Galois extensions, plus closure, and maps on local cohomology

Akiyoshi Sannai a,1, Anurag K. Singh b,*,2

a Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
b Department of Mathematics, University of Utah, 155 S. 1400 E., Salt Lake City, UT 84112, USA

Received 1 April 2011; accepted 20 December 2011

Communicated by Karen Smith

Abstract

Given a local domain \((R, m)\) of prime characteristic that is a homomorphic image of a Gorenstein ring, Huneke and Lyubeznik proved that there exists a module-finite extension domain \(S\) such that the induced map on local cohomology modules \(H^i_m(R) \to H^i_m(S)\) is zero for each \(i < \dim R\). We prove that the extension \(S\) may be chosen to be generically Galois, and analyze the Galois groups that arise.

© 2011 Elsevier Inc. All rights reserved.

MSC: primary 13D45; secondary 13A35, 14B15, 14F17

Keywords: Characteristic \(p\) methods; Local cohomology; Big Cohen–Macaulay algebras; Integral ring extensions; Galois extensions

1. Introduction

Let \(R\) be a commutative Noetherian integral domain. We use \(R^+\) to denote the integral closure of \(R\) in an algebraic closure of its fraction field. Hochster and Huneke proved the following:

* Corresponding author.

E-mail addresses: sannai@ms.u-tokyo.ac.jp (A. Sannai), singh@math.utah.edu (A.K. Singh).

1 The author was supported by the Excellent Young Researcher Overseas Visit Program of the Japan Society for Promotion of Science (JSPS).

2 The author was supported by NSF grant DMS 0856044.

0001-8708/$ – see front matter © 2011 Elsevier Inc. All rights reserved.

Theorem 1.1. (See [8, Theorem 1.1].) If R is an excellent local domain of prime characteristic, then each system of parameters for R is a regular sequence on R^+, i.e., R^+ is a balanced big Cohen–Macaulay algebra for R.

It follows that for a ring R as above, and $i < \dim R$, the local cohomology module $H^i_m(R^+)$ is zero. Hence, given an element $[\eta]$ of $H^i_m(R)$, there exists a module-finite extension domain S such that $[\eta]$ maps to 0 under the induced map $H^i_m(R) \to H^i_m(S)$. This was strengthened by Huneke and Lyubeznik, albeit under mildly different hypotheses:

Theorem 1.2. (See [10, Theorem 2.1].) Let (R, \mathfrak{m}) be a local domain of prime characteristic that is a homomorphic image of a Gorenstein ring. Then there exists a module-finite extension domain S such that the induced map

$$H^i_m(R) \to H^i_m(S)$$

is zero for each $i < \dim R$.

By a generically Galois extension of a domain R, we mean an extension domain S that is integral over R, such that the extension of fraction fields is Galois; $\text{Gal}(S/R)$ will denote the Galois group of the corresponding extension of fraction fields. We prove the following:

Theorem 1.3. Let R be a domain of prime characteristic.

1. Let \mathfrak{a} be an ideal of R and $[\eta]$ an element of $H^i_{\mathfrak{a}}(R)_{\text{nil}}$ (see Section 2.3). Then there exists a module-finite generically Galois extension S, with $\text{Gal}(S/R)$ a solvable group, such that $[\eta]$ maps to 0 under the induced map $H^i_{\mathfrak{a}}(R) \to H^i_{\mathfrak{a}}(S)$.

2. Suppose (R, \mathfrak{m}) is a homomorphic image of a Gorenstein ring. Then there exists a module-finite generically Galois extension S such that the induced map $H^i_m(R) \to H^i_m(S)$ is zero for each $i < \dim R$.

Set $R^{+\text{sep}}$ to be the R-algebra generated by the elements of R^+ that are separable over $\text{frac}(R)$. Under the hypotheses of Theorem 1.3(2), $R^{+\text{sep}}$ is a separable balanced big Cohen–Macaulay R-algebra; see Corollary 3.3. In contrast, the algebra R^{∞}, i.e., the purely inseparable part of R^+, is not a Cohen–Macaulay R-algebra in general: take R to be an F-pure domain that is not Cohen–Macaulay; see [8, p. 77].

For an \mathbb{N}-graded domain R of prime characteristic, Hochster and Huneke proved the existence of a \mathbb{Q}-graded Cohen–Macaulay R-algebra $R^{+\text{GR}}$, see Theorem 5.1. In view of this and the preceding paragraph, it is natural to ask whether there exists a \mathbb{Q}-graded separable Cohen–Macaulay R-algebra; in Example 5.2 we show that the answer is negative.

In Example 5.3 we construct an \mathbb{N}-graded domain of prime characteristic for which no module-finite \mathbb{Q}-graded extension domain is Cohen–Macaulay.

We also prove the following results for closure operations; the relevant definitions may be found in Section 2.1.

Theorem 1.4. Let R be an integral domain of prime characteristic, and let \mathfrak{a} be an ideal of R.

1. Given an element $z \in \mathfrak{a}^F$, there exists a module-finite generically Galois extension S, with $\text{Gal}(S/R)$ a solvable group, such that $z \in \mathfrak{a}S$.
(2) Given an element $z \in \mathfrak{a}^+$, there exists a module-finite generically Galois extension S such that $z \in \mathfrak{a}S$.

In Example 4.1 we present a domain R of prime characteristic where $z \in \mathfrak{a}^+$ for an element z and ideal \mathfrak{a}, and conjecture that $z \not\in \mathfrak{a}S$ for each module-finite generically Galois extension S with $\text{Gal}(S/R)$ a solvable group. Similarly, in Example 4.3 we present a 3-dimensional ring R where we conjecture that $H^2_m(R) \rightarrow H^2_m(S)$ is nonzero for each module-finite generically Galois extension S with $\text{Gal}(S/R)$ a solvable group.

Remark 1.5. The assertion of Theorem 1.2 does not hold for rings of characteristic zero: Let (R, \mathfrak{m}) be a normal domain of characteristic zero, and S a module-finite extension domain. Then the field trace map $\text{tr} : \frac{S}{\mathfrak{m}} \rightarrow \frac{R}{\mathfrak{m}}$ provides an R-linear splitting of $R \subseteq S$, namely

$$\frac{1}{[\frac{S}{\mathfrak{m}} : \frac{R}{\mathfrak{m}}]} \text{tr} : S \rightarrow R.$$

It follows that the induced maps on local cohomology $H^i_m(R) \rightarrow H^i_m(S)$ are R-split. A variation is explored in [15], where the authors investigate whether the image of $H^i_m(R)$ in $H^i_m(R^+)$ is killed by elements of R^+ having arbitrarily small positive valuation. This is motivated by Heitmann’s proof of the direct summand conjecture for rings (R, \mathfrak{m}) of dimension 3 and mixed characteristic $p > 0$ [5], which involves showing that the image of $H^2_m(R) \rightarrow H^2_m(R^+)$ is killed by $p^{1/n}$ for each positive integer n.

Throughout this paper, a local ring refers to a commutative Noetherian ring with a unique maximal ideal. Standard notions from commutative algebra that are used here may be found in [2]; for more on local cohomology, consult [11]. For the original proof of the existence of big Cohen–Macaulay modules for equicharacteristic local rings, see [6].

2. Preliminary remarks

2.1. Closure operations

Let R be an integral domain. The plus closure of an ideal \mathfrak{a} is the ideal $\mathfrak{a}^+ = \mathfrak{a}R^+ \cap R$.

When R is a domain of prime characteristic $p > 0$, we set

$$R^\infty = \bigcup_{e \geq 0} R^{1/p^e},$$

which is a subring of R^+. The Frobenius closure of an ideal \mathfrak{a} is the ideal $\mathfrak{a}^F = \mathfrak{a}R^\infty \cap R$. Alternatively, set

$$\mathfrak{a}^{\{p^e\}} = (a^{p^e} \mid a \in \mathfrak{a}).$$

Then $\mathfrak{a}^F = \{r \in R \mid r^{p^e} \in \mathfrak{a}^{\{p^e\}} \text{ for some } e \in \mathbb{N}\}$.
2.2. Solvable extensions

A finite separable field extension L/K is solvable if $\text{Gal}(M/K)$ is a solvable group for some Galois extension M of K containing L. Solvable extensions form a distinguished class, i.e.,

(1) for finite extensions $K \subseteq L \subseteq M$, the extension M/K is solvable if and only if each of M/L and L/K is solvable;
(2) for finite extensions L/K and M/K contained in a common field, if L/K is solvable, then so is the extension LM/M.

A finite separable extension L/K of fields of characteristic $p > 0$ is solvable precisely if it is obtained by successively adjoining

(1) roots of unity;
(2) roots of polynomials $T^n - a$ for n coprime to p;
(3) roots of Artin–Schreier polynomials, $T^p - T - a$;

see, for example, [12, Theorem VI.7.2].

2.3. Frobenius-nilpotent submodules

Let R be a ring of prime characteristic p. A Frobenius action on an R-module M is an additive map $F : M \rightarrow M$ with $F(rm) = r^p F(m)$ for each $r \in R$ and $m \in M$. In this case, $\ker F$ is a submodule of M, and we have an ascending sequence

$$\ker F \subseteq \ker F^2 \subseteq \ker F^3 \subseteq \cdots.$$

The union of these is the F-nilpotent submodule of M, denoted M_{nil}. If R is local and M is Artinian, then there exists a positive integer e such that $F^e(M_{\text{nil}}) = 0$; see [13, Proposition 4.4] or [4, Theorem 1.12].

3. Proofs

We record two elementary results that will be used later:

Lemma 3.1. Let K be a field of characteristic $p > 0$. Let a and b be elements of K where a is nonzero. Then the Galois group of the polynomial

$$T^p + aT - b$$

is a solvable group.

Proof. Form an extension of K by adjoining a primitive $p - 1$ root of unity and an element c that is a root of $T^{p-1} - a$. The polynomial $T^p + aT - b$ has the same roots as

$$\left(\frac{T}{c} \right)^p - \left(\frac{T}{c} \right) - \frac{b}{c^p},$$

which is an Artin–Schreier polynomial in T/c. \square
Lemma 3.2. Let R be a domain, and \mathfrak{p} a prime ideal. Given a domain S that is a module-finite extension of $R_{\mathfrak{p}}$, there exists a domain T, module-finite over R, with $T_{\mathfrak{p}} = S$.

Proof. Given $s_i \in S$, there exists $r_i \in R \setminus \mathfrak{p}$ such that r_is_i is integral over R. If s_1, \ldots, s_n are generators for S as an R-module, set $T = R[r_1s_1, \ldots, r_ns_n]$.

Proof of Theorem 1.3. Since solvable extensions form a distinguished class, (1) reduces by induction to the case where $F([\eta]) = 0$. Compute $H^i_a(R)$ using a Čech complex $C^•(x; R)$, where $x = x_0, \ldots, x_n$ are nonzero elements generating the ideal a; recall that $C^•(x; R)$ is the complex

$$0 \longrightarrow R \longrightarrow \bigoplus_{i=0}^n R_{x_i} \longrightarrow \bigoplus_{i < j} R_{x_ix_j} \longrightarrow \cdots \longrightarrow R_{x_0 \cdots x_n} \longrightarrow 0.$$

Consider a cycle η in $C^i(x; R)$ that maps to $[\eta]$ in $H^i_a(R)$. Since $F([\eta]) = 0$, the cycle $F(\eta)$ is a boundary, i.e., $F(\eta) = \partial(\alpha)$ for some $\alpha \in C^{i-1}(x; R)$.

Let μ_1, \ldots, μ_m be the square-free monomials of degree $i - 2$ in the elements x_1, \ldots, x_n, and regard $C^{i-1}(x; R) = C^{i-1}(x_0, \ldots, x_n; R)$ as

$$R_{x_0\mu_1} \oplus \cdots \oplus R_{x_0\mu_m} \oplus C^{i-1}(x_1, \ldots, x_n; R).$$

There exist a power q of the characteristic p of R, and elements b_1, \ldots, b_m in R, such that α can be written in the above direct sum as

$$\alpha = \left(\frac{b_1}{(x_0\mu_1)^q}, \ldots, \frac{b_m}{(x_0\mu_m)^q}, *, \ldots, * \right).$$

Consider the polynomials

$$T^p + x_0^q T - b_i \quad \text{for } i = 1, \ldots, m,$$

and let L be a finite extension field where these have roots t_1, \ldots, t_m respectively. By Lemma 3.1, we may assume L is Galois over $\text{frac}(R)$ with the Galois group being solvable. Let S be a module-finite extension of R that contains t_1, \ldots, t_m, and has L as its fraction field; if R is excellent, we may take S to be the integral closure of R in L.

In the module $C^{i-1}(x; S)$ one then has

$$\alpha = \left(\frac{t_1^p + x_0^q t_1}{(x_0\mu_1)^q}, \ldots, \frac{t_m^p + x_0^q t_m}{(x_0\mu_m)^q}, *, \ldots, * \right) = F(\beta) + \gamma,$$

where

$$\beta = \left(\frac{t_1}{(x_0\mu_1)^q/p}, \ldots, \frac{t_m}{(x_0\mu_m)^q/p}, 0, \ldots, 0 \right)$$

and

$$\gamma = \left(\frac{t_1}{\mu_1^q}, \ldots, \frac{t_m}{\mu_m^q}, *, \ldots, * \right).$$
are elements of
\[C^{i-1}(x; S) = S_{x_0\mu_1} \oplus \cdots \oplus S_{x_0\mu_m} \oplus C^{i-1}(x_1, \ldots, x_n; S). \]
Since \(F(\eta) = \partial(F(\beta) + \gamma) \), we have
\[F(\eta - \partial(\beta)) = \partial(\gamma). \]
But \([\eta] = [\eta - \partial(\beta)]\) in \(H_0^i(S) \), so after replacing \(\eta \) we may assume that
\[F(\eta) = \partial(\gamma). \]
Next, note that \(\gamma \) is an element of \(C^{i-1}(1, x_1, \ldots, x_n; S) \), viewed as a submodule of \(C^{i-1}(x; S) \).
There exists \(\zeta \) in \(C^{-2}(1, x_1, \ldots, x_n; S) \) such that
\[\partial(\zeta) = \left(\frac{t_1}{\mu_1}, \ldots, \frac{t_m}{\mu_m}, *, \ldots, * \right). \]
Since
\[F(\eta) = \partial(\gamma - \partial(\zeta)), \]
after replacing \(\gamma \) we may assume that the first \(m \) coordinate entries of \(\gamma \) are 0, i.e., that
\[\gamma = \left(0, \ldots, 0, \frac{c_1}{\lambda_1^Q}, \ldots, \frac{c_l}{\lambda_l^Q} \right), \]
where \(Q \) is a power of \(p \), the \(c_i \) belong to \(S \), and \(\lambda_1, \ldots, \lambda_l \) are the square-free monomials of degree \(i - 1 \) in \(x_1, \ldots, x_n \).
The coordinate entries of \(\partial(\gamma) \) include each \(c_i/\lambda_i^Q \). Since \(\partial(\gamma) = F(\eta) \), each \(c_i/\lambda_i^Q \) is a \(p \)-th power in frac\((S)\); it follows that each \(c_i \) has a \(p \)-th root in frac\((S)\). After enlarging \(S \) by adjoining each \(c_i^{1/p} \), we see that \(\gamma = F(\xi) \) for an element \(\xi \) of \(C^{i-1}(x; S) \). But then
\[F(\eta) = \partial(F(\xi)) = F(\partial(\xi)). \]
Since the Frobenius action on \(C^i(x; S) \) is injective, we have \(\eta = \partial(\xi) \), which proves (1).
For (2), it suffices to construct a module-finite generically separable extension \(S \) such that \(H_0^i(R) \to H_0^i(S) \) is zero for \(i < \dim R \); to obtain a generically Galois extension, enlarge \(S \) to a module-finite extension whose fraction field is the Galois closure of frac\((S)\) over frac\((R)\).
We use induction on \(d = \dim R \), as in [10]. If \(d = 0 \), there is nothing to be proved; if \(d = 1 \), the inductive hypothesis is again trivially satisfied since \(H_0^0(R) = 0 \). Fix \(i < \dim R \). Let \((A, M)\) be a Gorenstein local ring that has \(R \) as a homomorphic image, and set
\[M = \text{Ext}^1_A R^{-i}(R, A). \]
Let \(p_1, \ldots, p_s \) be the elements of the set \(\text{Ass}_A M \setminus \{M\} \).
Let \(q \) be a prime ideal of \(R \) that is not maximal. Since \(R \) is catenary, one has
\[
\dim R = \dim R_q + \dim R/q.
\]
Thus, the condition \(i < \dim R \) may be rewritten as
\[
i - \dim R/q < \dim R_q.
\]
Using the inductive hypothesis and Lemma 3.2, there exists a module-finite extension \(R' \) of \(R \) such that \(\text{frac}(R') \) is a separable field extension of \(\text{frac}(R_q) = \text{frac}(R) \), and the induced map
\[
H_{qR_q}^{i-\dim R/q}(R_q) \longrightarrow H_{qR_q}^{i-\dim R/q}(R'_q)
\] (3.2.1)
is zero. Taking the compositum of finitely many such separable extensions inside a fixed algebraic closure of \(\text{frac}(R) \), there exists a module-finite generically separable extension \(R' \) of \(R \) such that the map (3.2.1) is zero when \(q \) is any of the primes \(p_1 R, \ldots, p_s R \). We claim that the image of the induced map
\[
H_i^m(R) \longrightarrow H_i^m(R')
\] has finite length.

Using local duality over \(A \), it suffices to show that
\[
M' = \text{Ext}_A^{\dim A - i}(R', A) \longrightarrow \text{Ext}_A^{\dim A - i}(R, A) = M
\]
has finite length. This, in turn, would follow if
\[
M'_p = \text{Ext}_A^{\dim A - i}(R'_p, A_p) \longrightarrow \text{Ext}_A^{\dim A - i}(R_p, A_p) = M_p
\]
is zero for each prime ideal \(p \) in \(\text{Ass}_A M \setminus \{ M \} \). Using local duality over \(A_p \), it suffices to verify the vanishing of
\[
H_{pR_p}^{\dim A_p - \dim A + i}(R_p) \longrightarrow H_{pR_p}^{\dim A_p - \dim A + i}(R'_p)
\]
for each \(p \) in \(\text{Ass}_A M \setminus \{ M \} \). This, however, follows from our choice of \(R' \) since
\[
\dim A_p - \dim A + i = i - \dim A/p = i - \dim R/p R.
\]

What we have arrived at thus far is a module-finite generically separable extension \(R' \) of \(R \) such that the image of \(H_i^m(R) \longrightarrow H_i^m(R') \) has finite length; in particular, this image is finitely generated. Working with one generator at a time and taking the compositum of extensions, given \(\eta \) in \(H_i^m(R') \), it suffices to construct a module-finite generically separable extension \(S \) of \(R' \) such that \(\eta \) maps to 0 under \(H_i^m(R') \longrightarrow H_i^m(S) \).

By Theorem 1.2, there exists a module-finite extension \(R_1 \) of \(R' \) such that \(\eta \) maps to 0 under the map \(H_i^m(R') \longrightarrow H_i^m(R_1) \). Setting \(R_2 \) to be the separable closure of \(R' \) in \(R_1 \), the image of \(\eta \) in \(H_i^m(R_2) \) lies in \(H_i^m(R_2)_{\text{nil}} \). The result now follows by (1).

Corollary 3.3. Let \((R, m) \) be a local domain of prime characteristic that is a homomorphic image of a Gorenstein ring. Then \(H_i^m(R^{+\text{sep}}) = 0 \) for each \(i < \dim R \).

Moreover, each system of parameters for \(R \) is a regular sequence on \(R^{+\text{sep}} \), i.e., \(R^{+\text{sep}} \) is a separable balanced big Cohen–Macaulay algebra for \(R \).
Proof. Theorem 1.3(2) implies that $H^i_m(R^{+\text{sep}}) = 0$ for each $i < \dim R$. The proof that this implies the second statement is similar to the proof of [10, Corollary 2.3]. □

Proof of Theorem 1.4. Let p be the characteristic of R. If $z \in a^F$, then there exists a prime power $q = p^e$ with $z^q \in a^{[q]}$. In this case, z^q/p belongs to the Frobenius closure of $a^{[q/p]}$, and

$$(z^q/p)^p \in (a^{[q/p]})^{[p]}.$$

Since solvable extensions form a distinguished class, we reduce to the case $e = 1$, i.e., $q = p$.

There exist nonzero elements, $a_0, \ldots, a_m \in a$ and $b_0, \ldots, b_m \in R$ with

$$z^p = \sum_{i=0}^m b_i a_i^p.$$

Consider the polynomials

$$T^p + a_0^p T - b_i$$

for $i = 1, \ldots, m$,

and let L be a finite extension field where these have roots t_1, \ldots, t_m respectively. By Lemma 3.1, we may assume L is Galois over $\text{frac}(R)$ with the Galois group being solvable. Set

$$t_0 = \frac{1}{a_0} \left(z - \sum_{i=1}^m t_i a_i \right).$$

(3.3.1)

Taking p-th powers, we have

$$t_0^p = \frac{1}{a_0^p} \left(\sum_{i=0}^m b_i a_i^p - \sum_{i=1}^m t_i^p a_i^p \right) = b_0 + \frac{1}{a_0^p} \sum_{i=1}^m (b_i - t_i^p) a_i^p = b_0 + \sum_{i=1}^m t_i a_i^p.$$

Thus, t_0 belongs to the integral closure of $R[t_1, \ldots, t_m]$ in its field of fractions. Let S be a module-finite extension of R that contains t_0, \ldots, t_m, and has L as its fraction field; if R is excellent, we may take S to be the integral closure of R in L. Since (3.3.1) may be rewritten as

$$z = \sum_{i=0}^m t_i a_i,$$

it follows that $z \in aS$, completing the proof of (1).

Assertion (2) follows from [17, Corollary 3.4], though we include a proof using (1). There exists a module-finite extension domain T such that $z \in aT$. Decompose the field extension $\text{frac}(R) \subseteq \text{frac}(T)$ as a separable extension $\text{frac}(R) \subseteq \text{frac}(T)$ followed by a purely inseparable extension $\text{frac}(T) \subseteq \text{frac}(T)$. Let T_0 be the integral closure of R in $\text{frac}(T)$.

Since T is a purely inseparable extension of T_0, and $z \in aT$, it follows that z belongs to the Frobenius closure of the ideal aT_0. By (2) there exists a generically separable extension S_0 of T_0 with $z \in aS_0$. Enlarge S_0 to a generically Galois extension S of R. This concludes the argument in the case R is excellent; in the event that S is not module-finite over R, one may replace it by a subring satisfying $z \in aS$ and having the same fraction field. □
The equational construction used in the proof of Theorem 1.4(1) arose from the study of symplectic invariants in [16].

4. Some Galois groups that are not solvable

Let R be a domain of prime characteristic, and let a be an ideal of R. If z is an element of a^F, Theorem 1.4(1) states that there exists a solvable module-finite extension S with $z \in aS$. In the following example one has $z \in a^+$, and we conjecture $z \notin aS$ for any module-finite generically Galois extension S with $\text{Gal}(S/R)$ solvable.

Example 4.1. Let a, b, c_1, c_2 be algebraically independent over \mathbb{F}_p, and set R be the hypersurface

$$\mathbb{F}_p(a, b, c_1, c_2)[x, y, z] / (z^{p^2} + c_1(xy)p^2 - p z^p + c_2(xy)p^{p-1}z + ax^{p^2} + by^{p^2}).$$

We claim $z \in (x, y)^+$. Let u, v be elements of R^+ that are, respectively, roots of the polynomials

$$T^{p^2} + c_1 y^{p^2} - p T^p + c_2 y^{p^2-1} T + a,$$ \hspace{1cm} (4.1.1)

and

$$T^{p^2} + c_1 x^{p^2} - p T^p + c_2 x^{p^2-1} T + b.$$ \hspace{1cm} (4.1.2)

Set S to be the integral closure of R in the Galois closure of $\text{frac}(R)(u, v)$ over $\text{frac}(R)$. Then $(z - ux - vy)/xy$ is an element of S, since it is a root of the monic polynomial

$$T^{p^2} + c_1 T^p + c_2 T.$$ \hspace{1cm} (4.1.3)

It follows that $z \in (x, y)S$.

We next show that $\text{Gal}(S/R)$ is not solvable for the extension S constructed above. Since u is a root of (4.1.1), u/y is a root of

$$T^{p^2} + c_1 T^p + c_2 T + \frac{a}{y^{p^2}}.$$ \hspace{1cm} (4.1.2)

The polynomial (4.1.2) is irreducible over $\mathbb{F}_q(c_1, c_2, a/y^{p^2})$, and hence over the purely transcendental extension $\mathbb{F}_q(c_1, c_2, a, x, y, z) = \text{frac}(R)$. Since $\text{frac}(S)$ is a Galois extension of $\text{frac}(R)$ containing a root of (4.1.2), it contains all roots of (4.1.2). As (4.1.2) is separable, its roots are distinct; taking differences of roots, it follows that $\text{frac}(S)$ contains the p^2 distinct roots of

$$T^{p^2} + c_1 T^p + c_2 T.$$ \hspace{1cm} (4.1.3)

We next verify that the Galois group of (4.1.3) over $\text{frac}(R)$ is $\text{GL}_2(\mathbb{F}_q)$.

Quite generally, let L be a field of characteristic p. Consider the standard linear action of $\text{GL}_2(\mathbb{F}_p)$ on the polynomial ring $L[x_1, x_2]$. The ring of invariants for this action is generated over L by the Dickson invariants c_1, c_2, which occur as the coefficients in the polynomial
\(\prod_{\alpha, \beta \in \mathbb{F}_p} (T - \alpha x_1 - \beta x_2) = T^{p^2} + c_1 T^p + c_2 T, \)

see [3] or [1, Chapter 8]. Hence the extension \(L(x_1, x_2)/L(c_1, c_2) \) has Galois group \(\text{GL}_2(\mathbb{F}_p) \).

It follows from the above that if \(c_1, c_2 \) are algebraically independent elements over a field \(L \) of characteristic \(p \), then the polynomial
\[
T^{p^2} + c_1 T^p + c_2 T \in L(c_1, c_2)[T]
\]
has Galois group \(\text{GL}_2(\mathbb{F}_p) \).

The group \(\text{PSL}_2(\mathbb{F}_p) \) is a subquotient of \(\text{GL}_2(\mathbb{F}_p) \), and, we conjecture, a subquotient of \(\text{Gal}(S/R) \) for any module-finite generically Galois extension \(S \) of \(R \) with \(z \in aS \). For \(p \geq 5 \), the group \(\text{PSL}_2(\mathbb{F}_p) \) is a nonabelian simple group; thus, conjecturally, \(\text{Gal}(S/R) \) is not solvable for any module-finite generically Galois extension \(S \) with \(z \in aS \).

Example 4.2. Extending the previous example, let \(a, b, c_1, \ldots, c_n \) be algebraically independent elements over \(\mathbb{F}_q \), and set \(R \) to be the polynomial ring \(\mathbb{F}_q(a, b, c_1, \ldots, c_n)[x, y, z] \) modulo the principal ideal generated by
\[
z^{q^n} + c_1 (xy)^{q^n-1} z^{q^{n-1}} + c_2 (xy)^{q^n-2} z^{q^{n-2}} + \cdots + c_n (xy)^{q^n-1} z + ax y^{q^n} + by y^{q^n}.
\]

Then \(z \in (x, y)^+ \); imitate the previous example with \(u, v \) being roots of
\[
T^{q^n} + c_1 y^{q^n-1} T^{q^{n-1}} + c_2 y^{q^n-2} T^{q^{n-2}} + \cdots + c_n y^{q^n-1} T + a,
\]
and
\[
T^{q^n} + c_1 x^{q^n-1} T^{q^{n-1}} + c_2 x^{q^n-2} T^{q^{n-2}} + \cdots + c_n x^{q^n-1} T + b.
\]

If \(S \) is any module-finite generically Galois extension of \(R \) with \(z \in aS \), we conjecture that \(\text{frac}(S) \) contains the splitting field of
\[
T^{q^n} + c_1 T^{q^{n-1}} + c_2 T^{q^{n-2}} + \cdots + c_n T. \quad (4.2.1)
\]

Using a similar argument with Dickson invariants, the Galois group of (4.2.1) over \(\text{frac}(R) \) is \(\text{GL}_n(\mathbb{F}_q) \). Its subquotient \(\text{PSL}_n(\mathbb{F}_q) \) is a nonabelian simple group for \(n \geq 3 \), and for \(n = 2, q \geq 4 \).

Likewise, we record conjectural examples \(R \) where \(H^i_m(R) \to H^i_m(S) \) is nonzero for each module-finite generically Galois extension \(S \) with \(\text{Gal}(S/R) \) solvable:

Example 4.3. Let \(a, b, c_1, c_2 \) be algebraically independent over \(\mathbb{F}_p \), and consider the hypersurface
\[
A = \frac{\mathbb{F}_p(a, b, c_1, c_2)[x, y, z]}{(z^2 p^2 + c_1 (xy) p^2 + c_2 (xy) p^2 - z^2 + ax p^2 + by p^2)}.
\]
Let \((R, m)\) be the Rees ring \(A[xt, yt, zt]\) localized at the maximal ideal \(x, y, z, xt, yt, zt\). The elements \(x, yt, y + xt\) form a system of parameters for \(R\), and the relation
\[
z^2t \cdot (y + xt) = z^2t^2 \cdot x + z^2 \cdot yt
\]
defines an element \([\eta]\) of \(H^2_m(R)\). We conjecture that if \(S\) is any module-finite generically Galois extension such that \([\eta]\) maps to 0 under the induced map \(H^2_m(R) \longrightarrow H^2_m(S)\), then \(\text{frac}(S)\) contains the splitting field of
\[
T^{p^2} + c_1 T^{p} + c_2 T,
\]
and hence that \(\text{Gal}(S/R)\) is not solvable if \(p \geq 5\).

5. Graded rings and extensions

Let \(R\) be an \(\mathbb{N}\)-graded domain that is finitely generated over a field \(R_0\). Set \(R^{+\text{GR}}\) to be the \(\mathbb{Q}_{\geq 0}\)-graded ring generated by elements of \(R^+\) that can be assigned a degree such that they then satisfy a homogeneous equation of integral dependence over \(R\). Note that \([R^{+\text{GR}}]_0\) is the algebraic closure of the field \(R_0\). One has the following:

Theorem 5.1. (See [8, Theorem 6.1].) Let \(R\) be an \(\mathbb{N}\)-graded domain that is finitely generated over a field \(R_0\) of prime characteristic. Then each homogeneous system of parameters for \(R\) is a regular sequence on \(R^{+\text{GR}}\).

Let \(R\) be as in the above theorem. Since \(R^{+\text{GR}}\) and \(R^{+\text{sep}}\) are Cohen–Macaulay \(R\)-algebras, it is natural to ask whether there exists a \(\mathbb{Q}\)-graded separable Cohen–Macaulay \(R\)-algebra. The answer to this is negative:

Example 5.2. Let \(R\) be the Rees ring
\[
\mathbb{F}_2[x, y, z]_{[xt, yt, zt]} / (x^3 + y^3 + z^3)[xt, yt, zt]
\]
with the \(\mathbb{N}\)-grading where the generators \(x, y, z, xt, yt, zt\) have degree 1. Set \(B\) to be the \(R\)-algebra generated by the homogeneous elements of \(R^{+\text{GR}}\) that are separable over \(\text{frac}(R)\). We prove that \(B\) is not a balanced Cohen–Macaulay \(R\)-module.

The elements \(x, yt, y + xt\) constitute a homogeneous system of parameters for \(R\) since the radical of the ideal that they generate is the homogeneous maximal ideal of \(R\), and \(\dim R = 3\). Suppose, to the contrary, that they form a regular sequence on \(B\). Since
\[
z^2t \cdot (y + xt) = z^2t^2 \cdot x + z^2 \cdot yt,
\]
it follows that \(z^2t \in (x, yt)B\). Thus, there exist elements \(u, v \in B_1\) with
\[
z^2t = u \cdot x + v \cdot yt. \tag{5.2.1}
\]
Since $z^3 = x^3 + y^3$, we also have $z^2 = x\sqrt{xz} + y\sqrt{yz}$ in R^{+GR}, and hence
\[z^2 t = t \sqrt{xz} \cdot x + \sqrt{yz} \cdot yt. \] (5.2.2)

Comparing (5.2.1) and (5.2.2), we see that
\[(u + t\sqrt{xz}) \cdot x = (v + \sqrt{yz}) \cdot yt \]
in R^{+GR}. But x, yt is a regular sequence on R^{+GR}, so there exists an element c in $[R^{+GR}]_0$ with $u + t\sqrt{xz} = cyt$ and $v + \sqrt{yz} = cx$. Since $[R^{+GR}]_0 = \mathbb{F}_2$, it follows that $c \in R$, and hence that $\sqrt{yz} \in B$. This contradicts the hypothesis that elements of B are separable over $\text{frac}(R)$.

The above argument shows that any graded Cohen–Macaulay R-algebra must contain the elements \sqrt{yz} and $t\sqrt{xz}$.

We next show that no module-finite \mathbb{Q}-graded extension domain of the ring R in Example 5.2 is Cohen–Macaulay.

Example 5.3. Let R be the Rees ring from Example 5.2, and let S be a graded Cohen–Macaulay ring with $R \subseteq S \subseteq R^{+GR}$. We prove that S is not finitely generated over R.

By the previous example, S contains \sqrt{yz} and $t\sqrt{xz}$. Using the symmetry between x, y, z, it follows that \sqrt{xy}, \sqrt{yz}, $t\sqrt{xy}$, $t\sqrt{yz}$ are all elements of S. We prove inductively that S contains
\[x^{1-2/q} (yz)^{1/q}, \quad y^{1-2/q} (xz)^{1/q}, \quad z^{1-2/q} (xy)^{1/q}, \]
\[tx^{1-2/q} (yz)^{1/q}, \quad ty^{1-2/q} (xz)^{1/q}, \quad tz^{1-2/q} (xy)^{1/q}, \]
for each $q = 2^e$ with $e \geq 1$. The case $e = 1$ has been settled.

Suppose S contains the elements (5.3.1) for some $q = 2^e$. Then, one has
\[
x^{1-2/q} (yz)^{1/q} \cdot ty^{1-2/q} (xz)^{1/q} \cdot (y + xt)
= tx^{1-2/q} (yz)^{1/q} \cdot ty^{1-2/q} (xz)^{1/q} \cdot x + x^{1-2/q} (yz)^{1/q} \cdot y^{1-2/q} (xz)^{1/q} \cdot yt.
\]

Using as before that x, yt, $y + xt$ is a regular sequence on S, we conclude
\[x^{1-2/q} (yz)^{1/q} \cdot ty^{1-2/q} (xz)^{1/q} = u \cdot x + v \cdot yt \]
for some u, $v \in S_1$. Simplifying the left-hand side, the above reads
\[t(xy)^{1-1/q} z^{2/q} = u \cdot x + v \cdot yt. \] (5.3.2)

Taking q-th roots in
\[z^2 = x\sqrt{xz} + y\sqrt{yz} \]
and multiplying by $t(xy)^{1-1/q}$ yields
\[t(xy)^{1-1/q} z^{2/q} = ty^{1-1/q} (xz)^{1/2q} \cdot x + x^{1-1/q} (yz)^{1/2q} \cdot yt. \] (5.3.3)
Comparing (5.3.2) and (5.3.3), we see that
\[
(u + ty^{1-1/q}(xz)^{1/2q}) \cdot x = (v + x^{1-1/q}(yz)^{1/2q}) \cdot yt,
\]
so there exists \(c \in [R^{+GR}]_0 \) with
\[
u + x^{1-1/q}(yz)^{1/2q} = cx.
\]
It follows that \(ty^{1-1/q}(xz)^{1/2q} \) and \(x^{1-1/q}(yz)^{1/2q} \) are elements of \(S \). In view of the symmetry between \(x, y, z \), this completes the inductive step. Setting
\[
\theta = \frac{xy}{z^2},
\]
we have proved that
\[
\theta^{1/q} \in \text{frac}(S) \quad \text{for each } q = 2^e.
\]
We claim \(\theta^{1/2} \) does not belong to \(\text{frac}(R) \). Indeed if it does, then \((xy)^{1/2} \) belongs to \(\text{frac}(R) \), and hence to \(R \), as \(R \) is normal; this is readily seen to be false. The extension
\[
\text{frac}(R) \subseteq \text{frac}(R)(\theta^{1/q})
\]
is purely inseparable, so the minimal polynomial of \(\theta^{1/q} \) over \(\text{frac}(R) \) has the form \(T^Q - \theta^{Q/q} \) for some \(Q = 2^E \). Since \(\theta^{1/2} \notin \text{frac}(R) \), we conclude that the minimal polynomial is \(T^q - \theta \). Hence
\[
[\text{frac}(R)(\theta^{1/q}) : \text{frac}(R)] = q \quad \text{for each } q = 2^e.
\]
It follows that \([\text{frac}(S) : \text{frac}(R)] \) is not finite.

Theorems 1.2 and 1.3(2) discuss the vanishing of the image of \(H_i^m(R) \) for \(i < \dim R \). In the case of graded rings, one also has the following result for \(H_d^m(R) \).

Proposition 5.4. Let \(R \) be an \(\mathbb{N} \)-graded domain that is finitely generated over a field \(R_0 \) of prime characteristic. Set \(d = \dim R \). Then \([H_d^m(R)]_{\geq 0} \) maps to zero under the induced map
\[
H_d^m(R) \to H_d^m(R^{+GR}).
\]

Hence, there exists a module-finite \(\mathbb{Q} \)-graded extension domain \(S \) of \(R \) such that the induced map \([H_d^m(R)]_{\geq 0} \to H_d^m(S)\) is zero.

Proof. Let \(F^e : H_d^m(R) \to H_d^m(R) \) denote the \(e \)-th iteration of the Frobenius map. Suppose [\(\eta \) \(\in [H_d^m(R)]_n \)] for some \(n \geq 0 \). Then \(F^e([\eta]) \) belongs to \([H_d^m(R)]_{np^e} \) for each \(e \). As \([H_d^m(R)]_{\geq 0} \) has finite length, there exists \(e \geq 1 \) and homogeneous elements \(r_1, \ldots, r_e \in R \) such that
\[
F^e([\eta]) + r_1 F^{e-1}([\eta]) + \cdots + r_e[\eta] = 0.
\]
(5.4.1)
We imitate the equational construction from [10]: Consider a homogeneous system of parameters \(x = x_1, \ldots, x_d \), and compute \(H^i_m(R) \) as the cohomology of the Čech complex \(C^*(x; R) \) below:

\[
0 \rightarrow R \rightarrow \bigoplus_{i=1}^d R_{x_i} \rightarrow \bigoplus_{i<j} R_{x_i x_j} \rightarrow \cdots \rightarrow R_{x_1 \cdots x_d} \rightarrow 0.
\]

This complex is \(\mathbb{Z} \)-graded; let \(\eta \) be a homogeneous element of \(C^d(x; R) \) that maps to \([\eta] \) in \(H^d_m(R) \). Eq. (5.4.1) implies that

\[
F^e(\eta) + r_1 F^{e-1}(\eta) + \cdots + r_e \eta
\]

is a boundary in \(C^d(x; R) \), say it equals \(\partial(\alpha) \) for a homogeneous element \(\alpha \) of \(C^{d-1}(x; R) \). Solving integral equations in each coordinate of \(C^{d-1}(x; R) \), there exists a module-finite extension domain \(S \) and \(\beta \) in \(C^{d-1}(x; S) \) with

\[
F^e(\beta) + r_1 F^{e-1}(\beta) + \cdots + r_e \beta = \alpha.
\]

Moreover, we may assume \(S \) is a normal ring. Since \(\eta - \partial(\beta) \) is an element on \(\text{frac}(S) \) satisfying

\[
T^{p^e} + r_1 T^{p^{e-1}} + \cdots + r_e T = 0,
\]

it belongs to \(S \). But then \(\eta - \partial(\beta) \) maps to zero in \(H^d_m(S) \). Thus, each homogeneous element of the module \(\{H^d_m(R)\}_{\geq 0} \) maps to 0 in \(H^d_m(R+GR) \).

For the final statement, note that \(\{H^d_m(R)\}_{\geq 0} \) has finite length. \(\square \)

The next example illustrates why Proposition 5.4 is limited to \(\{H^d_m(R)\}_{\geq 0} \).

Example 5.5. Let \(K \) be a field of prime characteristic, and take \(R \) to be the semigroup ring

\[
R = K[x_1 \cdots x_d, x_1^d, \ldots, x_d^d].
\]

It is easily seen that \(R \) is normal, and that \(\{H^d_m(R)\}_n \) is nonzero for each integer \(n < 0 \). We claim that the induced map

\[
H^d_m(R) \rightarrow H^d_m(S)
\]

is injective for each module-finite extension ring \(S \). For this, it suffices to check that \(R \) is a splinter ring, i.e., that \(R \) is a direct summand of each module-finite extension ring; the splitting of \(R \subseteq S \) then induces an \(R \)-splitting of \(H^d_m(R) \rightarrow H^d_m(S) \).

To check that \(R \) is splinter, note that normal affine semigroup rings are weakly \(F \)-regular by [7, Proposition 4.12], and that weakly \(F \)-regular rings are splinter by [9, Theorem 5.25]. For more on splinters, we point the reader towards [14,9,18].

Acknowledgment

We thank Kazuhiko Kurano for pointing out an error in an earlier version of this manuscript.
References

