closed.

Definition 3.28. Let R be a finitely generated algebra over a field F of characteristic zero.
Then R is of F-rational type (or F-regular type) if there exists a finitely generated Z-
subalgebra A of F, and a finitely generated free A-algebra RA with

RA⊗A F ∼= R,

such that for all maximal ideals m in a Zariski dense open subset of SpecA, the rings

RA⊗A A/m

are F-rational (or F-regular).

Smith [Sm2] proved that a ring of F-rational type has rational singularities, and the
converse was proved by Hara [Har] as well as Mehta-Srinivas [MeS]. Combining these:
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Theorem 3.29. Let R be a ring finitely generated over a field of characteristic 0. Then R
has rational singularities if and only if it is of F-rational type.

For other striking connections between tight closure theory and singularities in char-
acteristic zero, see [HW]. The following example from [KSS+] includes rings that are
of F-rational type, but not of F-regular type; see [Wa3] for examples in dimension 2.

Example 3.30. Let F be a field, let m,n be integers with m,n> 2, and let

R := F[x1, . . . ,xm,y1, . . . ,yn]/( f )

be a normal N2-graded hypersurface where degxi = (1,0), degy j = (0,1). Suppose f is
homogeneous of degree (d,e), for d,e positive. Set

R∆ :=
⊕
i>0

Ri,i.

Then the ring R∆ is Cohen-Macaulay if and only if d−m < e and e− n < d, and R∆ is
Gorenstein if and only if d−m = e−n.

Suppose F has characteristic zero, and f is a generic polynomial of degree (d,e).
Then R∆ if of F-rational type if and only if it is Cohen-Macaulay and d < m or e < n,
whileR∆ is of F-regular type if and only if d < m and e < n. �

Definition 3.31. Let R be a ring of prime characteristic p > 0. Then R is F-pure if the
Frobenius map F : R−→ R is pure, i.e., if

F⊗1: R⊗R M −→ R⊗R M

is injective for each R-module M.

Taking M := R/a, the map displayed above takes the form

R/a r 7−→ rp
−−−−→ R/a[p].

It follows that if R is F-pure, then for each ring element r and ideal a, one has rp ∈ a[p] if
and only if r ∈ a. The converse holds as well when R is Noetherian and F : R −→ R is a
finite map. (Exercise: Why?)

The following is referred to as Fedder’s criterion; see [Fe] for a proof:

Theorem 3.32. Let (R,m) be a regular local ring of characteristic p > 0, and a an ideal.
Then the ring R/a is F-pure if and only if for some (equivalently, all) q = pe, one has

(a[q] : a) * m[q].

Exercise 3.33. Determine the primes p for which Fp[x,y,z]/(x3 + y3 + z3) is F-pure.

Exercise 3.34. Determine the primes p for which Fp[x,y,z]/(x2 + y3 + z6) is F-pure.

Exercise 3.35. If R is a polynomial ring over a field of positive characteristic, and a an
ideal generated by square-free monomials in the indeterminates, prove that R/a is F-pure.
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4. THE BRIANÇON-SKODA THEOREM

Definition 4.1. Let a be an ideal of a ring R. An element z is in the integral closure of a,
denoted a, if it satisfies an equation of the form

zn +a1zn−1 +a2zn−2 + · · ·+an = 0,

with ak ∈ ak for each k. When R is Noetherian, an equivalent definition is

a :=
{

z ∈ R | there exists c ∈ R◦ with czk ∈ ak for all k� 0
}
,

alternatively, one may require the condition above for infinitely many k ∈ N. Also, in
a Noetherian ring, z ∈ a if and only if ϕ(z) ∈ aV for each homomorphism ϕ : R −→ V ,
with V a discrete valuation ring. Lastly, when R is a Noetherian domain, one has

a =
⋂

aV ∩R,

where the intersection is over discrete valuation rings V , between R and fracR, for which
the maximal ideal of V contracts to a maximal ideal of R, see [SH, Proposition 6.8.4].

It is easy to see that a is an ideal of R, and that

a ⊆ a ⊆ rada.

Moreover, if R is Noetherian and of characteristic p > 0, one of the characterizations gives

a∗ ⊆ a.

Taking the ideal (x2,y2) in F[x,y], one sees that tight closure is tighter.

Exercise 4.2. Let a be an ideal of a ring R. Prove that z ∈ rada if and only if ϕ(z) ∈ aF for
each homomorphism ϕ : R−→ F, with F a field.

Exercise 4.3. Let (R,m) be a local domain. Prove that every integrally closed ideal of R is
the intersection of m-primary integrally closed ideals.

Proposition 4.4. Let R := C{x1, . . . ,xd} be the ring of power series in d variables, with
complex coefficients, that are convergent in a neighborhood of the origin. If f belongs to
the maximal ideal of R, then

f ∈
(

∂ f
∂x1

, . . . ,
∂ f
∂xd

)
.

Proof. Set a to be the ideal generated by all the partial derivatives ∂ f/∂xi, and suppose
that f /∈ a. Then there exists a discrete valuation ring (V, tV ), with R ⊆ V ⊆ fracR, such
that the maximal ideal of V contracts to that of R, and f /∈ aV . Note that f ∈ tV and
that aV = tmV for some integer m > 1. The completion of V is a formal power series
ring V̂ = F[[t]], for F a field containing C. Working in V̂ , the chain rule gives

df
dt

=
d

∑
i=1

∂ f
∂xi

∂xi

∂ t
,

which shows that df/dt belongs to the ideal aV̂ . Since f is a power series belonging to the
ideal tV̂ , with df/dt ∈ tmV̂ , it follows that f ∈ tm+1V̂ , a contradiction. �
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The proposition implies that some power f k of f belongs to the ideal generated by
the partial derivatives; Mather asked if there is a bound on this power k, [Wal]. If f is a
homogeneous polynomial, then k = 1 suffices, since the Euler identity gives

(deg f ) f =

(
x1

∂ f
∂x1

+ · · ·+ xd
∂ f
∂xd

)
.

However, k = 1 may not be sufficient for an inhomogeneous polynomial:

Exercise 4.5. Take f = x2y2 + x5 + y5 in C{x,y}. Determine the smallest power k with

f k ∈
(

∂ f
∂x

,
∂ f
∂y

)
.

Exercise 4.6. Take f = x2 +y3 + z6 +xyz in C{x,y}. Determine the smallest power k with

f k ∈
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

)
.

Spoiler alert! By a result of Saito [Sa], for f defining a hypersurface with an isolated
singular point at the origin in Cd , one has f ∈ (∂ f/∂x1, . . . ,∂ f/∂xd) precisely when, after
a change of coordinates, f can be represented as a quasihomogeneous polynomial.

Briançon and Skoda [SB] answered Mather’s question by proving that f d belongs to the
ideal generated by the partial derivatives; as they say, this is meilleur possible:

Example 4.7. In the ring C{x1, . . . ,xd}, consider

f = (x1 · · ·xd)
3 + x3d−1

1 + · · ·+ x3d−1
d .

Then

f d−1 /∈
(

∂ f
∂x1

, . . . ,
∂ f
∂xd

)
. �

The proof by Briançon and Skoda uses plurisubharmonic functions, the convergence of
integrals, and a hard theorem of Skoda. The absence of a purely algebraic proof for such an
algebraic result was highlighted by Hochster in his 1979 lecture series Analytic methods
in commutative algebra at George Mason University, and became, to quote Lipman and
Teissier, something of a scandal—perhaps even an insult—and certainly a challenge. The
first algebraic proofs were found by Lipman and Teissier [LiT]; subsequently the result
was extended to ideals in arbitrary regular rings by Lipman and Sathaye [LiS]:

Theorem 4.8. If a is an ideal generated by n elements in a regular ring, then an ⊆ a.

Hochster and Huneke [HH2] gave an elementary tight closure proof of the following:

Theorem 4.9. Let R be a Noetherian ring of positive prime characteristic, and a an ideal
generated by n elements. Then

an ⊆ a∗.

In particular, if R is weakly F-regular, then an ⊆ a.
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Proof. It suffices to verify the assertion modulo each minimal prime; assume R is a domain.
Let a= (x1, . . . ,xn) and z ∈ an. By one of the characterizations of integral closure, there is
a nonzero element c in R such that

czk ∈ ank

for all k� 0. By the pigeonhole principle,

ank ⊆ (xk
1, . . . ,x

k
n),

so restricting k to q = pe, we get czq ∈ a[q] for q� 0, and hence that z ∈ a∗. �

Corollary 4.10. Let R be a Noetherian ring of positive prime characteristic. If a is a
principal ideal, then a∗ = a. If R is weakly F-regular, then it is normal.

Proof. The statement regarding principal ideals is immediate from the theorem. Suppose R
is weakly F-regular. Then 0∗ = 0 implies that R is reduced. If a/b is an element of the
total ring of fractions that is integral over R, then a ∈ bR = bR, so a/b ∈ R. �

Exercise 4.11. Consider a := (x,y) in Fp[x,y,z]/(x3 + y3 + z3). Compute a2, and verify
that it is indeed contained in a∗.

Exercise 4.12. For R and a as in Theorem 4.9, prove that

am+n ⊆
(
am+1)∗

for each m> 0. If particular, if R is weakly F-regular, then am+n ⊆ am+1.

Here is an extension due to Aberbach and Huneke, [AH3]:

Theorem 4.13. Let R be an F-rational ring of positive characteristic, or a finitely gener-
ated algebra over a field of characteristic zero such that R has rational singularities. If a
is an n-generated ideal of R, then, for all m> 0, one has

am+n ⊆ am+1.

In another direction, Lipman [Lip] used adjoint ideals to obtain improved Briançon-
Skoda theorems; adjoint ideals are now more popularly known as multiplier ideals, see the
survey [BL]. Other improvements involving coefficient ideals may be found in [AH2], and
for applications to Rees rings, see [AH1, AHT]. Rees and Sally extended the Briançon-
Skoda theorem from another viewpoint in [RS], and Swanson’s related work on joint re-
ductions appears in [Sw1, Sw2]. In Wall’s lectures on Mather’s work, where it all began,
it is amusing to find the sentence ([Wal, page 185]):

Once the seed of algebra is sown, it grows fast.

We next prove the Briançon-Skoda theorem for regular rings of characteristic zero; the
extension am+n ⊆ am+1 proceeds similarly. We will use the following lemma; a proof may
be found in [Ma1, Chapter 8].
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Lemma 4.14 (Generic freeness). Let A be a Noetherian domain, and R a finitely gen-
erated A-algebra. Let M be a finitely generated R-module. Then there exists a nonzero
element a in A such that Ma is a free Aa-module.

It is worth emphasizing that when the lemma is applied to a domain A, finitely generated
over the integers, the extension Aa is also a finitely generated Z-algebra.

Theorem 4.15. Let a be an n-generated ideal in a regular ring that contains a field of
characteristic zero. Then

an ⊆ a.

The proof is easiest for polynomials rings; we present this first:

Proof of Theorem 4.15 in the polynomial case. Suppose R := F[x1, . . . ,xd ] is a polynomial
ring over a field F of characteristic 0. Fix generators fff := f1, . . . , fn for the ideal a. If the
theorem is false, then there exists an element z in an ra. Choose ak ∈ ( fff )nk with

(4.15.1) zl +a1zl−1 + · · ·+al = 0.

Let A be a finitely generated Z-subalgebra of F containing the coefficients of z, fi, and ai as
polynomials in xxx := x1, . . . ,xd , and also the coefficients of polynomials needed to express
each ak as an element of ( fff )nk. Thus, we have ensured that equation (4.15.1) holds in A[xxx].

Consider the exact sequence

0 −−−→ zA[xxx]/( fff ) −−−→ A[xxx]/( fff ) −−−→ A[xxx]/(z, fff ) −−−→ 0,

and note that zA[xxx]/( fff ) is nonzero, and that it remains nonzero upon inverting any nonzero
element of A. In view of Lemma 4.14, after replacing A by its localization at one element,
we may assume that the above is a split exact sequence of free A-modules.

Let m be a maximal ideal of A. The field κ := A/m is a finitely generated Z-algebra,
hence a finite field. Equation (4.15.1) implies that the image of z is in the integral closure
of the image of ( fff )n in the polynomial ring κ[xxx], though not in the image of ( fff ), since

zA[xxx]/( fff )⊗A κ

must be nonzero by the freeness hypotheses. This contradicts the Briançon-Skoda theorem
for regular rings of positive characteristic, Theorem 4.9. �

Proof of Theorem 4.15 in the affine case. When the regular ring R is finitely generated over
a field F, write it as a homomorphic image of a polynomial ring T := F[x1, . . . ,xd ], say

R = T/(g1, . . . ,gm).

Let fff := f1, . . . , fn be elements of T that map to generators of the ideal a ⊆ R. If the
statement of the theorem is false, then there exists z ∈ T whose image in R belongs to the
set an ra. Hence there exist elements ak ∈ ( fff )nk and h1, . . . ,hm ∈ (g1, . . . ,gm) such that

(4.15.2) zl +a1zl−1 + · · ·+al = h1g1 + · · ·+hmgm.
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Let A be a finitely generated Z-subalgebra of F containing the coefficients of z, fi, gi, ai,
and hi as polynomials in x1, . . . ,xd , and also the coefficients of polynomials needed to
express ak as an element of ( fff )nk for each k. Consider the A-algebra

RA := A[x1, . . . ,xd ]/(g1, . . . ,gm).

Let fracA denote the fraction field of A. The inclusion fracA−→ F is a flat homomorphism
of A-modules so, upon tensoring with RA, we have a flat homomorphism

RA⊗A fracA −→ RA⊗A F ∼= R.

The ring R is regular, so RA⊗A fracA is regular as well. Since fracA is a field of character-
istic zero, it follows that

fracA−→ RA⊗A fracA

is geometrically regular; since RA⊗A fracA is finitely presented over fracA, this map is
smooth. After inverting an element of A, we may assume that A−→ RA is smooth.

After enlarging A by inverting finitely many elements, we may assume that each of

0 −−−→ fff RA −−−→ RA −−−→ RA/ fff RA −−−→ 0,

0 −−−→ (z, fff )RA −−−→ RA −−−→ RA/(z, fff )RA −−−→ 0,

0 −−−→ fff RA −−−→ (z, fff )RA −−−→ (z, fff )RA/ fff RA −−−→ 0,

is a split exact sequence of free A-modules. Note that since the image of z in R does not be-
long to the ideal fff R, the module (z, fff )RA/ fff RA must be nonzero. Let m be a maximal ideal
of A, in which case κ := A/m is a finite field. Since A−→ RA is smooth, and smoothness is
preserved under base change, we see that Rκ := R⊗A κ is regular. The freeness hypotheses
ensure that fff RA⊗A κ and (z, fff )RA⊗A κ are ideals of Rκ , and also give the isomorphism

(z, fff )RA

fff RA
⊗A κ ∼=

(z, fff )Rκ

fff Rκ

.

Moreover, by freeness, this module is nonzero, i.e., the image of z is not in the ideal fff Rκ .
However, (4.15.2) ensures that the image of z is in the integral closure of the ideal

( fff )nRκ .

This contradicts the positive characteristic statement, Theorem 4.9. �

For the general case of regular rings containing a field of characteristic zero, we in-
voke a rather deep result, known as General Néron Desingularization or Néron-Popescu
Desingularization [Po, SwR]:

Theorem 4.16. Let ϕ : R−→ S be a geometrically regular homomorphism of Noetherian
rings. Then S is a direct limit of smooth R-algebras.

Hence, if ϕ factors through a finitely generated R-algebra R′, then there exists an R′-
algebra T such that R−→ T is smooth, and ϕ factors as

R−→ R′ −→ T −→ S.
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The result was first proved by Néron [Né] in the case that R and S are discrete valuation
rings, hence the name. The case of interest for us is where R is the localization of a
polynomial ring over a field, and ϕ : R −→ R̂ the map to its completion. The map ϕ

is geometrically regular as R is excellent, and General Néron Desingularization applies.
This special case, and the corresponding statement for a polynomial ring over a discrete
valuation ring, were also proved by Artin and Rotthaus [ArR]:

Theorem 4.17. Let R = F[x1, . . . ,xd ]m, i.e., R is the localization of a polynomial ring at
its homogeneous maximal ideal m. Let R̂ denote the m-adic completion of R. Then, given
a finitely generated R-subalgebra R′ of R̂, the inclusion R−→ R̂ factors as

R−→ R′ −→ T −→ R̂,

where R−→ T is smooth.

We mention that T −→ R̂ may not be injective, and that T may have dimension greater
than R. The crucial part is that T is a finitely generated R-algebra that is regular.

Proof of Theorem 4.15 completed. Suppose the assertion is false; then there exists

z ∈ an ra.

Let p be a prime ideal containing (a : z). Localizing at p and completing, we may as-
sume that the counterexample is in a power series ring F[[x1, . . . ,xd ]], where F is a field of
characteristic zero. Set R := F[x1, . . . ,xd ](x1,...,xd).

Let R′ be a finitely generated R-subalgebra of R̂ = F[[x1, . . . ,xd ]] that contains the ele-
ment z, a fixed generating set for the ideal a, and elements of R̂ occurring in an equation
demonstrating that z ∈ an in terms of the chosen generating set for a.

By Theorem 4.17, the maps R−→ R̂ factors as

R−→ R′ −→ T −→ R̂,

where R −→ T is smooth. In particular, the ring T is regular, and the images of z and a

in T also yield a counterexample, say

z0 ∈ an
0 ra0.

Note that T is a regular ring of the form W−1B, where B is a finitely generated algebra over
the field F. Since W−1B is regular, the multiplicative set W contains an element a of the
defining ideal of the singular locus of B. The element z0, a generating set for a0, and the
elements occurring in one equation implying that z0 ∈ an

0 involve finitely many elements,
hence finitely many denominators from W . Take b to be the product of these denominators.
We then obtain a counterexample in the ring Bab, which is a regular ring finitely generated
over the field F. But we have already proved the Briançon-Skoda theorem in this case. �

It should be mentioned that this approach is not the only way to deduce characteristic
zero results from positive characteristic theorems: Schoutens [ScH] uses model-theoretic
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methods to obtain the Briançon-Skoda theorem for power series rings C[[X1, . . . ,Xd ]] using
the characteristic p version, Theorem 4.9.

We conclude with an example, due to Hochster:

Example 4.18. Let f ,g,h be elements of a polynomial ring F[x,y]. Then the Briançon-
Skoda theorem implies that

f 2g2h2 ∈ ( f 3,g3,h3)

as follows: After enlarging the field F, the ideal ( f 3,g3,h3) has a reduction a generated by
two elements, i.e., for each k, the ideals ( f 3,g3,h3)k and ak have the same integral closure.
The Briançon-Skoda theorem, applied to a, gives

a2 ⊆ a,

leaving one with the easy verification that

f 2g2h2 ∈ ( f 3,g3,h3)2. �
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5. SYMBOLIC POWERS

Let p be a prime ideal in a ring R. The symbolic powers of p are defined as

p(n) := pnRp∩R,

for n > 1. When R is Noetherian, the symbolic power p(n) is the p-primary component
of pn. The definition above immediately translates as

p(n) = {r ∈ R | sr ∈ pn for some s /∈ p}.

To motivate the definition, consider f (x) = x3(x− 1)2 in C[x]. One would readily agree
that this polynomial vanishes to order 3 at the point 0 ∈ C, but not to order 4. The point 0
is the variety defined by m := (x) and, indeed, the order of vanishing is measured by the
fact that f ∈m3 while f /∈m4. Symbolic powers provide the right extension of this:

Let p be a prime ideal in the ring R := C[x1, . . . ,xd ]. Then p(n) is the set of polynomials
in R that vanish to order at least n along the variety defined by p in Cd , i.e.,

p(n) =
⋂
m⊇p

mn,

where the intersection is over the maximal ideals of R that contain p. This is due to Zariski
and Nagata, and holds more generally in a polynomial ring over an algebraically closed
field, see [EH] or [Ei, Theorem 3.14].

Example 5.1. Take V to be the variety of 3×3 complex matrices of rank at most 1. Set-
ting R := C[X ], where X is a 3× 3 matrix of indeterminates, V is defined by the ideal p
generated by the size 2 minors of X . The ideal p is indeed prime, and contains the deter-
minant detX . Since detX is a polynomial of degree 3, and p is generated by quadrics,

detX /∈ p2.

We claim that, however, detX ∈ p(2).
Set [a1 . . . ar | b1 . . . br] to be the determinant of the submatrix with rows a1, . . . ,ar and

columns b1, . . . ,br. The following identity is an example of a straightening law:

[1 2 | 1 3] · [1 3 | 1 2] = [1 2 | 1 2] · [1 3 | 1 3]− [1 | 1] · [1 2 3 | 1 2 3].

Since [1 | 1] = x11 is not an element of the ideal p, it follows that detX = [1 2 3 | 1 2 3]
belongs to p(2) as claimed. Thus, detX vanishes to order at least 2 on each matrix of rank
at most 1. For a different take, see [Ei, § 3.9.1] �

Our main focus will be symbolic powers in regular rings, but first:

Exercise 5.2. Prove that the symbolic powers of a maximal ideal are its ordinary powers.

Exercise 5.3. Construct prime ideals p ⊆ q in F[w,x,y,z]/(wx− yz) such that p(2) * q(2),
better still, with p(n) * q(n) for each n> 2.

It turns out that if p⊆ q are prime ideals in a regular ring, then p(n) ⊆ q(n) for all n> 1.
Exercise: Why should you expect this in C[x1, . . . ,xd ]?
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Exercise 5.4. Determine the symbolic powers of the ideal (x) in F[x, y]/(xy), and of the
ideal (x2, xy) in F[x2, xy, y2].

Exercise 5.5. For a prime p of positive height in a Noetherian ring, prove that pm ⊆ p(n) if
and only if n6 m.

We next analyze containments of the form p(m) ⊆ pn, which turns out to be much more
subtle. The following remarkable result was proved by Ein, Lazarsfeld, and Smith [ELS]
for regular rings essentially of finite type over C; it was subsequently extended by Hochster
and Huneke [HH8] to regular rings containing a field. A recent preprint of Ma and Schwede
uses perfectoid methods to settle the case of mixed characteristic as well, [MaS].

Theorem 5.6. Let p be a prime ideal of height h in a regular ring that contains a field.
Then, for each n> 1, one has

p(hn) ⊆ pn.

Swanson [Sw3] had previously proved—for a larger class of rings—the existence of
a constant c, depending on the prime p, such that p(cn) ⊆ pn for each n > 1. The above
theorem says that in equicharacteristic regular rings, one may take c to be the height of p.

Proof. We stick to the positive characteristic case here. A regular ring is a product of
domains; working with individual factors, assume that the regular ring R is a domain of
characteristic p > 0. Assume p 6= 0, as there is nothing to say otherwise. We claim that for
each q = pe, one has

p(hq) ⊆ p[q].

It suffices to verify that the displayed containment holds after localizing at each associated
prime of p[q]. By the flatness of the Frobenius endomorphism of R, it follows that p is the
unique associated prime of p[q], see Lemma 5.7, so the claim follows once we verify that

phqRp = p(hq)Rp ⊆ p[q]Rp.

But Rp is a regular local ring of dimension h, so its maximal ideal pRp is generated by h
elements, and the above containment holds by the pigeonhole principle.

Now suppose u ∈ p(hn) for a fixed n. Let q = pe be arbitrary, and write q = an+ r for
integers a> 0 and 06 r 6 n−1. Then ua ∈ p(han), so

uaph(n−1) ⊆ p(h(an+n−1)) ⊆ p(h(an+r)) = p(hq) ⊆ p[q].

Taking n-th powers, one has

ph(n−1)nuan ⊆
(
p[q]
)n

=
(
pn)[q].

Since q> an, it follows that
ph(n−1)nuq ⊆

(
pn)[q].

Taking c 6= 0 in ph(n−1)n, the above display implies that cuq ∈
(
pn
)[q] for all q = pe. Hence

u ∈
(
pn)∗ = pn. �
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Lemma 5.7. Let p be a prime ideal in a regular ring R of prime characteristic p > 0.
Then, for each q = pe, one has

AssR/p[q] = {p}.

Proof. An element r ∈ Rrp acts injectively on R/p, i.e.,

0 −−−→ R/p r−−−→ R/p

is exact. But then, applying the exact functor Fe(R)⊗R−, so is

0 −−−→ R/p[q] rq
−−−→ R/p[q].

Since rq acts injectively on R/p[q], so does r. �

Exercise 5.8. Let R be a regular ring of prime characteristic p > 0, and a an ideal of R.
Prove that for each q = pe, one has

AssR/a[q] = AssR/a.

Definition 5.9. Let a be an ideal in a Noetherian ring R. The n-th symbolic power of a is

a(n) :=
⋂

p∈AssR/a

anRp∩R.

Exercise 5.10. Verify that a(n) equals
(
anW−1R

)
∩R, where W is the complement of the

union of the associated primes of a, and that a(1) equals a.

We record an extension of Theorem 5.6 due to Hochster and Huneke [HH8]:

Theorem 5.11. Let a be a radical ideal in a regular ring that contains a field. Set h to be
the largest height of a minimal prime of a. Then, for each n> 1 and k > 0, one has

a(hn+kn) ⊆ (a(k+1))
n
.

Proof. We discuss the positive characteristic case here; see Remark 5.13 for characteristic
zero. Proceeding as in the proof of Theorem 5.6, take the regular ring R to be a domain of
characteristic p > 0. We claim that for each q = pe, one has

(5.11.1) a(hq+kq) ⊆ (a(k+1))[q].

An associated primes of a(k+1) must be an associated prime of a, and hence a minimal
prime of a, since a is radical. By Exercise 5.8, the associated primes of (a(k+1))[q] are the
same as those of a(k+1). Let p be one of these associated primes; it suffices to verify that

a(hq+kq)Rp ⊆ (a(k+1))[q]Rp.

Let W denote the complement of the union of the associated primes of a. Since Rp is a
localization of W−1R, it suffices to verify that

ahq+kqRp ⊆ (ak+1)[q]Rp,

which is Exercise 5.12, and completes the proof of (5.11.1).
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Let u ∈ a(hn+kn) for some n,k. Write q = an+ r, where a> 0 and 06 r 6 n−1. Then

uaa(h+k)(n−1) ⊆ a((h+k)(an+n−1)) ⊆ a((h+k)(an+r)) = a(hq+kq) ⊆ (a(k+1))[q].

Taking n-th powers, one has

a(h+k)(n−1)nuan ⊆
((

a(k+1))n
)[q]

.

It follows that

a(h+k)(n−1)nuq ⊆
((

a(k+1))n
)[q]

,

and hence that u ∈
(
a(k+1)

)n. �

Exercise 5.12. Suppose a is an ideal generated by h elements in a ring of prime character-
istic p > 0. Verify that for each k > 0 and q = pe, one has

ahq+kq ⊆ (a[q])
k+1

= (ak+1)
[q]
.

Remark 5.13. We refer to [HH8, § 4] for the characteristic zero case; the broad steps are as
in the proof of the Briançon-Skoda theorem: (i) If there is a counterexample, localize and
complete so as to have a counterexample in a power series ring R̂ = F[[x1, . . . ,xd ]], where F
is a field of characteristic zero. (ii) Use General Néron Desingularization to descend to a
counterexample in a regular finitely generated F-algebra. (iii) Collect the relevant data in
a finitely generated Z-algebra, and reduce to the case of positive characteristic. That being
said, one certainly needs to be careful: for a start, since we have not assumed that R is
excellent, the ideal aR̂ need not be radical. One way around this is drop the hypothesis
that a is radical, and go for greater generality as in [HH8, Theorem 4.4]:

Theorem 5.14. Let a be an ideal in a regular ring that contains a field. Set h to be the
largest analytic spread of aRp, as p runs through the associated primes of a. Then, for
each n> 1 and k > 0, one has

a(hn+kn) ⊆ (a(k+1))
n
.

Such extensions notwithstanding, there is likely room for improvement:

Example 5.15. Take the polynomial ring F[x,y,z], where F is a field, and set

a := (x,y)∩ (y,z)∩ (z,x).

Then each minimal prime of a has height 2, so the theorem gives a(2n) ⊆ an for each n, in
particular, a(4) ⊆ a2. However, it is readily seen that

a(3) = (x,y)3∩ (y,z)3∩ (z,x)3 = (x3y3, y3z3, z3x3, xy2z2, x2yz2, x2y2z),

so that a(3) ⊆ a2. �
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Example 5.16. Take p to be the kernel of the F-algebra surjection F[x,y,z]−→ F[t3, t4, t5]

that sends the indeterminates x, y, z to t3, t4, t5 respectively. Then p is generated by the
size 2 minors of the matrix (

x y z
y z x2

)
,

as may be confirmed by Macaulay2, [GS], which also shows that

p(2) = p2 +(x5 + xy3 + z3−3x2yz),

so that p(2) * p2. It turns out that p(3) ⊆ p2. �

Question 5.17 (Huneke). For a prime ideal p of height 2 in an equicharacteristic regular
ring, does the inclusion p(3) ⊆ p2 always hold?

A more general statement was conjectured subsequently in the graded setting, [BDH+,
Conjecture 8.4.3]:

Conjecture 5.18 (Harbourne). Let a be a homogeneous radical ideal in a polynomial ring
over a field. If a has height h, then for each integer n> 1 one has

a(hn−h+1) ⊆ an.

The conjecture holds for square-free monomial ideals [BDH+, Example 8.4.5], for
ideals defining general points in P2 [BoH], and for ideals defining general points in P3

[Dum]. Note that if h = 2 = n, the conjecture says that a(3) ⊆ a2. This has been verified for
ideals defining space monomial curves as in Example 5.16, see [Gri]. However, it is false
in general, as demonstrated by Dumnicki, Szemberg, and Tutaj-Gasińska [DST]:

Example 5.19. Consider the height 2 ideal

a :=
(
x(y3− z3), y(z3− x3), z(x3− y3)

)
in the polynomial ring C[x,y,z]. It is proved in [DST] that

(x3− y3)(y3− z3)(z3− x3) ∈ a(3)ra2.

Note that the ideal is homogeneous; it defines a configuration of 12 points in P2
C, lying at

the pairwise intersections of 9 lines with the property that each point lies on 3 lines, and
each line passes through 4 points. Briefly, the 12 points are not general! �

Subsequently, Harbourne and Seceleanu [HS] showed that for any k > 3, and F a field
of characteristic other than 2 that contains k distinct k-th roots of unity, the ideal

a :=
(
x(yk− zk), y(zk− xk), z(xk− yk)

)
in F[x,y,z], has the property that a(3) * a2. We are not aware of any counterexamples to
Conjecture 5.18 where the ideal a is prime, or where a is a radical ideal of height 3. Closer
to the theme of these lectures, one has the recent results of Grifo and Huneke [GH]; they
prove, for example, that Conjecture 5.18 holds for ideals defining F-pure rings:
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Theorem 5.20. Let R be a regular ring of positive characteristic, and a an ideal such
that R/a is F-pure. Set h to be the largest height of a minimal prime of a. Then, for
each n> 1, one has

a(hn−h+1) ⊆ an.

Proof. The theorem reduces to the local case; let (R,m) be a regular local ring of charac-
teristic p > 0. Suppose the assertion is false for a fixed n, then

an : a(hn−h+1) ⊆ m,

and so, for each q = pe, one has

(an : a(hn−h+1))
[q] ⊆ m[q].

We claim that

(5.20.1) a[q] : a ⊆ (an : a(hn−h+1))
[q]

for q� 0. Assuming the claim, the previous two containments then combine to give

a[q] : a ⊆ m[q],

for q� 0, which contradicts the F-purity of R/a in view of Theorem 3.32.
To prove (5.20.1), pick x in a[q] : a. In view of Exercise 2.9, we need to show that

x(a(hn−h+1))
[q] ⊆ (an)[q] = (a[q])

n

for q� 0. But

x(a(hn−h+1))
[q] ⊆ xa(a(hn−h+1))

q−1 ⊆ a[q](a(hn−h+1))
q−1

,

so it suffices to show that
(a(hn−h+1))

q−1 ⊆ (a[q])
n−1

for q� 0. Theorem 5.11, with appropriate choices of k and n, gives

a((hq+h−1)(n−1)) ⊆ (a(hq))
n−1

.

On the other hand, (5.11.1) gives a(hq) ⊆ a[q], and combining the two, one has

a((hq+h−1)(n−1)) ⊆ (a[q])
n−1

.

Thus, it suffices to verify that for q� 0 one has

(a(hn−h+1))
q−1 ⊆ a((hq+h−1)(n−1)),

for which it is enough to check that

(hn−h+1)(q−1) > (hq+h−1)(n−1),

and this is indeed the case for q� 0. �
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6. APPENDIX

Complete local rings. Every ring R admits a canonical ring homomorphism ϕ : Z−→ R,
where ϕ(1) is the unit element of R. The kernel of ϕ is an ideal of Z generated be a
nonnegative integer that is the characteristic of R, denoted here as charR.

A local ring (R,m) is equicharacteristic if the characteristic of R equals that of the
field F := R/m. For a local ring (R,m,F) the possible values of charR and charF are:

(1) charR = 0 = charF, in which case Q⊆ R,
(2) charR = p = charF, for p a positive prime integer, in which case Z/p⊆ R,
(3) charR = 0 and charF= p > 0, for example R = Z(p),
(4) charR = pe > 0 and charF= p where e> 2, in which case R is not reduced.

Suppose (R,m) is a local ring containing a field. A subring F of R, that is a field, is a
coefficient field if the composition

F ↪−→ R−� R/m

is an isomorphism. The following structure theorems are due to Cohen [Co]:

Theorem 6.1. Let (R,m) be a complete local ring containing a field. Then R contains a
coefficient field F. Moreover:

(1) The ring R is a homomorphic image of a formal power series ring over F.
(2) If x1, . . . ,xd is a system of parameters for R, then the subring A := F[[x1, . . . ,xd ]] is

isomorphic to a formal power series ring, and R is a finitely generated A-module.
(3) R is regular if and only if it isomorphic to a formal power series ring over F.

In the case where (R,m) does not contain a field, for the sake of simplicity, we shall
work in the setting where R is an integral domain. This ensures that the only possibility
is charR = 0 and charR/m = p > 0; the ring R is said to be of mixed characteristic p.
The role of a coefficient field is now played by that of a discrete valuation ring (V, pV ),
that serves as a coefficient ring. A regular local ring (R,m) of mixed characteristic p is
unramified if p /∈m2, and it is ramified if p ∈m2.

Theorem 6.2. Let (R,m) be a complete local domain of mixed characteristic p. Then
there exists a discrete valuation ring (V, pV ) that is a subring of R, such V ⊆ R induces an
isomorphism V/pV −→ R/m. Moreover:

(1) The ring R is a homomorphic image of a formal power series ring over V .
(2) If p,x2, . . . ,xd is a system of parameters for R, then the subring A :=V [[x2, . . . ,xd ]]

is isomorphic to a formal power series ring over V , and R is module-finite over A.
(3) The ring R is an unramified regular local ring if and only if it is isomorphic to a

formal power series ring over V .
(4) The ring R is a ramified regular local ring if and only if it is isomorphic to

V [[T1, . . . ,Td ]]/(p− f ),

where f is an element in the square of the maximal ideal of V [[T1, . . . ,Td ]].
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Excellent rings. The class of excellent rings was introduced by Grothendieck to circum-
vent some pathological behavior that can occur in the larger class of Noetherian rings. The
precise definition is somewhat technical, but is satisfied by most Noetherian rings that are
likely to be encountered in algebraic geometry, number theory, or several complex vari-
ables. For a detailed treatment and proofs of results summarized here, the reader may
consult [Gro, § 7] or [Ma1]. The expository article [Ma2] provides a nice introduction to
the theory of excellent rings of characteristic zero. Various examples of non-excellent rings
due to Nagata are included as an appendix in his book [Na2].

Definition 6.3. A Noetherian ring R is excellent if

(1) R is universally catenary,
(2) for each p ∈ SpecR, the formal fibers of Rp are geometrically regular, and
(3) for every finitely generated R-algebra S, the regular locus of the ring S, i.e., the set

{p ∈ SpecS | Sp is a regular local ring},

is an open subset of SpecS.

We now need to define some of the terms occurring above!

Universally catenary rings. A ring R is catenary if for prime ideals p ⊆ q of R, all satu-
rated chains of prime ideals joining p and q have the same length. A ring R is universally
catenary if every finitely generated R-algebra is catenary.

Attempts had been made to prove that all Noetherian rings were catenary, until Nagata
constructed the first examples of noncatenary Noetherian rings in 1956. He constructed a
local domain (R,m) of dimension 3 that is not catenary; R has saturated chains of prime
ideals joining p= (0) and q=m of lengths 2 and 3, as in the diagram below:

@
@
@











�
�
�

J
J
J
JJ

p= (0)

q=m

p1

p2

p′1

Theorem 6.4 (Dimension formula). Let R⊆ S be domains such that R is universally cate-
nary and S is a finitely generated R-algebra. Let q ∈ SpecS and set p= q∩R. Then

heightq+ tr.degκ(p) κ(q) = heightp+ tr.degR S,

where κ(p) =Rp/pRp and κ(q) = Sq/qSq, and tr.degR S denotes the transcendence degree
of the fraction field of S over the fraction field of R.

Ratliff [Ra1, Ra2] showed that the dimension formula essentially characterizes univer-
sally catenary rings.
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Fibers and geometric regularity. For a ring homomorphism ϕ : R −→ S, the fiber of ϕ

at a prime p of R is the ring

S⊗R κ(p),

which is an algebra over the field κ(p) := Rp/pRp. Note that the inverse image of p under
the induced map SpecS −→ SpecR is homeomorphic to SpecS⊗R κ(p), which explains
the use (or, at least, the misuse) of the term “fiber.”

When R is a domain, the generic fiber is the fiber over (0) in SpecR. For (R,m) local,
the fiber over m is the closed fiber, whereas the formal fibers of R are the fibers of

R−→ R̂,

where R̂ denotes the m-adic completion of R. Since R̂/a = R̂/aR̂ for an ideal a of R, the
formal fibers of the ring R/a are also formal fibers of R.

For F a field, a Noetherian F-algebra R is geometrically regular if R⊗FK is a regular
ring for each finite extension field K of F, equivalently, for each finite purely inseparable
extension field K of F.

Example 6.5. Take F := Fp(t) where t is transcendental over Fp. Then F[x]/(xp− t) is a
regular ring, but it is not geometrically regular over F since the ring

F[x]
(xp− t)

⊗F F(t1/p) ∼=
F(t1/p)[x]
(x− t)p

is not reduced. �

On the other hand, if R is a Noetherian F-algebra, and R⊗FK is a regular ring for some
extension field K of F, then R must be regular; more generally, if R −→ S is a faithfully
flat homomorphism of Noetherian rings, and S is regular, then R must be regular.

A homomorphism ϕ : R −→ S of Noetherian rings is geometrically regular if it is flat,
and for each p ∈ SpecR, the fiber

κ(p)−→ S⊗R κ(p)

is geometrically regular. Note that this agrees with the notion of a geometrically regular
algebra over a field defined above. The homomorphism ϕ is smooth if it is geometrically
regular, and S is finitely presented over the image of R. Smoothness is preserved under
base change: if R−→ S is smooth, and T an R-algebra, then

R⊗R T −→ S⊗R T

is also smooth.
The following explains why the Noetherian rings that we encounter are often excellent:

Theorem 6.6. If a ring R is obtained by adjoining finitely many variables to a field or to
a complete discrete valuation ring, taking a homomorphic image, and localizing at some
multiplicative set, then R is an excellent ring. Moreover:
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(1) Every complete local ring (in particular, every field) is excellent. The ring of con-
vergent power series over R or C is excellent. A Dedekind domain whose field of
fractions has characteristic zero (e.g., Z) is excellent.

(2) A finitely generated algebra over an excellent ring is excellent; in particular, a ho-
momorphic image of an excellent ring is excellent.

(3) A localization of an excellent ring is excellent.

In characteristic p > 0, one also has the following theorem of Kunz [Ku1, Ku2]

Theorem 6.7. Let R be a Noetherian local ring of prime characteristic p. If the Frobenius
endomorphism F : R−→ R is finite, i.e., R is module-finite over Rp, then R is excellent.

We record some properties of excellent rings:

Theorem 6.8. If R is excellent, then the normal locus and the Cohen-Macaulay locus

{p ∈ SpecR | Rp is normal} and {p ∈ SpecR | Rp is Cohen-Macaulay}

are open subsets of SpecR.

Nagata defined a Noetherian ring R to be pseudo-geometric if for each prime p in SpecR,
and each finite extension field F of the field of fractions of R/p, the integral closure of R/p
in F is a finitely generated R/p-module. Examples of Noetherian rings that do not sat-
isfy this property were first constructed by Akizuki [Ak]. In honor of the Japanese school
of commutative algebra, Grothendieck renamed pseudo-geometric rings as anneaux uni-
versellement japonais, or universally Japanese rings [Gro, § 7.7]. At some point they were
again renamed, and are now called Nagata rings.

Theorem 6.9. An excellent ring is a Nagata ring.

The excellence property also ensures that various properties of a local ring R are inher-
ited by its m-adic completion R̂, and this is the essence of the next theorem:

Theorem 6.10. Let (R,m) be an excellent local ring, and R̂ its m-adic completion.

(1) If R is reduced, so is R̂.
(2) If R is a domain, then, by (1), R̂ is reduced ring. In this case, there is a bijection

between the minimal primes of R̂ and the maximal ideals of R′, where R′ denotes the
integral closure of R in its field of fractions.

In particular, R̂ is a domain if and only if R′ is local.
(3) If R is a normal ring, then so is R̂.

Exercise 6.11. Set R := Q[x,y](x,y)/(x2y2 + x6 + y6). Verify that this is a domain, and
determine the integral closure of R in fracR. Determine the minimal primes of R̂.

Exercise 6.12. Let R be the localization of R[x] at the prime ideal (x2 + 1). Prove that R
does not have a coefficient field.
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Math. Soc. Japan 17 (1935), 327–336.
[ADG] H. Anand, V. C. Dumir, and H. Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966),

757–769.
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Math. Soc. 3 (1990), 31–116.
[HH3] M. Hochster and C. Huneke, Tight closure and elements of small order in integral extensions, J. Pure

Appl. Algebra 71 (1991), 233–247.
[HH4] M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of

Math. (2) 135 (1992), 53–89.
[HH5] M. Hochster and C. Huneke, Tight closure of parameter ideals and splitting in module-finite extensions,

J. Algebraic Geom. 3 (1994), 599–670.
[HH6] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math.

Soc. 346 (1994), 1–62.
[HH7] M. Hochster and C. Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv.

Math. 113 (1995), 45–117.
[HH8] M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147

(2002), 349–369.
[HR] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are

Cohen-Macaulay, Adv. Math. 13 (1974), 115–175.
[Hu] C. Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics 88,

American Mathematical Society, Providence, RI, 1996.
[HL] C. Huneke and G. Lyubeznik, Absolute integral closure in positive characteristic, Adv. Math. 210

(2007), 498–504.
[Je] J. Jeffries, Rings of invariants, F-regularity, and local cohomology, Thesis, University of Utah, 2015.
[Ke] G. Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), 19–32.
[Kn] F. Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989), 40–54.
[Ku1] E. Kunz, Characterizations of regular local rings for characteristic p, Amer. J. Math. 91 (1969) 772–

784.
[Ku2] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999–1013.
[KSS+] K. Kurano, E. Sato, A. K. Singh, and K.-i. Watanabe, Multigraded rings, rational singularities, and

diagonal subalgebras, J. Algebra 322 (2009), 3248–3267.
[Lip] J. Lipman, Adjoints of ideals in regular local rings. With an appendix by S. D. Cutkosky, Math. Res.

Lett. 1 (1994), 739–755.
[LiS] J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math J. 28
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