
F-REGULARITY DOES NOT DEFORM

By ANURAG K. SINGH

Abstract. We show that the property of F-regularity does not deform, and thereby settle a long-
standing open question in the theory of tight closure. Specifically, we construct a three dimensional
N-graded domain R which is not F-regular (or even F-pure), but has a quotient R=tR which is
F-regular. Examples are constructed over fields of characteristic p > 0, as well as over fields of
characteristic zero.

1. Introduction. Throughout this paper, all rings are commutative, Noethe-
rian, and have an identity element. The theory of tight closure was developed by
Melvin Hochster and Craig Huneke in [HH2] and draws attention to rings which
have the property that all their ideals are tightly closed, called weakly F-regular
rings. The term F-regular is reserved for rings all of whose localizations are
weakly F-regular. A natural question that arose with the development of the the-
ory was whether the property of F-regularity deforms, i.e., if (R, m, K) is a local
ring such that R=tR is F-regular for some nonzerodivisor t 2 m, must R be F-
regular? (See the Epilogue of [Ho].) Hochster and Huneke showed that this is
indeed true if the ring R is Gorenstein, [HH3], and their work has been followed
by various attempts at extending this result, see [AKM], [Si], [Sm3]. Our pri-
mary goal here is to settle this question by constructing a family of examples
to show that F-regularity does not deform. We shall throughout be considering
N -graded rings, but local examples can be obtained, in all cases, by localizing at
the homogeneous maximal ideals. Our main result is:

THEOREM 1.1. There exists an N -graded ring R of dimension three (finitely
generated over a field R0 = K of characteristic p > 2) which is not F-pure, but has
an F-regular quotient R=tR where t 2 m is a homogeneous nonzerodivisor.

Specifically, for positive integers m and n satisfying m � m=n > 2, consider
the ring R = K[A, B, C, D, T]=I where I is generated by the size two minors of the
matrix  

A2 + Tm B D
C A2 Bn � D

!
.

Then the ring R=tR is F-regular, whereas R is not F-regular. If p and m are relatively
prime integers, then the ring R is not F-pure.
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A notion closely related to (and frequently the same as) F-regularity is that of
strong F-regularity. A recent result of G. Lyubeznik and K. E. Smith states that
the properties of weak F-regularity, F-regularity, and strong F-regularity agree for
N -graded F-finite rings, see [LS]. In light of this result, we frequently make no
distinction between these notions.

The first result on the deformation of F-regularity is a theorem of Hochster
and Huneke which states that for a Gorenstein local ring (R, m, K), if R=tR is
F-regular for some nonzerodivisor t 2 m, then R is F-regular. They show that
for Gorenstein rings the properties of F-regularity and F-rationality coincide, and
that F-rationality deforms, see [HH3, Theorem 4.2]. This result is generalized
in [Si] where the author uses the idea of passing to an anti-canonical cover
S = �i�0I(i), where I represents the inverse of the canonical module in Cl (R).
Strong F-regularity is shown to deform in the case that the symbolic powers I(i)

satisfy the Serre condition S3 for all i � 0, and the ring S is Noetherian.
This question has also been settled for Q -Gorenstein rings, i.e., rings in

which the canonical module is a torsion element of the divisor class group. For
Q -Gorenstein rings essentially of finite type over a field of characteristic zero,
K. E. Smith showed that the property of F-regular type (a characteristic zero
analogue of F-regularity) does deform, see [Sm3]. The point is that in this setting
F-regular type is equivalent to log-terminal singularities, and log-terminal singu-
larities deform by J. Kollár’s result on “inversion of adjunction,” see [Ko]. For Q -
Gorenstein rings of characteristic p, a purely algebraic proof that F-regularity de-
forms was provided by I. Aberbach, M. Katzman, and B. MacCrimmon in [AKM].

Before proceeding with formal definitions in the next section, we would like
to point out that although tight closure is primarily a characteristic p notion, it
has strong connections with the study of singularities of algebraic varieties over
fields of characteristic zero. Specifically, let R be a ring which is essentially of
finite type over a field of characteristic zero; then R has rational singularities if
and only if it is of F-rational type, see [Ha], [Sm1]. In the Q -Gorenstein case,
we have some even more remarkable connections: F-regular type is equivalent
to log-terminal singularities and F-pure type implies (and is conjectured to be
equivalent to) log-canonical singularities, see [Sm2], [Wa3].

2. Frobenius closure and tight closure. By an N -graded ring R, we will
always mean a ring R = �n�0Rn, finitely generated over a field R0 = K.

Let R be a Noetherian ring of characteristic p > 0. The letter e denotes
a variable nonnegative integer, and q its eth power, i.e., q = pe. For an ideal
I = (x1, : : : , xn) � R, let I[q] = (xq

1, : : : , xq
n).

For a reduced ring R of characteristic p > 0, R1=q shall denote the ring
obtained by adjoining all qth roots of elements of R. A ring R is said to be F-
finite if R1=p is module-finite over R. A finitely generated algebra R over a field
K is F-finite if and only if K1=p is a finite field extension of K. We use R� to
denote the complement of the union of the minimal primes of R.
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Definition 2.1. Let R be a ring of characteristic p, and I an ideal of R. For
an element x of R, we say that x 2 IF , the Frobenius closure of I, if there exists
q = pe such that xq 2 I[q].

An element x of R is said to be in I�, the tight closure of I, if there exists
c 2 R� such that cxq 2 I[q] for all q = pe � 0. If I = I� we say that the ideal I is
tightly closed. It is easily seen that I � IF � I�.

A ring R is said to be F-pure if the Frobenius homomorphism is pure, i.e.,
F: M ! F(M) is injective for all R-modules M. Note that this implies IF = I for
all ideals I of R.

A ring R is weakly F-regular if every ideal of R is tightly closed, and is
F-regular if every localization is weakly F-regular. An F-finite ring R is strongly
F-regular if for every element c 2 R�, there exists an integer q = pe such that
the R-linear inclusion R ! R1=q sending 1 to c1=q splits as a map of R-modules.
R is F-rational if, in every local ring of R, all ideals generated by systems of
parameters are tightly closed.

It follows from the definitions that a weakly F-regular ring is F-rational as
well as F-pure. We summarize some basic results regarding these notions from
[HH1, Theorem 3.1], [HH3, Theorem 4.2] and [LS, Corollaries 4.3, 4.4].

THEOREM 2.2.

(1) Regular rings are F-regular; if they are F-finite, they are also strongly
F-regular. Strongly F-regular rings are F-regular.

(2) Direct summands of F-regular rings are F-regular.

(3) F-rational rings are normal. An F-rational ring which is a homomorphic
image of a Cohen-Macaulay ring is itself Cohen-Macaulay.

(4) An F-rational Gorenstein ring is F-regular. If it is F-finite, then it is also
strongly F-regular.

(5) The notions of weak F-regularity and F-regularity agree for N -graded
rings. For F-finite N -graded rings, these are also equivalent to strong F-regularity.

3. A review of rational coefficient Weil divisors. The examples con-
structed in the following section are best understood in the setting of Q -divisors.
Also, an interpretation of the graded pieces of certain local cohomology mod-
ules using Q -divisors provided the original heuristic ideas which led to these
examples. We recall some notation and results from [De], [Wa1], [Wa2].

Definition 3.1. By a rational coefficient Weil divisor (or a Q -divisor) on a
normal projective variety X, we mean a linear combination of codimension one
irreducible subvarieties of X, with coefficients in Q . For E =

P
niVi with ni 2 Q ,

we set [E] =
P

[ni]Vi, where [n] denotes the greatest integer less than or equal
to n, and define OX(E) = OX([E]).
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Let E =
P

(pi=qi)Vi where the integers pi and qi are relatively prime and
qi > 0. We define E0 =

P
((qi� 1)=qi)Vi to be the fractional part of E. Note that

with this definition we have �[� nE] = [nE + E0] for any integer n.

For an ample Q -divisor E (i.e., NE is an ample Cartier divisor for some
N 2 N ), we construct the generalized section ring:

S = S(X, E) = �n�0H0(X,OX(nE)).

In this notation, Demazure’s result ([De, 3.5]) states that every N -graded normal
ring arises as a generalized section ring S = S(X, E) where E is an ample Q -divisor
on X = Proj S.

Let X be a smooth projective variety of dimension d with canonical divisor
KX , and let E be an ample Q -divisor on X. If ! denotes the graded canonical
module of the ring S = S(X, E), K.-i. Watanabe showed in [Wa1] and [Wa2]
that

[!(i)]n = H0(X,OX(i(KX + E0) + nE))

and

[Hd+1
m (!(i))]n = Hd(X,OX(i(KX + E0) + nE)).

Let ES(K) = Hd+1
m (!) denote the injective hull of K as a graded S-module. The

Frobenius action on the nth graded piece of ES(K) can then be identified with

Hd(X,OX(KX + E0 + nE)) F
�! Hd(X,OX(p(KX + E0 + nE))),

and in particular the Frobenius action on [Hd+1
m (!)]0, the socle of ES(K), can be

identified with

Hd(X,OX(KX + E0)) F
�! Hd(X,OX(p(KX + E0))).

If the ring S is F-pure this Frobenius action must be injective, and consequently
Hd(X,OX(p(KX +E0))) must be nonzero. Heuristically, the dimension of the vector
space Hd(X,OX(p(KX + E0))) may be regarded as a measure of the F-purity of S.
With this is mind, we choose E such that hd(X,OX(p(KX + E0))) while nonzero,
is “small.” This motivates our choice of the Q -divisor E on P1 , see the proof of
Proposition 4.3.

4. The main construction. When working with quotients of polynomial
rings, we shall use lower-case letters to denote the images of the corresponding
variables.
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Remark 4.1. Let K be a field of characteristic p. For positive integers m and
n, consider the ring R = K[A, B, C, D, T]=I where I is generated by the size two
minors of the matrix

Mm,n =

 
A2 + Tm B D

C A2 Bn � D

!
.

The ring R is graded by setting the weights of a, b, c, d, and t to be m, 2m,
2m, 2mn, and 2 respectively. This ring is the specialization of a Cohen-Macaulay
ring, and so is itself Cohen-Macaulay. The elements t, c and d form a homoge-
neous system of parameters for R, and so the element t 2 m is indeed a nonzero-
divisor.

We record the following crucial lemma.

LEMMA 4.2. Let m and n be positive integers satisfying m�m=n > 2. Consider
the ring R = K[A, B, C, D, T]=I where I is generated by the size two minors of the
matrixMm,n (see x4.1). If k is a positive integer such that k(m�m=n�2) � 1, then

(bntm�1)2mk+1 2 (a2mk+1, d2mk+1).

Proof. Let � = A2 + Tm and � = A2. It suffices to work in the polynomial ring
K[� ,�, B, C, D] and establish that

Bn(2mk+1)(� � �)2k(m�1) 2 (�mk+1, D2mk+1) + a

where a is the ideal generated by the size two minors of the matrix

 
� B D
C � Bn � D

!
.

Taking the binomial expansion of (� � �)2k(m�1), it suffices to show that

Bn(2mk+1)(� ,�)2k(m�1) 2 (�mk+1, D2mk+1) + a.

This would follow if we show that for all integers i where 1 � i � mk + 1, we
have

Bn(2mk+1)�mk+1�i�mk�2k+i�1 2 (�mk+1, D2mk+1) + a,

and so it is certainly enough to show that

Bn(2mk+1)�mk�2k+i�1 2 (�i, D2mk+1) + a.
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Since �D� B(Bn � D) 2 a, it suffices to establish that

Bn(2mk+1)�mk�2k+i�1 2 (Bi(Bn � D)i, D2mk+1, Bn� � D(C + � )).

Working modulo the element Bi(Bn�D)i, we may reduce Bn(2mk+1) to a polynomial
in B and D such that the highest power of B that occurs is less than i(n + 1).
Consequently it suffices to show that

Bn(2mk+1�j)�mk�2k+i�1Dj 2 (D2mk+1, Bn� � D(C + � ))

where n(2mk + 1 � j) < i(n + 1), i.e., j � 2mk + (1 � i)(1 + 1=n). With this
simplification, it is enough to check that

Bn(2mk+1�j)�mk�2k+i�1 2 (D2mk+1�j, Bn� � D(C + � )).

It only needs to be verified that mk � 2k + i � 1 � 2mk + 1 � j since, working
modulo Bn� �D(C + � ), we can then express Bn(2mk+1�j)�mk�2k+i�1 as a multiple
of D2mk+1�j. Finally, note that

(mk� 2k + i� 1)� (2mk + 1� j) = j�mk� 2k + i� 2 � k
�

m�
m
n
� 2

�
� 1 � 0

since i � mk + 1, j � 2mk + (1� i)(1 + 1=n) and k(m� m=n� 2) � 1.

PROPOSITION 4.3. Let S = K[A, B, C, D]=J where the characteristic of the field
K is a prime p > 2, and J is the ideal generated by the size two minors of the matrix

 
A2 B D
C A2 Bn � D

!
.

Then S is an F-regular ring.

Proof. There are various ways to establish this. We can identify S with the
generalized section ring �i�0H0(P1 ,OP1 (iE))Xi, where P1 = Proj K[X, Y], and E
is the rational coefficient Weil divisor

E =
1
2

V(X) +
1
2

V(Y) +
1

2n
V(X + Y).

Under this identification,

A = X, B =
X3

Y
, C = XY and D =

X3n+1

Yn(X + Y)
.

One may now appeal to Watanabe’s classification in [Wa2] to conclude that S is
F-regular.
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For an alternate proof, it is easily verified that S is the Veronese subring

H(2n+1) =
M
i2N

[H]i(2n+1)

where H is the hypersurface

K[A, X, Y]=(A2 � XY(Xn � Y))

and the variables A, X and Y have weights 2n + 1, 2 and 2n respectively. Here
B = XY2, C = X(Xn � Y)2 and D = Y2n+1. Since the characteristic of K is greater
than 2, a routine computation shows that the hypersurface H is F-regular, and
consequently its direct summand S is also F-regular.

Remark 4.4. Although we do not use this fact, we mention that the hyper-
surface H in the proof above is obtained as the cyclic cover

S � ! � !(2) � � � � � !(2n)

where ! is the canonical module of the ring S.

PROPOSITION 4.5. Let K be a field of characteristic p > 2 and consider the ring
R = Rm,n = K[A, B, C, D, T]=I where I is generated by the size two minors of the
matrix Mm,n (see x4.1). If m � m=n > 2, then R is not F-regular. If in addition p
and m are relatively prime, then R is not F-pure.

Proof. First note that bntm�1 =2 (a, d). To establish that R is not F-regular we
shall show that bntm�1 2 (a, d)�.

For a suitably large arbitrary positive integer e, let q = pe = 2mk + � where k
and � are integers such that k(m� m=n� 2) � 1 and �2m + 2 � � � 1. To see
that bntm�1 2 (a, d)�, it suffices to show that

(bntm�1)q+2m�1 2 (aq, dq).

Since q + 2m� 1 = 2mk + � + 2m� 1 � 2mk + 1 and q � 2mk + 1, it suffices to
check that

(bntm�1)2mk+1 2 (a2mk+1, d2mk+1),

but this is precisely the assertion of Lemma 4.2.
For the second assertion, note that since p > 2, the integers p and 2m are

relatively prime and we may choose a positive integer e such that q = pe = 2mk+1
for some k > 0. Taking a higher power of p, if necessary, we may also assume
that k(m � m=n � 2) � 1. But now (bntm�1)q 2 (aq, dq) by Lemma 4.2, and so
bntm�1 2 (a, d)F . Hence the ring R is not F-pure.
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Proof of Theorem 1.1. We have already noted in x4.1 that the element t is
a nonzerodivisor in R, and Proposition 4.3 establishes that the ring R=tR is F-
regular. Since m � m=n > 2, Proposition 4.5 shows that R fails to be F-regular,
and is not even F-pure if p and m are relatively prime integers.

5. The characteristic zero case. Hochster and Huneke have developed a
notion of tight closure for rings essentially of finite type over fields of character-
istic zero, see [HH2], [HH4]. However we can also define notions corresponding
to F-regularity, F-purity, and F-rationality in characteristic zero, without explic-
itly considering a closure operation for rings of characteristic zero. We include a
brief summary, and discuss how the examples constructed above also show that
the property F-regular type does not deform.

Suppose R = K[X1, : : : , Xn]=I is a ring finitely generated over a field K of
characteristic zero, choose a finitely generated Z-algebra A such that

RA = A[X1, : : : , Xn]=IA

is a free A-algebra with R �= RA
A K. Note that the fibers of the homomorphism
A ! RA over maximal ideals of A are finitely generated algebras over fields of
positive characteristic.

Definition 5.1. Let R be a ring which is finitely generated over a field of
characteristic zero. Then R is said to be of F-regular type if there exists a finitely
generated Z-algebra A � K and a finitely generated A-algebra RA as above such
that R �= RA 
A K and, for all maximal ideals � in a Zariski dense subset of
Spec A, the fiber rings RA 
A A=� are F-regular.

Similarly, R is said to be of F-pure type if for all maximal ideals � in a
Zariski dense subset of SpecA, the fiber rings RA 
A A=� are F-pure.

Remark 5.2. Some authors use the term F-pure type (F-regular type) to mean
that RA 
A A=� is F-pure (F-regular) for all maximal ideals � in a Zariski dense
open subset of Spec A.

THEOREM 5.3. For positive integers m and n satisfying m�m=n > 2, consider
the ring R = Q [A, B, C, D, T]=I where I is generated by the size two minors of the
matrix Mm,n of x4.1. Then the ring R is not of F-pure type, whereas R=tR is of
F-regular type.

Proof. If p is a prime integer which does not divide 2m, the fiber of Z ! RZ

over pZ is not F-pure by Proposition 4.5, and consequently the ring R is not of
F-pure type. On the other hand, Proposition 4.3 shows that R=tR is of F-regular
type since the fiber of Z ! (R=tR)Z over pZ is F-regular for all primes p > 2.

Remark 5.4. R. Fedder first constructed examples to show that F-purity does
not deform, see [Fe]. However Fedder pointed out that his examples were less
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than satisfactory in two ways: firstly the rings were not integral domains, and
secondly his arguments did not work in the characteristic zero setting, i.e., did
not comment on the deformation of the property F-pure type. In [Si] the author
constructed various examples which overcame both these shortcomings, but left
at least one issue unresolved—although the rings R were integral domains (which
were not F-pure), the F-pure quotient rings R=tR were not integral domains. The
examples we have constructed here also settle this remaining issue.

6. Conditions on fibers. The examples constructed in the previous section
are also relevant from the point of view of the behavior of F-regularity under base
change. We first recall a theorem of Hochster and Huneke, [HH3, Theorem 7.24].

THEOREM 6.1. Let (A, m, K) ! (R, n, L) be a flat local homomorphism of local
rings of characteristic p such that A is weakly F-regular, R is excellent, and the
generic and closed fibers are regular. Then the ring R is weakly F-regular.

It is a natural question to ask what properties are inherited by an excellent
ring R if, as above, (A, m, K) ! (R, n, L) is a flat local homomorphism, the ring
A is F-regular and the generic and closed fibers are F-regular. Our examples can
be used to show that even if (A, m, K) is a discrete valuation ring and the generic
and closed fibers of (A, m, K) ! (R, n, L) are F-regular, then the ring R need not
be F-regular.

Once again, we construct N -graded examples, and examples with local rings
can be obtained by the obvious localizations at the homogeneous maximal ideals.
Let A = K[T] be a polynomial ring in one variable, and R = K[A, B, C, D, T]=I
where I is generated by the size two minors of the matrix Mm,n, see x4.1. As
before, K is a field of characteristic p > 2, and m and n are positive integers such
that m� m=n > 2.

The generic fiber of the inclusion A ! R is a localization of Rt, whereas
the fiber over the homogeneous maximal ideal of A is R=tR. We have earlier
established that R=tR is F-regular, and only need to show that the ring Rt is
F-regular. In the following proposition we show that the R is, in fact, locally
F-regular on the punctured spectrum.

PROPOSITION 6.2. Let K be a field of characteristic p > 2. For positive integers
m and n consider the ring R = Rm,n = K[A, B, C, D, T]=I where I is generated by
the size two minors of the matrixMm,n (see x4.1). Then the ring RP is F-regular for
all prime ideals P in Spec R� fmg.

Proof. A routine verification shows that the singular locus of R is V(J) where
the defining ideal is J = (a, b, c(c + tm), d). Consequently we need to show
that the two local rings RP and RQ are F-regular where P = (a, b, c, d) and
Q = (a, b, c + tm, d).
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After localizing at the prime P, we may write d = bn(a2 + tm)=(c + a2 + tm)
and so RP is a localization of the ring

K[T , A, B, C]=(A2(A2 + Tm)� BC)

at the prime ideal (a, b, c). Since a2 + tm is a unit, the hypersurface RP is easily
seen to be F-regular.

Localizing at the prime Q, we have b = a2(a2 + tm)=c and so RQ is a local-
ization of the ring

K[T , A, C, D]=(CnD(C + A2 + Tm)� A2n(A2 + Tm)n+1)

at the prime ideal (a, c + tm, d). Again we have a hypersurface which, it can be
easily verified, is F-regular.
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