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1. Introduction

For a polynomial ring R over a field K of characteristic zero, the ring of K-linear 
differential operators on R is the K-algebra generated by R and the K-linear derivations 
on R, i.e., the ring DR|K = R〈 ∂

∂x0
, . . . , ∂

∂xd
〉. This noncommutative ring is the well-

known Weyl algebra, which enjoys many good ring-theoretic properties: it is left and 
right Noetherian, and is a simple ring.

For commutative rings R and A, where R is an A-algebra, there is a notion, due to 
Grothendieck [9, §16.8], of the ring of A-linear differential operators on R, denoted DR|A; 
see §2. However, in contrast with the case of a polynomial ring, if one takes A to be a 
field K of characteristic zero, and R to be K[x, y, z]/(x3 + y3 + z3), then DR|K is not 
left or right Noetherian, nor a finitely generated K-algebra, nor a simple ring; see [2].

On the other hand, when R is the ring of invariants for a linear action of a reductive 
group on a polynomial ring over a field K of characteristic zero, it is known in many cases 
that DR|K is Noetherian, finitely generated, and a simple ring, just as in the polynomial 
case [16,18,22,26]. Indeed, it is conjectured that for such invariant rings R, the ring of 
differential operators DR|K is a simple ring [25]. An analogous statement in positive 
characteristic was proved by Smith and Van den Bergh [30, Theorem 1.3].

Quite generally, for A-algebras R and B, there is a ring homomorphism

DR |A ⊗A B −→ DR⊗AB |B .

Suppose A is a Noetherian ring, R is a finitely generated A-algebra, and B is flat over 
A; then the map above is an isomorphism. In particular, when R is a finitely generated 
Z-algebra, one has an isomorphism

DR |Z ⊗Z Q ∼= DR⊗ZQ |Q,

and, for p a prime integer that is a nonzerodivisor on R, an injective homomorphism

DR |Z ⊗Z (Z/pZ) ↪−→ D(R/pR) | (Z/pZ). (1.0.1)

In order to relate rings of differential operators in characteristic zero to their coun-
terparts in positive characteristic p, one needs to determine whether the map (1.0.1) is 
an isomorphism, i.e., whether each differential operator on R/pR lifts to a differential 
operator on R. To study the problem of the simplicity of rings of differential operators 
on characteristic zero invariant rings via reduction to positive characteristic, Smith and 
Van den Bergh pose the following question, formulated here in equivalent terms:

Question 1.1 ([30, Question 5.1.2]). Let A be a domain that is finitely generated as an 
algebra over Z. Suppose R is a finitely generated A-algebra such that R ⊗A frac(A) is 
the ring of invariants for a linear action of a reductive group on a polynomial ring of 
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characteristic zero. Does there exist a nonempty open subset of U of SpecA, such that for 
each maximal ideal μ ∈ U , each differential operator on D(R/μR) | (A/μA) lifts to DR|A?

We prove that the answer to Question 1.1 is negative: for several classical invariant 
rings that are hypersurfaces, we construct explicit differential operators, modulo prime 
integers p, that do not lift to characteristic zero differential operators. Our main theorem 
is below; we refer the reader to §3.4 for the definition of Frobenius trace.

Theorem 1.2. Consider the following classical invariant rings:

(a) Let X be an n × n matrix of indeterminates over Z, with n � 3. Set R :=
Z[X]/(detX). Then, for each prime integer p > 0, the Frobenius trace on R/pR

does not lift to a differential operator on R/p2R, nor, a fortiori, to a differential 
operator on R.

(b) Let X be an n × n alternating matrix of indeterminates over Z, for n � 4 an even 
integer. Set R := Z[X]/(pf X), where pf X denotes the Pfaffian of X. Then, for 
each prime integer p > 0, the Frobenius trace on R/pR does not lift to a differential 
operator on R/p2R, nor, a fortiori, to a differential operator on R.

(c) Let X be a 3 ×3 symmetric matrix of indeterminates over Z. Set R := Z[X]/(detX). 
Then, for prime integers p > 2, each differential operator on R/pR lifts to a differen-
tial operator on R. In the case of characteristic 2, the Frobenius trace on R/2R does 
not lift to a differential operator on R/4R, nor, a fortiori, to a differential operator 
on R.

For R as in (a), (b), or (c) above, the ring R⊗Z Q is the invariant ring for an action 
of the linearly reductive group GLn−1(Q), Spn−2(Q), or O2(Q), respectively; see, for 
example, §7, §6, §8, for details. In contrast with the cases discussed above, we prove that 
if R is a toric Z-algebra, then, for each prime integer p > 0, every differential operator 
on R/pR lifts to a differential operator on R; see Theorem 5.2. In particular, if R is the 
hypersurface over Z defined by the determinant of a 2 × 2 matrix of indeterminates or 
a symmetric 2 × 2 matrix of indeterminates, then every differential operator on R/pR

lifts to a differential operator on R; this addresses the case n = 2 in the context of 
Theorem 1.2 (a) and (c) above.

Our approach is based on the paper [14] by the first author, where it was estab-
lished that there is an isomorphism between rings of differential operators (considered as 
modules over the enveloping algebra) and certain local cohomology modules; see also [1]
where related isomorphisms are established under different hypotheses. The isomorphism 
between rings of differential operators and local cohomology modules identifies differen-
tial operators that do not lift modulo a prime integer p with local cohomology elements 
that do not lift modulo p, and consequently with nonzero elements in a different local 
cohomology module that are annihilated by the prime integer p. These ideas were used 
by the first author to give positive answers to Question 1.1 in special cases [14, Theo-
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rem 6.3]. However, we have attempted to keep the present paper largely self-contained, 
and focused on hypersurfaces, where the isomorphisms can be made entirely explicit; it 
is striking that the isomorphism is one of D-modules:

Theorem 1.3. Let A be a commutative ring. Set R := A[x0, . . . , xn]/(f), where f is 
a nonzerodivisor in the polynomial ring A[x0, . . . , xn]. Set Δ to be the kernel of the 
multiplication map R⊗AR −→ R. Then the local cohomology module Hn

Δ(R⊗AR), with 
the natural DR|A-module structure as in §3.3, is a free DR|A-module of rank one.

The techniques and calculations used in our proof of Theorem 1.2 have implications 
to the existence of liftings of the Frobenius morphism that have attracted a lot of at-
tention; for example, [3] provides a connection between liftability of the Frobenius and 
infinitely generated crystalline cohomology, while [6] proves Bott vanishing for varieties 
that admit a Frobenius lift modulo p2. The liftability of the Frobenius is also studied 
in considerable detail in [31]; we use results from that paper to determine whether the 
Frobenius endomorphism on a classical invariant ring of positive prime characteristic 
lifts to a ring endomorphism in characteristic zero:

Theorem 1.4. Consider the following classical invariant rings, modeled over Z:

(a) R := Z[X]/It(X), where X is an m × n matrix of indeterminates, It(X) the ideal 
generated by the size t minors of X, and min{m, n} � t � 3.

(b) R := Z[X]/ Pft(X), where X is an n × n alternating matrix of indeterminates, 
Pft(X) the ideal generated by the Pfaffians of the size t principal submatrices of X, 
for t even, and n � t � 4.

(c) R := Z[X]/It(X), where X is a symmetric n × n matrix of indeterminates, It(X)
the ideal generated by the size t minors of X, and n � t � 3.

Let p be a positive prime integer. In cases (a) and (b), the Frobenius endomorphism 
on R/pR does not lift to a ring endomorphism of R/p2R, nor, a fortiori, to a ring 
endomorphism of R. In case (c), the same conclusion holds if t � 4 or if p = 2.

If R is a normal affine semigroup ring over Z, then, for each prime integer p >
0, the Frobenius endomorphism on R/pR lifts to an endomorphism of R, and hence 
to an endomorphism of R/p2R. Specifically, if R is defined by the size 2 minors of a 
matrix of indeterminates, or of a symmetric matrix of indeterminates, then the Frobenius 
endomorphism on R/pR lifts to an endomorphism of R and of R/p2R; this explains the 
case t = 2 in the context of Theorem 1.4 (a) and (c).

Recall that if G is a linearly reductive group over a field K, with a linear action on 
a polynomial ring K[x], then the invariant ring K[x]G is a direct summand of K[x] as 
a K[x]G-module; many key properties of classical invariant rings including finite genera-
tion and the Cohen-Macaulay property follow from the existence of such a splitting, see 
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for example [11, §2] and [12]. Indeed, the general linear group, the symplectic group, and 
the orthogonal group are linearly reductive over fields of characteristic zero; it follows 
that determinantal rings, Pfaffian determinantal rings, and symmetric determinantal 
rings, over fields of characteristic zero, are direct summands of polynomial rings. In con-
trast, we prove that working over the ring of integers Z, or over the ring of p-adic integers 
Ẑ(p), the corresponding rings are typically not direct summands of any polynomial ring:

Corollary 1.5. Let R be as in Theorem 1.4 (a), (b), or (c). Then R is not a direct 
summand, as an R-module, of any polynomial ring over Z.

Let V := Ẑ(p) be the p-adic integers; in case (c), assume further that either t � 4, or 
that p = 2. Then the ring R ⊗Z V is not a direct summand, as an R ⊗Z V -module, of 
any polynomial ring over V .

The corollary is immediate from Theorem 1.4 since the existence of a Frobenius lift 
modulo p2 is inherited by a ring that is a direct summand, see Proposition 2.2. Regarding 
the case t = 3 in Theorem 1.4 (c) and the corollary, if V is a discrete valuation ring 
of mixed characteristic, such that the residual characteristic is an odd prime integer, 
then a symmetric determinantal ring of the form V [X]/I3(X) is a direct summand of a 
polynomial ring over V , see Remark 8.3 and §9.

In §2 we record basic facts about differential operators and Koszul and local cohomol-
ogy modules from perspectives needed later in the paper; §3 includes the aforementioned 
explicit isomorphisms, relating specific p-torsion local cohomology elements to specific 
differential operators; Theorem 1.3 is proved in §3.3. The proofs of the three cases of 
Theorems 1.2 and 1.4 are completed in §6, §7, and §8, while Theorem 1.4 is proved in 
§9. For Theorem 1.2, we prove that the relevant p-torsion local cohomology elements are 
nonzero. We expect that these calculations are of independent interest, adding to the 
study of integer torsion in local cohomology modules pursued in [27,20,4].

2. Preliminaries

2.1. Differential operators

Differential operators on a commutative ring R are defined inductively as follows: for 
each r ∈ R, the multiplication by r map r̃ : R −→ R is a differential operator of order 0; 
for each positive integer n, the differential operators of order less than or equal to n are 
additive maps δ : R −→ R for which each commutator

[r̃, δ] := r̃ ◦ δ − δ ◦ r̃

is a differential operator of order less than or equal to n − 1. If δ and δ′ are differential 
operators of order at most m and n respectively, then δ ◦ δ′ is a differential operator 
of order at most m + n. Thus, the differential operators on R form a subring DR of 
EndZ(R). We use Dn

R to denote the differential operators of order at most n.
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A differential operator δ ∈ DR is a derivation if

δ(r1r2) = r1δ(r2) + r2δ(r1) for ri ∈ R.

It is readily seen that each element of D1
R may be expressed uniquely as the sum of an 

element of D0
R and a derivation.

When R is an algebra over a commutative ring A, we set DR|A to be the subring 
of DR that consists of differential operators that are A-linear; note that DR|Z equals 
DR. When R is an algebra over a perfect field K of positive prime characteristic, then 
DR|K equals DR, see for example [19, Example 5.1 (c)].

If R = A[x0, . . . , xd] is a polynomial ring over A, then any element of Dn
R|A can be 

expressed as an R-linear combination of the differential operators ∂a0,...,ad
, where ai are 

nonnegative integers with a0 + · · · + ad � n, and

∂a0,...,ad
(xb0

0 · · ·xbd
d ) =

d∏
i=0

(
bi
ai

)
xb0−a0

0 · · ·xbd−ad

d .

Note that if A contains the field of rational numbers, then

∂a0,...,ad
= 1

a0!
∂a0

∂xa0
0

· · · 1
ad!

∂ad

∂xad

d

.

We record an alternative description of DR|A from [9, §16.8]. For R an A-algebra, set

PR |A := R⊗A R,

and consider the PR|A-module structure on EndA(R) under which r1 ⊗ r2 acts on δ to 
give the endomorphism r̃1 ◦ δ ◦ r̃2, where r̃i denotes the map that is multiplication by ri. 
Set

ΔR |A := ker(PR |A
μ−−−−→ R),

where μ is the A-algebra homomorphism determined by μ(r1 ⊗ r2) = r1r2. The ideal 
ΔR|A is generated by elements of the form r ⊗1 − 1 ⊗ r. Since

(r ⊗1 − 1⊗ r)(δ) = [r̃, δ],

it follows that an element δ of EndA(R) is a differential operator of order at most n
precisely if it is annihilated by Δn+1

R|A . By [9, Proposition 16.8.8], the A-linear differential 
operators on R of order at most n correspond to

HomR(Pn
R |A, R) ∼= ann(Δn+1

R |A, EndA(R)), (2.0.1)

where
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Pn
R |A := PR |A/Δn+1

R |A

is viewed as a left R-module via r 	−→ r ⊗1. To make the isomorphism (2.0.1) explicit, 
consider the map

� : R −→ Pn
R |A with r 	−→ 1⊗ r,

in which case, the map

�∗ : HomR(Pn
R |A, R) −→ Dn

R |A with δ 	−→ δ ◦ �

is an isomorphism of PR|A-modules.
In addition to the filtration by order, we will have use for another filtration on DR|A. 

Supposing that ΔR|A is a finitely generated ideal of PR|A, fix a set of generators z0, . . . , zt. 
Then the sequence of ideals defined by

Δ[n]
R |A := (zn0 , . . . , znt ), for n ∈ N,

is cofinal with the sequence Δn
R|A for n ∈ N. As there is little risk of confusion, we reuse 

the notation � : R −→ P
[n]
R|A for the map with r 	−→ 1 ⊗ r, and set

D
[n]
R |A := {δ ◦ � | δ ∈ HomR(P [n]

R |A, R)}, where P
[n]
R |A := PR |A/Δ

[n+1]
R |A .

Similarly, we use �∗ for the PR|A-module isomorphism

�∗ : HomR(P [n]
R |A, R) −→ D

[n]
R |A with δ 	−→ δ ◦ �.

Note that D[n]
R|A gives a filtration of DR|A that is cofinal with the filtration by order; the 

filtration D[n]
R|A depends on the choice of ideal generators for ΔR|A.

Let M be an R-module. Then HomA(R, M) has a PR|A-module structure given by

(r1 ⊗ r2) · δ := r̃1 ◦ δ ◦ r̃2.

The differential operators from R to M , of order at most n, are

Dn
R |A(M) := ann

(
Δn+1

R |A, HomA(R,M)
)
.

Note that one has an isomorphism of PR|A-modules,

Dn
R |A(M) ∼= HomR(Pn

R |A, M).

Likewise, given generators z0, . . . , zt for ΔR|A, we set
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D
[n]
R |A(M) := ann

(
Δ[n+1]

R |A , HomA(R,M)
) ∼= HomR(P [n]

R |A, M)

and

DR |A(M) :=
⋃
n�0

Dn
R |A(M).

In analogy with the equality DR = DR|Z, we set PR := PR|Z and ΔR := ΔR|Z, along 

with the corresponding notation Pn
R := PR/Δn+1

R and P [n]
R := PR/Δ[n+1]

R . Observe that 
if R has characteristic p, we have PR = PR|(Z/pZ), and likewise for the other notions 
discussed above.

2.2. Koszul and local cohomology

Let z be an element of a ring R. One has maps between the Koszul complexes 
K•(zn; R), for n ∈ N, and the Čech complex C•(z; R) as below:

0 −−−−→ R
zn−1

−−−−→ R −−−−→ 0

1
⏐⏐� ⏐⏐�z

0 −−−−→ R
zn

−−−−→ R −−−−→ 0

1
⏐⏐� ⏐⏐�1/zn

0 −−−−→ R −−−−→ Rz −−−−→ 0.

Taking the direct limit of K•(zn; R) yields an isomorphism lim−−→n
K•(zn; R) ∼= C•(z; R).

For z := z0, . . . , zt, one similarly obtains a map of complexes

K•(z; R) :=
⊗

i K
•(zi; R) −−−−→

⊗
i C

•(zi; R) =: C•(z; R),

and, for each k � 0, an induced map from Koszul cohomology to local cohomology

Hk(z; R) −−−−→ Hk
(z)(R). (2.0.2)

Setting zn := zn0 , . . . , z
n
t , one likewise has lim−−→n

K•(zn; R) ∼= C•(z; R), and

lim−−→
n

Hk(zn; R) ∼= Hk
(z)(R) for each k � 0.

When k equals t + 1, the map (2.0.2) takes the form

Ht+1(z; R) = R −→ Rz0···zt∑ = Ht+1
(z) (R), with 1 	−→

[
1

]
,
(z)R i Rz0···ẑi···zt z0 · · · zt
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while, if k equals t, the Koszul cohomology element in Ht(z; R) corresponding to an 
equation 

∑
i zigi = 0 in R maps to[

· · · , (−1)igi
z0 · · · ẑi · · · zt

, · · ·
]

∈ Ht
(z)(R).

We mention that a local cohomology element[
r

zn0 · · · znt

]
∈ Ht+1

(z) (R)

is zero if and only if there exists an integer k � 0 such that

r(z0 · · · zt)k ∈
(
zn+k
0 , . . . , zn+k

t

)
R.

Suppose the ring R takes the form S/fS, for S a commutative ring, and f ∈ S a 
regular element. Let z := z0, . . . , zt, as before. The exact sequence

0 −−−−→ S
f−−−−→ S −−−−→ R −−−−→ 0

induces the cohomology exact sequence

−−−−→ Ht
(z)(R) δf−−−−→ Ht+1

(z) (S) f−−−−→ Ht+1
(z) (S) −−−−→ ,

with δf denoting the connecting homomorphism. To make the map explicit, suppose gi
are elements of S such that ∑

i

zni gi = sf

for some n � 1 and an element s ∈ S; then

δf :
[
· · · , (−1)igi

(z0 · · · ẑi · · · zt)n
, · · ·

]
	−→

[
s

(z0 · · · zt)n
]
.

2.3. Bockstein homomorphisms

We briefly review Bockstein homomorphisms on local cohomology [28]. Let p be a 
prime integer that is a regular element on a ring R. Fix an ideal a of R. Applying the 
local cohomology functor H•

a (−) to

0 −−−−→ R/pR
p−−−−→ R/p2R −−−−→ R/pR −−−−→ 0,

one obtains a cohomology exact sequence; the Bockstein homomorphism
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βp : Hk
a (R/pR) −→ Hk+1

a (R/pR)

is the connecting homomorphism in the cohomology exact sequence. For an alternative 
point of view, one may take the cohomology exact sequence induced by

0 −−−−→ R
p−−−−→ R −−−−→ R/pR −−−−→ 0,

i.e., the sequence

−−−−→ Hk
a (R/pR) δp−−−−→ Hk+1

a (R) p−−−−→ Hk+1
a (R) πp−−−−→ Hk+1

a (R/pR) −−−−→ .

The Bockstein homomorphism βp above then coincides with the composition

Hk
a (R/pR) πp ◦ δp−−−−−−−→ Hk+1

a (R/pR).

2.4. The D-module structure on local cohomology

Let R be an A-algebra, and z an element of R. Then the DR|A-module structure on 
R extends uniquely to the localization Rz as follows: one defines the action by induction 
on the order of δ ∈ DR|A and on the power of the denominator by the rule

δ(r/zn) := δ(r/zn−1) − [δ, z](r/zn)
z

.

This may be written in closed form: set δ(0) := δ and δ(i+1) := [δ(i), ̃zn] inductively; then

δ(r/zn) =
ord(δ)∑
k=0

(−1)k δ(k)(r)
zn(k+1) . (2.0.3)

For elements z of R, the Čech complex C•(z; R) is a complex of DR|A-modules, hence 
its cohomology modules Hk

(z)(R) have a natural DR|A-module structure. This DR|A-
module structure on local cohomology is compatible with base change in the following 
sense: If S −→ R is a homomorphism of A-algebras, we observe that DS|A(R) has 
the structure of a (DR|A, DS|A)-bimodule, where DR|A acts by postcomposition, and 
DS|A acts by precomposition; one verifies using the inductive definition of differential 
operators that the prescribed compositions are indeed elements of DS|A(R). This bi-
module structure yields a base change functor from DS|A-modules to DR|A-modules, 
M 	−→ DS|A(R) ⊗DS|A M .

Lemma 2.1. Let S = A[x] be a polynomial ring over A, and R a homomorphic image of 
S.

(a) For each z ∈ S, one has an isomorphism of DR|A-modules DS|A(R) ⊗DS|A Sz
∼= Rz.
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(b) Given elements z := z0, . . . , zt of S, one has an isomorphism of DR|A-modules

DS |A(R) ⊗DS |A Ht+1
(z) (S) ∼= Ht+1

(z) (R).

Proof. Set I := ker(S −→ R). Since S is a polynomial ring over A, the functor DS|A(−)
from S-modules to DS|A-modules is exact [30, §2.2], so there is an exact sequence of 
right DS|A-modules

0 −−−−→ DS |A(I) −−−−→ DS |A −−−−→ DS |A(R) −−−−→ 0.

The inclusion above may be used to identify DS|A(I) with IDS|A, so DS|A(R) ∼=
DS|A/IDS|A as right DS|A-modules. Thus, one has an isomorphism of R-modules

DS |A(R) ⊗DS |A Sz
∼= Sz/ISz

∼= Rz, given by δ ⊗ (s/zn) 	−→ δ(s/zn),

where δ denotes the image of δ ∈ DS|A modulo IDS|A. To see that this isomorphism 
is DR|A-linear, note that each element of DS|A(R) ⊗DS|A Sz may be written as 1⊗ s/zn, 
and any element γ ∈ DR|A can be written as μ + IDS|A for some μ ∈ DS|A such that 
μ(I) ⊆ I. The compatibility condition then boils down to checking that γ(s/zn) =
μ(s/zn), which is clear from the formula (2.0.3), proving (a).

Next, consider the right-exact sequence of DS|A-modules∑
i Sz0···ẑi···zt −−−−→ Sz0···zt −−−−→ Ht+1

(z) (S) −−−−→ 0,

and the right-exact sequence of DR|A-modules∑
i Rz0···ẑi···zt −−−−→ Rz0···zt −−−−→ Ht+1

(z) (R) −−−−→ 0.

Applying DS|A(R) ⊗DS|A (−) to the first, we obtain a commutative diagram of DR|A-
modules

DS|A(R) ⊗DS|A

∑
i Sz0···ẑi···zt

−−→ DS|A(R) ⊗DS|A Sz0···zt −−→ DS|A(R) ⊗DS|A Ht+1
(z) (S) −−→ 0⏐⏐� ⏐⏐�∑

i Rz0···ẑi···zt
−−→ Rz0···zt −−→ Ht+1

(z) (R) −−→ 0,

where the vertical maps are isomorphisms by (a). This induces the DR|A-module iso-
morphism as claimed in (b), �
2.5. Frobenius lifting and p-derivations

Let T be a ring, and let p > 0 be a prime integer that is not a unit in T . A lift of the 
Frobenius endomorphism F on T/pT is a ring homomorphism Λp : T −→ T such that 
the following diagram commutes
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T
Λp−−−−→ T⏐⏐� ⏐⏐�

T/pT
F−−−−→ T/pT.

As we show next, the existence of a Frobenius lift modulo p2 is inherited by rings that 
are direct summands; see also [31, Lemma 4.1].

Proposition 2.2. Let T be a ring, and let p > 0 be a prime integer that is not a unit in 
T . Let R be a subring of T that is a direct summand of T as an R-module.

If the Frobenius endomorphism on T/pT lifts to an endomorphism of T/p2T , then the 
Frobenius endomorphism on R/pR lifts to an endomorphism of R/p2R.

Proof. Note that R/p2R is a direct summand of T/p2T ; after a change of notation, we 
may assume that p2 = 0 in R and T . We use ι : R −→ T for the inclusion, and � : T −→ R

to denote an R-linear splitting.
Let Λp : T −→ T denote a Frobenius lift; we claim that

� ◦ Λp ◦ ι : R −→ R

is an endomorphism of R. Since each map is additive, so is the composition. Given 
elements ri in R, there exist elements ti in T such that Λp ◦ ι(ri) = rpi + pti. Hence

� ◦ Λp ◦ ι(r1r2) = �
(
(rp1 + pt1)(rp2 + pt2)

)
= rp1r

p
2 + rp1p�(t2) + rp2p�(t1)

=
(
rp1 + p�(t1)

)(
rp2 + p�(t2)

)
=
(
� ◦ Λp ◦ ι(r1)

)(
� ◦ Λp ◦ ι(r2)).

It is readily verified that � ◦ Λp ◦ ι induces the Frobenius endomorphism on R/pR. �
Definition 2.3 (Buium [7], Joyal [15]). Let T be a ring, and p > 0 be a prime integer. 
A p-derivation on T is a map ϕp : T −→ T that satisfies the following for all a, b ∈ T :

(i) ϕp(1) = 0,
(ii) ϕp(ab) = apϕp(b) + bpϕp(a) + pϕp(a)ϕp(b), and
(iii) ϕp(a + b) = ϕp(a) + ϕp(b) + Cp(a, b),

where Cp(x, y) is the polynomial 1
p (xp + yp− (x + y)p) regarded as an element of Z[x, y].

It follows from the above that

ϕp(a + pb) ≡ ϕp(a) + bp mod p.



J. Jeffries, A.K. Singh / Advances in Mathematics 432 (2023) 109276 13
If ϕp is a p-derivation on T , then the map Λp : T −→ T given by Λp(t) = tp + pϕp(t)
is a lift of the Frobenius; conversely, if p is a nonzerodivisor on T , and Λp : T −→ T is a 
lift of the Frobenius, then ϕp : T −→ T with ϕp(t) = 1

p (Λp(t) − tp) is a p-derivation on 
T .

Example 2.4. Fix a prime integer p > 0, and let S be a polynomial ring over Z in the 
indeterminates x := x0, . . . , xd. We refer to the Z-algebra homomorphism

Λp : S −→ S with Λp(xi) = xp
i for each i

as the standard lift of the Frobenius with respect to x, and the corresponding p-derivation

ϕp : S −→ S with ϕp(s) = Λp(s) − sp

p

as the standard p-derivation with respect to x.

We record the following compatibility for p-derivations used in the sequel: Let S and S′

be polynomial rings over Z in the indeterminates x and x′ respectively. Let Υ: S −→
S′ be a ring homomorphism such that Υ(x) ∈ x′ ∪ {0, 1} for each x ∈ x, i.e., the 
homomorphism Υ either takes an indeterminate x ∈ x to an indeterminate x′ ∈ x′, or 
specializes it to 0 or 1. Let Λp and ϕp denote the standard lift of the Frobenius and the 
corresponding p-derivation on S with respect to x, and likewise let Λ′

p and ϕ′
p be the 

corresponding maps for S′ with respect to x′. Then the following diagrams commute:

S
Υ−−−−→ S′ S

Υ−−−−→ S′

Λp

⏐⏐� ⏐⏐�Λ′
p

ϕp

⏐⏐� ⏐⏐�ϕ′
p

S
Υ−−−−→ S′, S

Υ−−−−→ S′.

We recall the following criterion, due to Zdanowicz, for the existence of a lift of the 
Frobenius endomorphism on a hypersurface:

Proposition 2.5 ([31, Corollary 4.9]). Let p be a prime integer, S := Z[x] a polynomial 
ring, and ϕp : S −→ S the standard p-derivation on S with respect to x := x0, . . . , xd. 
For f ∈ S, set R := S/fS. Suppose that R/p2R is flat over Z/p2Z.

Then the Frobenius endomorphism on the hypersurface R/pR lifts to an endomorphism 
of R/p2R if and only if

ϕp(f) ∈
(
p, f,

( ∂f )p
, . . . ,

( ∂f )p)
S.
∂x0 ∂xd
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3. Differential operators via local cohomology

3.1. Polynomial rings

Let A be a commutative ring, and S := A[x] the polynomial ring over A in the inde-
terminates x := x0, . . . , xd. Then PS|A is a polynomial ring over A in the indeterminates 
xi⊗1 and 1 ⊗xi, for 0 � i � d. Since we view PS|A as an S-module via the map s 	−→ s ⊗1, 
we simply write xi for xi ⊗1. Set yi := 1 ⊗ xi, so that

PS |A = A[x,y] = S[y],

where y := y0, . . . , yd. The elements

y0 − x0, y1 − x1, . . . , yd − xd

form a generating set for the ideal ΔS|A of PS|A. Using this generating set, we consider 
the sequence of ideals Δ[n]

S|A, the rings P [n]
S|A, and the filtration D[n]

S|A, as defined in §2.1.
Note that the elements y0 − x0, y1 − x1, . . . , yd − xd are algebraically independent 

generators for PS|A as an S-algebra. Thus, P [n]
S|A is a free S-module with basis

(y0 − x0)a0 · · · (yd − xd)ad where 0 � ai � n.

Likewise, HomS(P [n]
S|A, S) is the free S-module with the dual basis

(
(y0 − x0)a0 · · · (yd − xd)ad

)�
, where 0 � ai � n,

and (−)� denotes the corresponding element of the dual basis. Moreover, there is a 
PS|A-module isomorphism defined S-linearly by the rule

γn : P [n]
S |A −→ HomS(P [n]

S |A, S)

(y0 − x0)a0 · · · (yd − xd)ad 	−→
(
(y0 − x0)n−a0 · · · (yd − xd)n−ad

)�
.

Proposition 3.1. For each n � 0, one has PS|A-module isomorphisms

Hd+1(Δ[n+1]
S |A ; PS |A) γn−−−−→ HomS(P [n]

S |A, S) �∗

−−−−→ D
[n]
S |A.

Proof. We need only observe that the Koszul cohomology module

Hd+1(Δ[n+1]
S |A ; PS |A)

coincides with P
[n] . The rest is immediate from the preceding discussion. �
S|A
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To make the isomorphism �∗ completely explicit, note first that �(f(x)) = f(y). Now,

�∗
((

(y0 − x0)a0 · · · (yd − xd)ad
)�)(

f(x)
)

=
(
(y0 − x0)a1 · · · (yd − xd)ad

)�(
f(y)

)
=
(
(y0 − x0)a0 · · · (yd − xd)ad

)�(
f
(
(y0 − x0) + x0, . . . , (yd − xd) + xd

))
= ∂a0,...,ad

(
f(x)

)
,

where the last equality uses the Taylor expansion of a polynomial. It follows that

�∗
((

(y0 − x0)a0 · · · (yd − xd)ad
)�) = ∂a0,...,ad

.

Proposition 3.2. There is a PS|A-module isomorphism

Hd+1
ΔS |A

(PS |A) �∗ ◦ γ−−−−−−→ DS |A,

where γ is the isomorphism

Hd+1
ΔS |A

(PS |A) = lim−−→
n

Hd+1(Δ[n+1]
S |A ; PS |A) −→ lim−−→

n

HomS(P [n]
S |A, S).

Proof. For each n � 0, one has a commutative diagram

Hd+1(Δ[n+1]
S |A ; PS |A) γn−−−−→ HomS(P [n]

S |A, S) �∗

−−−−→ D
[n]
S |A⏐⏐�∏i(yi−xi)

⏐⏐� ⏐⏐�
Hd+1(Δ[n+2]

S |A ; PS |A) γn+1−−−−→ HomS(P [n+1]
S |A , S) �∗

−−−−→ D
[n+1]
S |A ,

where the canonical surjection P [n+1]
S|A −� P

[n]
S|A induces the map in the middle column. 

The left column realizes local cohomology as the direct limit of Koszul cohomology; the 
maps in the right column are injective, with DS|A as the directed union. �
Example 3.3. The isomorphism �∗ ◦ γ maps the local cohomology element

ηS :=
[

1
(y0 − x0) · · · (yd − xd)

]
in Hd+1

ΔS|A
(PS|A) to the differential operator in DS|A that is the identity map. More 

generally, for integers ai � 0, the image of the local cohomology element[
1

(y0 − x0)a0+1 · · · (yd − xd)ad+1

]
∈ Hd+1

ΔS |A
(PS |A),

under �∗ ◦ γ, is the differential operator ∂a0,...,ad
∈ DS|A.
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There are analogous isomorphisms for differential operators from S to M , as below:

Proposition 3.4. For M an S-module and n � 0, there are PS|A-module isomorphisms

Hd+1(Δ[n+1]
S |A ; PS |A ⊗S M) γn−−−−→ HomS(P [n]

S |A, M) �∗

−−−−→ D
[n]
S |A(M)

and

Hd+1
ΔS |A

(PS |A ⊗S M) �∗ ◦ γ−−−−−−→ DS |A(M).

The maps γn and γ are obtained from those in Propositions 3.1 and 3.2 by applying 
− ⊗S M .

Proof. The right exactness of − ⊗S M gives

Hd+1(Δ[n+1]
S |A ; PS |A ⊗S M) ∼= Hd+1(Δ[n+1]

S |A ; PS |A) ⊗S M ∼= P
[n]
S |A ⊗S M.

Since P [n]
S|A is a free S-module, one also has the isomorphism

HomS(P [n]
S |A, M) ∼= HomS(P [n]

S |A, S) ⊗S M.

Thus, γn is an isomorphism, obtained from the corresponding isomorphism in Proposi-
tion 3.1; �∗ is an isomorphism as discussed in §2.1. The transition from Koszul cohomol-
ogy to local cohomology follows as in the proof of Proposition 3.2. �
3.2. Hypersurfaces

As in §3.1, let S := A[x] be a polynomial ring over a commutative ring A, and identify

PS |A = A[x,y] = S[y].

Let R = S/(f(x)), where f ∈ S is a nonzero polynomial, and identify R⊗A R with

PR |A = A[x,y]
(f(x), f(y)) = R[y]

(f(y)) .

Then y0 − x0, y1 − x1, . . . , yd − xd serve as generators for ΔS|A, and their images in 
PR|A are generators for the ideal ΔR|A.

Proposition 3.5. One has PS|A-module isomorphisms

D
[n] ∼= ann

(
f(y), D

[n] (R)
)

R |A S |A
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for each n � 0, and

DR |A ∼= ann
(
f(y), DS |A(R)

)
.

Proof. Taking the exact sequence

P
[n]
S |A ⊗S R

f(y)−−−−→ P
[n]
S |A ⊗S R −−−−→ P

[n]
R |A −−−−→ 0,

and applying HomR(−, R), one obtains

0 −−−−−→ HomR(P [n]
R |A, R) −−−−−→ HomR(P [n]

S |A ⊗S R, R) f(y)−−−−−→ HomR(P [n]
S |A ⊗S R, R).

Since

HomR(P [n]
R |A, R) ∼= D

[n]
R |A and HomR(P [n]

S |A ⊗S R, R) ∼= HomS(P [n]
S |A, R) ∼= D

[n]
S |A(R),

the first isomorphisms follow. The second follows by taking the union over n. �
In light of the previous proposition, we identify D[n]

R|A with ann
(
f(y), D[n]

S|A(R)
)
; this 

identifies an A-linear differential operator S −→ R that is annihilated by f(y) with the 
induced factorization R −→ R. Next, consider the sequence

0 −−−−→ PS |A ⊗S R
f(y)−−−−→ PS |A ⊗S R −−−−→ PR |A −−−−→ 0,

and the induced Koszul cohomology exact sequence

0 −−→ Hd(Δ[n+1]
R |A ; PR |A)

δf(y)−−−→ Hd+1(Δ[n+1]
S |A ; PS |A ⊗S R) f(y)−−−→ Hd+1(Δ[n+1]

S |A ; PS |A ⊗S R),

where the injectivity on the left holds since the generators of the ideal Δ[n+1]
S|A form 

a regular sequence on PS|A ⊗S R. We also use δf(y) for the connecting map in the 
corresponding local cohomology exact sequence, i.e.,

0 −−−−→ Hd
ΔR |A

(PR |A)
δf(y)−−−−→ Hd+1

ΔS |A
(PS |A ⊗S R) f(y)−−−−→ Hd+1

ΔS |A
(PS |A ⊗S R).

Proposition 3.6. The maps

Hd(Δ[n+1]
R |A ; PR |A)

δf(y)−−−→ Hd+1(Δ[n+1]
S |A ; PS |A ⊗S R) γn−−−→ HomS(P [n]

S |A, R) �∗

−−−→ D
[n]
S |A(R)

induce an isomorphism of PR|A-modules

Hd(Δ[n+1]
R |A ; PR |A)

�∗ ◦ γn ◦ δf(y)−−−−−−−−−−−→ D
[n]
R |A,

with D[n] regarded as a submodule of D[n] (R). Passing to the direct limit, the map
R|A S|A
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Hd
ΔR |A

(PR |A)
�∗ ◦ γ ◦ δf(y)−−−−−−−−−−−→ DR |A,

is an isomorphism, with DR|A regarded as a submodule of DS|A(R).

Proof. By Proposition 3.4, the maps γn and �∗ are PS|A-module isomorphisms. Also,

δf(y) : Hd(Δ[n+1]
R |A ; PR |A) −→ ann

(
f(y), Hd+1(Δ[n+1]

S |A ; PS |A ⊗S R)
)

is an isomorphism, and D[n]
R|A = ann

(
f(y), D[n]

S|A(R)
)
. This justifies the first isomor-

phism. The second is the familiar transition from Koszul cohomology to local cohomol-
ogy. �

For S := A[x] a polynomial ring, Example 3.3 identifies the element of Hd+1
ΔS|A

(PS|A)
that corresponds to the identity map in DS|A; for a hypersurface R := A[x]/(f(x)), we 
next identify the element of Hd

ΔR|A
(PR|A) that corresponds to the identity map in DR|A:

Example 3.7. Since μ(f(y)) = μ(f(x)), where μ : PS|A −→ S is the A-algebra homomor-
phism determined by xi 	−→ xi, and yi 	−→ xi, one has

f(y) − f(x) =
d∑

i=0
(yi − xi)gi,

where gi ∈ PS|A. It follows that 
∑d

i=0(yi−xi)gi = 0 in PR|A. Thus, we obtain an element

ηR :=
[
· · · , (−1)igi∏

j �=i(yj − xj)
, · · ·

]
∈ Hd

ΔR |A
(PR |A),

where the signs adhere to the convention in §2.2. We claim that ηR maps to the identity 
in DR|A under the isomorphisms in Proposition 3.6. First note that

δf(y)(ηR) =
[

1
(y0 − x0) · · · (yd − xd)

]
.

Using Example 3.3, �∗ ◦ γ maps δf(y)(ηR) to the element of HomA(S, R) corresponding 
to the canonical surjection S −� R. Thus, �∗ ◦ γ ◦ δf(y)(ηR) is the identity map on R.

3.3. Equivalence as D-modules

Let A be a commutative ring. Given A-algebras T and T ′, one has a homomorphism 
DT |A −→ D(T⊗AT ′)|A given by

D
id⊗1−−−−→ D ⊗A T ′ −−−−→ D ′ ′ ⊆ D ′ .
T |A T |A (T⊗AT ) |T (T⊗AT ) |A



J. Jeffries, A.K. Singh / Advances in Mathematics 432 (2023) 109276 19
For an ideal I of T ⊗A T ′, we regard the local cohomology module Hk
I (T ⊗A T ′) as a 

DT |A-module by restriction of scalars along the map above.

Theorem 3.8. Let A be a commutative ring, and let S := A[x] be the polynomial ring 
over A in the indeterminates x := x0, . . . , xd. Then the map

Hd+1
ΔS |A

(PS |A) �∗ ◦ γ−−−−−−→ DS |A,

as in Proposition 3.2, is an isomorphism of DS|A-modules.

Proof. By Proposition 3.2, the displayed isomorphism is PS|A-linear; we need only verify 
that it is DS|A-linear. In view of Example 3.3, it suffices to verify that the map[

1
(y0 − x0)a0+1 · · · (yd − xd)ad+1

]
	−→ ∂a0,...,ad

is DS|A-linear. In the case S = A[x], i.e., where d = 0, the verification takes the form

∂b

[
1

(y − x)a+1

]
=
[ (

a+b
b

)
(y − x)a+b+1

]
	−→

(
a + b

b

)
∂a+b = ∂b∂a,

with the general case being similar. �
Theorem 3.9. Let A be a commutative ring, and let S := A[x] be the polynomial ring 
over A where x := x0, . . . , xd. Let R = S/fS, for f ∈ S a nonzero polynomial. Then the 
map

Hd
ΔR |A

(PR |A)
�∗ ◦ γ ◦ δf(y)−−−−−−−−−−−→ DR |A,

as in Proposition 3.6, is an isomorphism of DR|A-modules.

Proof. We consider Hd+1
ΔS|A

(PS|A⊗SR) ∼= Hd+1
ΔS|A

(R⊗AS) as a DR|A-module as described 
at the beginning of this subsection.

Let �∗ ◦ γ : Hd+1
ΔS|A

(PS|A) −→ DS|A be the DS|A-module isomorphism from Theo-
rem 3.8. Applying DS|A(R) ⊗DS|A (−) to this map, we obtain a DR|A-linear isomorphism

DS |A(R) ⊗DS |A Hd+1
ΔS |A

(PS |A) −→ DS |A(R) ⊗DS |A DS |A.

We claim that this map identifies with the isomorphism

Hd+1
ΔS |A

(PS |A ⊗S R) −→ DS |A(R)

obtained by applying − ⊗S R, as in Proposition 3.4. Indeed, it is easy to see that
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DS |A(R) ⊗DS |A Hd+1
ΔS |A

(PS |A)

∼= D(S⊗AS) | (A⊗AS)(R⊗A S) ⊗D(S⊗AS) | (A⊗AS) H
d+1
ΔS |A

(PS |A),

and the latter identifies with Hd+1
ΔS|A

(PS|A ⊗S R) by Lemma 2.1.
We have the commutative diagram

0 −−−−→ Hd
ΔR |A

(PR |A)
δf(y)−−−−→ Hd+1

ΔS |A
(PS |A ⊗S R) f(y)−−−−→ Hd+1

ΔS |A
(PS |A ⊗S R)⏐⏐�∼=

⏐⏐�∼=
⏐⏐�∼=

0 −−−−→ DR |A −−−−→ DS |A(R) f(y)−−−−→ DS |A(R),

where all of maps in the rightmost square are DR|A-linear; the first vertical isomorphism 
is the map from Proposition 3.6. It follows that this map is a DR|A-linear isomor-
phism. �
Example 3.10. Let S := A[x0, . . . , xd] be a polynomial ring over a commutative ring A. 
Fix the N-grading on S where S0 = A and deg xi = 1 for each i. Let R := S/(f(x)), 
for f ∈ S a nonzero homogeneous polynomial. We explicitly describe the element of 
Hd

ΔR|A
(PR|A) that corresponds to the Euler operator

E :=
d∑

i=0
xi

∂

∂xi
∈ DR |A.

With the notation as in Example 3.7, let f(y) − f(x) =
∑d

i=0(yi − xi)gi with gi ∈ PS|A, 
in which case

∑d
i=0(yi − xi)gi = 0 in PR|A. Under the isomorphism of the previous 

theorem, the cohomology class ηR ∈ Hd
ΔR|A

(PR|A) of the Čech cocycle

(
g0∏

j �=0(yj − xj)
,

−g1∏
j �=1(yj − xj)

, · · · , (−1)dgd∏
j �=d(yj − xj)

)

corresponds to the identity element in DR|A. As the isomorphism is one of DR|A modules, 
the element of Hd

ΔR|A
(PR|A) that corresponds to the Euler operator E is the cohomology 

class of the element obtained by applying E, considered as an operator on the x variables, 
componentwise to the above cocycle.

Example 3.11. Consider R := A[x]/(xn), for n a positive integer. Then

H0
ΔR |A

(PR |A) = PR |A = A[x, y]/(xn, yn).

In PS|A one has yn − xn = (y− x) 
∑n−1

k=0 y
n−1−kxk, so the element of H0

ΔR|A
(PR|A) that 

corresponds to the identity in DR|A is
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n−1∑
k=0

yn−1−kxk,

while the element corresponding to the Euler operator is

E
( n−1∑

k=0

yn−1−kxk
)

=
n−1∑
k=1

kyn−1−kxk.

Example 3.12. Set R := A[x0, x1]/(x2
0 + x2

1). Then the identity in DR|A corresponds to[
y0 + x0

y1 − x1
,
−(y1 + x1)
y0 − x0

]
∈ H1

ΔR |A
(PR |A),

and the Euler operator to[
y1x0 + y0x1

(y1 − x1)2
,
−(y1x0 + y0x1)

(y0 − x0)2

]
∈ H1

ΔR |A
(PR |A).

3.4. Frobenius trace

Suppose A is a field of characteristic p > 0. Let S := A[x0, . . . , xd] be a polynomial 
ring, and R := S/(f(x)) a graded hypersurface. Let e be a positive integer. The rings R
and Rpe are Gorenstein, so duality implies that HomRpe (R, Rpe) is a cyclic R-module. 
To specify a generator, first set

Φe
S := ∂pe−1,...,pe−1.

It is a key point that Φe
S : S −→ Spe , and that it is Spe-linear. Next, consider the 

composition

S
fpe−1

−−−−→ S
Φe

S−−−−→ Spe π−−−−→ Rpe

where π is the canonical surjection. Since fS is contained in its kernel, the composition 
factors through a map

Φe
R : R −→ Rpe

,

that we define to be the e-th Frobenius trace of R. When e = 1, we refer to ΦR : R −→ Rp

as the Frobenius trace map. In general, the e-th Frobenius trace Φe
R is an element of 

D
[pe]
R|A, and is an R-module generator for HomRpe (R, Rpe).
We claim that Φe

R, viewed as a differential operator in DR|A, corresponds to the image 
of the element ηR from Example 3.7 under the e-th iterate of the Frobenius action F on 
the local cohomology module Hd

Δ (PR|A), i.e.,

R|A
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(�∗ ◦ γ ◦ δf(y))(F e(ηR)) = Φe
R.

To see this, consider

ηS :=
[

1
(y0 − x0) · · · (yd − xd)

]
∈ Hd+1

ΔS |A
(PS |A)

as in Example 3.3, and note that

F e(ηS) =
[

1
(y0 − x0)pe · · · (yd − xd)pe

]
.

By Example 3.3,

(�∗ ◦ γ)(F e(ηS)) = ∂pe−1,...,pe−1,

which equals Φe
S . Likewise, if ηS is the image of ηS in Hd+1

ΔS |A
(PS |A ⊗S R), then

(�∗ ◦ γ)(F e(ηS)) = π ◦ Φe
S .

With ηR as in Example 3.7, one has

F e(ηR) =
[
· · · , (−1)igp

e

i∏
j �=i(yj − xj)pe , · · ·

]
∈ Hd

ΔR |A
(PR |A),

so

δf(y)(F e(ηR)) =
[

f(y)pe−1∏d
i=0(yi − xi)pe

]
= f(y)p

e−1F e(ηS)

in Hd+1
ΔS|A

(PS|A ⊗S R). Thus, since �∗ ◦ γ is PS|A-linear, one has

(�∗ ◦ γ ◦ δf(y))(F e(ηR)) = f(y)p
e−1π ◦ Φe

S ,

which coincides with Φe
R in DR|A, regarded as a submodule of DS|A(R).

3.5. Lifting differential operators modulo p

Let A, S, and R be as in §3.2, i.e., A is a commutative ring, S := A[x0, . . . , xd] is a 
polynomial ring, and R := S/(f(x)) is a hypersurface. Suppose p > 0 is a prime integer 
that is regular on PR|A. The exact sequence

0 −−−−→ PR |A
p−−−−→ PR |A −−−−→ P(R/pR) | (A/pA) −−−−→ 0

induces a cohomology exact sequence
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−−−→ Hd
ΔR |A

(PR |A) −−−→ Hd
ΔR |A

(P(R/pR) | (A/pA))
δp−−−→ Hd+1

ΔR |A
(PR |A) p−−−→ Hd+1

ΔR |A
(PR |A)

with δp denoting the connecting homomorphism. In particular, δp induces an isomor-
phism

coker
(
Hd

ΔR |A
(PR |A) −−−−→ Hd

ΔR |A
(P(R/pR) | (A/pA))

)
−−−−→ ann

(
p, Hd+1

ΔR |A
(PR |A)

)
.

Acknowledging the abuse of notation, we denote the inverse of this isomorphism by δ−1
p , 

so as to obtain:

Proposition 3.13. There is an isomorphism of PR|A-modules

ann
(
p, Hd+1

ΔR |A
(PR |A)

)
−−−−→ coker

(
DR |A −−−−→ D(R/pR) | (A/pA)

)
,

given by �∗ ◦ γ ◦ δf(y) ◦ δ−1
p . In particular, given an element

ν ∈ Hd
ΔR |A

(P(R/pR) | (A/pA)),

the corresponding differential operator (�∗ ◦ γ ◦ δf(y))(ν) ∈ D(R/pR)|(A/pA) lifts to an 
element of DR|A if and only if δp(ν) = 0.

Proof. One has a commutative diagram

Hd
ΔR |A

(PR |A) −−−−→ Hd
ΔR |A

(P(R/pR) | (A/pA))⏐⏐� ⏐⏐�
DR |A −−−−→ D(R/pR) | (A/pA)

where the vertical maps are the isomorphisms �∗◦γ ◦δf(y) of Proposition 3.6. Combining 
with the isomorphism

ann
(
p, Hd+1

ΔR |A
(PR |A)

) δ−1
p−−−−→ coker

(
Hd

ΔR |A
(PR |A) −−−−→ Hd

ΔR |A
(P(R/pR) | (A/pA))

)
,

the assertion follows. �
Next, we establish a similar criterion for when a differential operator D(R/pR)|(A/pA)

lifts to D(R/p2R)|(A/p2A). Start with the exact sequence

0 −−−−→ P(R/pR) | (A/pA)
p−−−−→ P(R/p2R) | (A/p2A) −−−−→ P(R/pR) | (A/pA) −−−−→ 0

and the corresponding cohomology exact sequence
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−−→ Hd
ΔR |A

(P(R/p2R) | (A/p2A)) −−→ Hd
ΔR |A

(P(R/pR) | (A/pA))

βp−−→ Hd+1
ΔR |A

(P(R/pR) | (A/pA))
p−−→ Hd+1

ΔR |A
(P(R/p2R) | (A/p2A)) −−→ .

The connecting homomorphism βp in the sequence above is the Bockstein homomorphism 
on local cohomology, see §2.3. The map βp induces an isomorphism

coker
(
Hd

ΔR |A
(P(R/p2R) | (A/p2A)) −−−−→ Hd

ΔR |A
(P(R/pR) | (A/pA))

)
−−−−→ image(βp),

and we denote the inverse of this isomorphism by β−1
p . Then, along the same lines as 

Proposition 3.13, we have:

Proposition 3.14. There is an isomorphism of PR|A-modules

image(βp) −−−−→ coker
(
D(R/p2R) | (A/p2A) −−−−→ D(R/pR) | (A/pA)

)
induced by �∗ ◦ γ ◦ δf(y) ◦ β−1

p . In particular, for an element

ν ∈ Hd
ΔR |A

(P(R/pR) | (A/pA)),

the corresponding differential operator (�∗ ◦ γ ◦ δf(y))(ν) ∈ D(R/pR)|(A/pA) lifts to an 
element of D(R/p2R)|(A/p2A) if and only if βp(ν) = 0.

3.6. Lifting Frobenius trace

Let S := Z[x] be a polynomial ring over Z in the indeterminates x := x0, . . . , xd. 
Identifying PS with Z[x, y] as before, note that PS may also be viewed as a polynomial 
ring over Z in the indeterminates

x0, . . . , xd, y0 − x0, . . . , yd − xd.

Fix a prime integer p > 0, and let Λp : PS −→ PS denote the standard lift of Frobe-
nius with respect to the indeterminates above, i.e., Λp is the endomorphism of PS with 
Λp(xi) = xp

i and Λp(yi − xi) = (yi − xi)p for each i. Let ϕp denote the corresponding 
p-derivation on PS .

Let R = S/(f(x)) be a graded hypersurface. Assume that p is regular on PR, in which 
case there is an exact sequence

Hd
ΔR

(PR) −−→ Hd
ΔR

(PR/pPR) δp−−→ Hd+1
ΔR

(PR) p−−→ Hd+1
ΔR

(PR) πp−−→ Hd+1
ΔR

(PR/pPR).
(3.14.1)

Let ηR ∈ Hd
ΔR

(PR) be the element that corresponds to the identity map in DR, as in 
Example 3.7, and let ηR denote its image in Hd

Δ (PR/pPR). We claim that

R
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δp
(
F (ηR)

)
=
[
ϕp

(
f(y) − f(x)

)∏d
i=0(yi − xi)p

]

as elements of Hd+1
ΔR

(PR). To see this, take gi ∈ PS with f(y) −f(x) =
∑d

i=0(yi−xi)gi as 
in Example 3.7. Then, in PS , one has

ϕp

(
f(y) − f(x)

)
= 1

p

(
Λp

(
f(y) − f(x)

)
−
(
f(y) − f(x)

)p)
= 1

p

(∑
i

Λp(yi − xi)Λp(gi) −
(
f(y) − f(x)

)p)
= 1

p

(∑
i

(yi − xi)pΛp(gi) −
(
f(y) − f(x)

)p)
= 1

p

(∑
i

(yi − xi)p
(
gpi + pϕp(gi)

)
−
(
f(y) − f(x)

)p)
=
∑
i

(yi − xi)pϕp(gi) + 1
p

(∑
i

(yi − xi)pgpi −
(
f(y) − f(x)

)p)
.

It follows that the image of ϕp

(
f(y) − f(x)

)
in PR, i.e., modulo the ideal (f(x), f(y)), 

is ∑
i

(yi − xi)pϕp(gi) + 1
p

∑
i

(yi − xi)pgpi .

Hence, in Hd+1
ΔR

(PR), one has[
ϕp

(
f(y) − f(x)

)∏
i(yi − xi)p

]
=
[∑

i(yi − xi)pϕp(gi) + 1
p

∑
i(yi − xi)pgpi∏

i(yi − xi)p

]

=
[ 1

p

∑
i(yi − xi)pgpi∏
i(yi − xi)p

]
= δp

(
F (ηR)

)
,

which proves the claim. Similarly, with βp denoting the Bockstein homomorphism

Hd
ΔR

(PR/pPR) πp ◦ δp−−−−−−−→ Hd+1
ΔR

(PR/pPR)

with δp and πp as in (3.14.1), one see that

βp

(
F (ηR)

)
=
[
ϕp

(
f(y) − f(x)

)∏d
i=0(yi − xi)p

]

as elements of Hd+1
Δ (PR/pPR).
R
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Combining the preceding calculations with Propositions 3.13 and 3.14, we obtain:

Theorem 3.15. Let S := Z[x] be a polynomial ring in the indeterminates x := x0, . . . , xd. 
Fix a nonzero homogeneous polynomial f(x) in S, and set R := S/(f(x)). Let p be a 
prime integer that is a regular element on PR. Let Λp be the endomorphism of PS :=
Z[x, y] with

Λp(xi) = xp
i and Λp(yi − xi) = (yi − xi)p

for each i, and let ϕp denote the corresponding p-derivation.
Then the Frobenius trace map ΦR/pR on R/pR, as in §3.4, lifts to a differential 

operator on R if and only if the local cohomology element[
ϕp

(
f(y) − f(x)

)∏d
i=0(yi − xi)p

]
∈ Hd+1

ΔR
(PR)

is zero; similarly, ΦR/pR lifts to a differential operator on R/p2R if and only if the image 
of the displayed element in Hd+1

ΔR
(PR/pPR) is zero.

Remark 3.16. For S and R as in the previous theorem set a := deg f(x) − (d +1). Then, 
with the grading shifts as below, Theorem 3.9 provides degree-preserving isomorphisms

DR
∼= Hd

ΔR
(PR)(a) and DR/pR

∼= Hd
ΔR

(PR/pPR)(a).

In particular, the identity element in the ring DR or in the ring DR/pR corresponds to a 
cohomology class in [Hd

ΔR
(PR)]

a
or [Hd

ΔR
(PR/pPR)]

a
respectively; confer Example 3.7.

It is a straightforward calculation that the Frobenius trace map ΦR/pR on R/pR is a 
differential operator of degree ap −a. It follows that ΦR/pR corresponds to a cohomology 
class in [Hd

ΔR
(PR/pPR)]

ap
as, indeed, is evident by the calculation in §3.4.

Remark 3.17. Consider R := S/fS, where S := Z[x0, x1, x2] and f(x) := x3
0 + x3

1 + x3
2. 

Let p = 3 be a prime integer. By [29, §3] and [14, Example 6.6], the Frobenius trace 
map ΦR/pR on R/pR does not lift to a differential operator on R. Using Theorem 3.15, 
it follows that the local cohomology element

ζp :=
[
ϕp

(
f(y) − f(x)

)∏
(yi − xi)p

]

in H3
ΔR

(PR) is nonzero. Note that ζp is annihilated by p in view of (3.14.1). Hence, the 
module H3

ΔR
(PR) contains a nonzero p-torsion element for each prime integer p = 3.

Likewise, consider R := S/fS, where S := Z[x0, x1, x2, x3] and f(x) := x3
0 + x3

1 +
x3

2 + x3
3. Recent work of Mallory [21, Theorem 1.2] shows that R has no differential 

operators of negative degree. For each prime integer p = 3, the Frobenius trace on R/pR
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has negative degree, namely 1 −p, and hence does not lift to R. It follows that H4
ΔR

(PR)
contains a nonzero p-torsion element for each prime integer p = 3.

4. Integer torsion in local cohomology

Our approach to constructing mod p differential operators that do not lift, based on the 
results of the previous section, is via constructing p-torsion elements in local cohomology 
modules of the form Hd+1

ΔR
(PR). Towards this, the following lemma will prove useful; the 

notation is as in §3.6.

Lemma 4.1. Let S := Z[x] be a polynomial ring in the indeterminates x := x0, . . . , xd. 
Consider a polynomial f(x) ∈ S of the form

f(x) =
m∑
i=0

xifi,

where m � d and each fi ∈ S. Set R := S/(f(x)). Fix a prime integer p, and let 
ϕp denote the p-derivation of PS as in Theorem 3.15; this restricts to the standard p-
derivation of S with respect to x.

If the local cohomology element 
[

ϕp

(
f(x)

)
(x0 · · ·xm)p

]
in Hm+1

(x0,...,xm)(R) is nonzero, then so 

is the element 
[
ϕp

(
f(y) − f(x)

)∏d
i=0(yi − xi)p

]
in Hd+1

ΔR
(PR).

Similarly, if the image of 
[

ϕp

(
f(x)

)
(x0 · · ·xm)p

]
in Hm+1

(x0,...,xm)(R/pR) is nonzero, then so is 

the image of 
[
ϕp

(
f(y) − f(x)

)∏
i(yi − xi)p

]
in Hd+1

ΔR
(PR/pPR).

Proof. Recall the notation y := y0, . . . , yd. We identify PS with the polynomial ring 
Z[x, y] and PR with Z[x, y]/(f(x), f(y)), so that ΔR is the ideal generated by the 
elements

y0 − x0, y1 − x1, . . . , yd − xd.

Suppose the displayed element of Hd+1
ΔR

(PR) is zero. Then there exists an integer k � 0
such that in the ring PS one has

Λp

(
f(y) − f(x)

)
−
(
f(y) − f(x)

)p
p

(y0 − x0)k · · · (yd − xd)k

∈
(
f(y), f(x), (y0 − x0)p+k, . . . , (yd − xd)p+k

)
PS . (4.1.1)
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Let P ′ denote the image of PS under the specialization xi 	−→ 0 for 0 � i � m. Note 
that f(x) 	−→ 0 under this specialization. Since one has a commutative diagram

PS
Λp−−−−→ PS⏐⏐� ⏐⏐�

P ′ Λp−−−−→ P ′,

the ideal membership (4.1.1) specializes to give

Λp

(
f(y)

)
−
(
f(y)

)p
p

yk0 · · · ykm (ym+1 − xm+1)k · · · (yd − xd)k

∈
(
f(y), yp+k

0 , . . . , yp+k
m , (ym+1 − xm+1)p+k, . . . , (yd − xd)p+k

)
P ′. (4.1.2)

The elements ym+1 − xm+1, . . . , yd − xd are algebraically independent over

Z[y]/
(
f(y), yp+k

0 , . . . , yp+k
m

)
,

so ym+1 − xm+1, . . . , yd − xd, as well as their powers, form a regular sequence in the 
ring

P ′/
(
f(y), yp+k

0 , . . . , yp+k
m

)
P ′.

Using this, (4.1.2) implies

Λp

(
f(y)

)
−
(
f(y)

)p
p

yk0 · · · ykm

∈
(
f(y), yp+k

0 , . . . , yp+k
m , (ym+1 − xm+1)p, . . . , (yd − xd)p

)
P ′.

Next, specialize xi 	−→ yi for m + 1 � i � d, to obtain

Λp

(
f(y)

)
−
(
f(y)

)p
p

yk0 · · · ykm ∈
(
f(y), yp+k

0 , . . . , yp+k
m

)
Z[y],

where Λp is the standard lift of Frobenius on Z[y] with respect to y. Renaming yi 	−→ xi

for each i, the above reads

ϕp

(
f(x)

)
xk

0 · · ·xk
m ∈

(
f(x), xp+k

0 , . . . , xp+k
m

)
Z[x],

implying that [
ϕp

(
f(x)

)
(x0 · · ·xm)p

]
∈ Hm+1

(x0,...,xm)(R)
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is zero. The proof of the final assertion is similar. �
A question of Huneke [13, Problem 4] asks whether local cohomology modules of 

Noetherian rings have finitely many associated prime ideals. This was answered in the 
negative by the second author in [27, §4]: there is hypersurface R over Z for which a 
local cohomology module Hk

a (R) has p-torsion elements for each prime integer p. From 
this, it follows that Hk

a (R) has infinitely many associated primes; this is extended to 
several natural families of hypersurfaces by Theorems 6.1, 6.2, and 7.1. On the other 
hand, for a polynomial ring over Z, or, more generally, a smooth Z-algebra, the answer 
to Huneke’s question is positive; this follows from the following result, which we use in 
the next section:

Theorem 4.2. [4, Theorem 3.1] Let S be a smooth Z-algebra, and a an ideal of S generated 
by elements f = f1, . . . , ft. Let k be a nonnegative integer.

If a prime integer is a nonzerodivisor on the Koszul cohomology module Hk(f ; S), 
then it is also a nonzerodivisor on the local cohomology module Hk

a (S).

5. Toric rings

We consider the question whether differential operators lift modulo p for invariant 
rings of tori. An m × n integer matrix M determines a map

Zm M←−−−− Zn,

and hence a normal affine semigroup

Λ := Nn ∩ kerM.

Let A be a commutative ring. The semigroup ring A[Λ] is the subring of the polynomial 
ring A[Nn] := A[x1, . . . , xn] that is generated, as an A-algebra, by monomials with 
exponent vectors in Λ. The ring A[Nn] has an Nm-grading where the degree of xi is the 
i-th column of M . Under this grading, the degree zero component of A[Nn] is precisely 
A[Λ], which is hence a direct summand of A[Nn] as an A[Λ]-module. We refer to a ring 
of the form A[Λ], or an isomorphic copy, as a toric A-algebra.

When A has an infinite group of units A×, the ring A[Λ] is the invariant ring for an 
action of a product of copies of A× on A[Nn], hence the name.

Example 5.1. The integer matrix M := (1 1 −2) yields the semigroup Λ generated 
by (2

0
)
,

(1
1
)
,

(0
2
)
,

1 1 1
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so Z[Λ] is the subring Z[x2
1x3, x1x2x3, x2

2x3] of Z[x1, x2, x3].

Theorem 5.2. Let R be a toric Z-algebra. Then, for each prime p, each differential op-
erator on R/pR lifts to a differential operator on R; thus, the natural map

DR ⊗Z (Z/pZ) −→ DR/pR

is an isomorphism.

Proof. Write R = Z[Λ], for Λ as in the earlier discussion. Recall that R is a direct 
summand of S := Z[Nn], and let � : S −→ R be a splitting. Then � induces a splitting �

of the inclusion R/pR ⊆ S/pS, with the commutative diagram

S
�−−−−→ R⏐⏐� ⏐⏐�

S/pS
�−−−−→ R/pR

Fix δ ∈ DR/pR. By [5, Proposition 6.6], there exists δ̂ ∈ DS/pS such that δ̂|R/pR = δ. 
Since S is a polynomial ring, δ̂ lifts to a differential operator ξ ∈ DS , see for example [4, 
Lemma 2.1]. By [29, Proposition 3.1], the composition � ◦ (ξ|R) is an element of DR. It 
is readily verified that this maps to δ under DR −→ DR/pR. �

For a toric Z-algebra R, while the map DR −→ DR/pR is indeed surjective, a dif-
ferential operator on R/pR need not lift to a differential operator on R of the same 
order:

Example 5.3. The ring Z[Λ] in Example 5.1 is readily seen to be isomorphic to

R := Z[x2
1, x1x2, x2

2],

which is the second Veronese subring of the polynomial ring T := Z[x1, x2].
Consider R with the standard N-grading, i.e., where the Z-algebra generators degxixj

have degree 1. The group {±1} acts on the polynomial ring T ⊗Z C = C[x1, x2] with 
invariant ring R ⊗Z C, and the ring of differential operators DR⊗ZC|C is generated by 
the elements of DT⊗ZC|C that have even degree. Note that the derivations xi

∂
∂xj

have 
degree 0; there are no derivations of negative degree, confer [17]. Since

D1
R ⊆ D1

R⊗ZC|C,

it follows that R has no derivations of negative degree. In contrast, the ring R/2R has a 
derivation of degree −1, namely
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x−1
1

∂

∂x2
= x−1

2
∂

∂x1
,

which is the endomorphism of R/2R with

x2i
1 x2j

2 	−→ 0

x2i+1
1 x2j+1

2 	−→ x2i
1 x2j

2

for i, j ∈ N. This derivation lifts to the differential operator ∂
∂x1

∂
∂x2

in D2
R.

6. Quadratic forms and Pfaffians

The main focus of this section is Pfaffian hypersurfaces, but we begin with the analogue 
of Theorem 1.2 for quadratic hypersurfaces, where the arguments are most transparent:

Theorem 6.1. Let x1, . . . , x2m be indeterminates over Z, where m � 3, and set

R := Z[x1, . . . , x2m]/(
m∑
i=1

xixm+i).

Then, for each prime integer p > 0, the Frobenius trace on R/pR does not lift to a 
differential operator on R/p2R, nor, a fortiori, to a differential operator on R.

Proof. Set S := Z[x1, . . . , x2m]. Fix p, and let ϕp be the standard p-derivation on S
with respect to x. In view of Theorem 3.15 and Lemma 4.1, it suffices to prove that the 
element [

ϕp(
∑m

i=1 xixm+i)
(x1 · · ·xm)p

]
∈ Hm

(x1,...,xm)(R/pR)

is nonzero. Indeed, if it were zero, then there exists an integer k � 0 such that

ϕp(
m∑
i=1

xixm+i)(x1 · · ·xm)k ∈
(
xp+k

1 , . . . , xp+k
m

)
R/pR.

The image of ϕp(
∑

xixm+i) in R equals 1p
∑

xp
i x

p
m+i, regarded as an element of R, giving

(1
p

m∑
i=1

xp
i x

p
m+i

)
(x1 · · ·xm)k ∈

(
xp+k

1 , . . . , xp+k
m

)
R/pR. (6.1.1)

Let ei ∈ Zm denote the i-th standard basis vector. Consider the Zm-grading of R/pR

where
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deg xi = ei,

deg xm+i = −ei,

for 1 � i � m. The element on the left hand side in (6.1.1) then has degree (k, . . . , k). 
Hence, in a homogeneous equation for the ideal membership (6.1.1), the coefficient of 
xp+k
i on the right has degree (k, . . . , k, −p, k, . . . , k), and therefore the coefficient must 

be a multiple of

xk
1 · · ·xk

i−1x
k
i+1 · · ·xk

mxp
m+i,

i.e.,

(1
p

m∑
i=1

xp
i x

p
m+i

)
(x1 · · ·xm)k ∈

(
xk

2 · · ·xk
mxp

m+1x
p+k
1 , . . . , xk

1 · · ·xk
m−1x

p
2mxp+k

m

)
R/pR.

Canceling the term (x1 · · ·xm)k, the above display implies that

1
p

m∑
i=1

xp
i x

p
m+i ∈

(
(x1xm+1)p, . . . , (xmx2m)p

)
(6.1.2)

in the ring

(R/pR)(0,...,0) = Z/pZ[x1xm+1, . . . , xmx2m]/(
m∑
i=1

xixm+i).

But (R/pR)(0,...,0) may be identified with the polynomial ring Z/pZ[z1, . . . , zm−1], where

zi := xixm+i for 1 � i � m− 1,

in which case, (6.1.2) reads

zp1 + · · · + zpm−1 + (−1)p(z1 + · · · + zm−1)p

p
∈ (zp1 , . . . , zpm−1).

This is readily seen to be false, for example by examining the coefficient of zp−1
1 z2. �

We now turn to Pfaffian hypersurfaces. Let n be an even integer with n � 4, and let Z
be an (n − 2) × n matrix of indeterminates over an infinite field K. Set T := K[Z]. The 
symplectic group Spn−2(K) acts K-linearly on T by the rule

M : Z 	−→ MZ for M ∈ Spn−2(K).
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By [8, §6] or [10, Theorem 5.1], the invariant ring for this action is the K-algebra gen-
erated by the entries of the product matrix Ztr Ω Z, where Ω is the size n − 2 standard 
symplectic block matrix (

0 I
−I 0

)
,

with I the identity. This invariant ring is isomorphic to K[X]/(pf X) for X an n × n

alternating matrix of indeterminates, and pf X its Pfaffian. When K has characteristic 
zero, the ring of differential operators on the invariant ring is described explicitly in [18, 
IV 1.9, Case C].

For M an alternating matrix, the cofactor expansion for Pfaffians takes the form

pf M =
∑
j�2

(−1)jm1j pf M1j ,

where M1j is the submatrix obtained by deleting the first and j-th rows and columns. 
For t an even integer, we use Pft(M) to denote the ideal generated by the Pfaffians 
of the t × t principal submatrices of M . It follows from the cofactor expansion that 
Pft(M) ⊆ Pft−2(M).

The Pfaffian of a 4 × 4 alternating matrix of indeterminates X is the quadratic form

x12x34 − x13x24 + x14x23,

which, aside from the change of notation, coincides with the case m = 3 in Theorem 6.1. 
More generally one has the following, which completes the proof of Theorem 1.2 (b)
using Theorem 3.15 and Lemma 4.1.

Theorem 6.2. Let X be an n × n alternating matrix of indeterminates over Z, where n
is an even integer with n � 4. Set S := Z[X] and R := S/(pf X). Fix a prime integer 
p > 0, and let ϕp be the standard p-derivation on S with respect to the indeterminates 
X. Then [

ϕp(pf X)
(x12 · · ·x1n)p

]
∈ Hn−1

(x12,...,x1n)(R)

is a nonzero p-torsion element; moreover, its image in Hn−1
(x12,...,x1n)(R/pR) is nonzero.

In particular, the local cohomology module Hn−1
(x12,...,x1n)(R) contains a nonzero p-

torsion element for each prime integer p > 0.

Proof. As noted above, the case n = 4 is settled by the proof of Theorem 6.1. We proceed 
by induction on n, with n = 4 serving as the base case.

The image of the displayed element is zero in Hn−1
(x12,...,x1n)(R/pR) if and only if there 

exists an integer k � 0, such that in the polynomial ring S one has
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ϕp(pf X)(x12 · · ·x1n)k ∈
(
p, pf X, xp+k

12 , . . . , xp+k
1n

)
S. (6.2.1)

We know this cannot happen for n = 4. Suppose (6.2.1) holds for an even integer n � 6. 
Specialize xn−1,n 	−→ 1, and xij 	−→ 0 for i = 2, . . . , n − 2 and j = n − 1, n, in which 
case, the image of X is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x12 x13 x14 . . . x1,n−3 x1,n−2 x1,n−1 x1n
−x12 0 x23 x24 . . . x2,n−3 x2,n−2 0 0
−x13 −x23 0 x34 . . . x3,n−3 x3,n−2 0 0
−x14 −x24 x34 0 . . . x4,n−3 x4,n−2 0 0

...
...

...
...

...
...

...
...

−x1,n−3 −x2,n−3 −x3,n−3 −x4,n−3 . . . 0 xn−3,n−2 0 0
−x1,n−2 −x2,n−2 −x3,n−2 −x4,n−2 . . . −xn−3,n−2 0 0 0
−x1,n−1 0 0 0 . . . 0 0 0 1
−x1n 0 0 0 . . . 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The upper left (n − 2) × (n − 2) submatrix is unchanged; denote this by X ′. Elementary 
row and column operations transform the matrix displayed above to(

X ′ 0
0 Ω

)
, where Ω :=

(
0 1
−1 0

)
,

which shows that the Pfaffian of the image of X after specialization equals pf X ′. Hence 
the ideal membership (6.2.1) specializes to

ϕp(pf X ′)(x12 · · ·x1n)k ∈
(
p, pf X ′, xp+k

12 , . . . , xp+k
1n

)
S′,

with S′ denoting the image of S under the specialization. The indeterminates x1,n−1 and 
x1n do not occur in the polynomial pf X ′, and hence form a regular sequence on

S′/
(
p, pf X ′, xp+k

12 , . . . , xp+k
1,n−2

)
S′.

Using this, we obtain

ϕp(pf X ′)(x12 · · ·x1,n−2)k ∈
(
p, pf X ′, xp+k

12 , . . . , xp+k
1,n−2, xp

1,n−1, xp
1n
)
S′.

Next specialize x1,n−1 	−→ 0 and x1n 	−→ 0, so as to obtain

ϕp(pf X ′)(x12 · · ·x1,n−2)k ∈
(
p, pf X ′, xp+k

12 , . . . , xp+k
1,n−2

)
S′′,

where S′′ is the image of S′ under the specialization, equivalently, the polynomial ring 
over Z in the indeterminates occurring in X ′. But this violates the inductive hypothe-
sis. �

We next show that Pfaffian hypersurfaces do not admit a lift of Frobenius modulo p2:
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Theorem 6.3. Let X be an n × n alternating matrix of indeterminates over Z, where n
is an even integer with n � 4. Set S := Z[X] and R := S/(pf X). Fix a prime integer 
p > 0. Then the Frobenius endomorphism on R/pR does not lift to an endomorphism of 
R/p2R.

Proof. We proceed by induction on even integers n � 4, along the same lines as in the 
proof of Theorem 6.2. The case n = 4 is the hypersurface R defined by

x12x34 − x13x24 + x14x23.

While the case of diagonal quadratic forms of rank at least 5, in odd characteristic, 
is covered by [31, Theorem 4.15], we give a different argument to avoid characteristic 
restrictions. Suppose that the Frobenius endomorphism on R/pR lifts to R/p2R. Then, 
by Proposition 2.5, one has

1
p

(
xp

12x
p
34 − xp

13x
p
24 + xp

14x
p
23
)

∈
(
xp

12, xp
13, xp

14, xp
23, xp

24, xp
34
)
R/pR. (6.3.1)

Using the grading

deg x12 = e1, deg x34 = −e1,

deg x13 = e2, deg x24 = −e2,

deg x14 = e3, deg x23 = −e3,

as in the proof of Theorem 6.1, we may work in the subring

(R/pR)(0,0,0) = Z/pZ[x12x34, x13x24, x14x23]/(x12x34 − x13x24 + x14x23),

which, in turn, may be identified with the polynomial ring Z/pZ[z1, z2], where

z1 := x12x34 and z2 := x13x24.

But then (6.3.1) reads

1
p

(
zp1 − zp2 + (z2 − z1)p

)
∈
(
zp1 , zp2

)
R/pR,

which is seen to be false by examining the coefficient of zp−1
1 z2.

For the inductive step, let R := S/(pf X) be the hypersurface defined by the Pfaffian 
of an n ×n alternating matrix X, for an even integer n � 6. Suppose that the Frobenius 
endomorphism on R/pR lifts to R/p2R. Then, by Proposition 2.5,

ϕp(pf X) ∈
((∂ pf X )p : 1 � i < j � n

)
S/(p, pf X)S.
∂xij
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Each partial derivative ∂ pf X/∂xij is, up to sign, the Pfaffian of the (n − 2) × (n − 2)
submatrix of X obtained by deleting rows i, j and columns i, j. Using the notation

a[p] := (ap | a ∈ a)

for ideals a in a ring of prime characteristic p > 0, the preceding ideal membership may 
hence be written as

ϕp(pf X) ∈ Pfn−2(X)[p] S/(p, pf X)S.

Applying the specialization in the proof of Theorem 6.2, X may be replaced by

X ′′ :=
(
X ′ 0
0 Ω

)
, where Ω :=

(
0 1
−1 0

)
,

implying that

ϕp(pf X ′) ∈ Pfn−2(X ′′)[p] S′/(p, pf X ′)S′.

But

Pfn−2(X ′′) = Pfn−4(X ′) =
((∂ pf X ′

∂xij

)
: 1 � i < j � n− 2

)
,

contradicting the inductive hypothesis. �
7. Determinantal hypersurfaces

Let K be an infinite field. Let Y and Z be n × (n − 1) and (n − 1) × n matrices of 
indeterminates respectively, and set T := K[Y, Z]. The general linear group GLn−1(K)
acts K-linearly on T where, for M ∈ GLn−1(K), one has

M :
{
Y 	−→ YM−1

Z 	−→ MZ.

By [8, §3] or [10, Theorem 4.1], the invariant ring for this action is generated over K by 
the entries of the product matrix Y Z. This invariant ring is isomorphic to K[X]/(detX), 
where X is an n ×n matrix of indeterminates. When K has characteristic zero, the ring of 
differential operators on the invariant ring is described explicitly in [18, IV 1.9, Case A].

We complete the proof of Theorem 1.2 (a). In view of Theorem 3.15 and Lemma 4.1, 
it suffices to prove:

Theorem 7.1. Let X be an n × n matrix of indeterminates over Z, where n � 3. Fix a 
prime integer p > 0, and let ϕp be the standard p-derivation on S := Z[X] with respect 
to X. Take a to be the ideal (x12, . . . , x1n, x22, . . . , x2n) R, where R := S/(detX). Then
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[
ϕp(detX)

(x12 · · ·x1nx22 · · ·x2n)p

]
∈ H2n−2

a (R)

is a nonzero p-torsion element; moreover, its image in H2n−2
a (R/pR) is nonzero.

In particular, the local cohomology module H2n−2
a (R) contains a nonzero p-torsion 

element for each prime integer p > 0.

Proof. We first show that the proof of the theorem reduces to the case n = 3. Fix p. 
Suppose that the image of the displayed element in H2n−2

a (R/pR) is zero. Then there 
exists an integer k � 0 such that in the polynomial ring S one has

ϕp(detX)(x12 · · ·x1nx22 · · ·x2n)k ∈
(
p, detX, xp+k

12 , . . . , xp+k
1n , xp+k

22 , . . . , xp+k
2n )S.
(7.1.1)

For i = 4, . . . , n, specialize xii 	−→ 1 and xij 	−→ 0 for j = i. The image of X after 
specialization has the form (

X ′ ∗
0 I

)
,

where X ′ denotes the upper left 3 × 3 submatrix of X, and I is the size n − 3 identity 
matrix. Note that detX specializes to detX ′, and ϕp(detX) to ϕp(detX ′). Hence the 
ideal membership (7.1.1) specializes to

ϕp(detX ′)(x12 · · ·x1nx22 · · ·x2n)k ∈
(
p, detX ′, xp+k

12 , . . . , xp+k
1n , xp+k

22 , . . . , xp+k
2n

)
S′,

with S′ the image of S. Since the indeterminates x14, . . . , x1n, x24, . . . , x2n do not occur 
in the polynomials detX ′ and ϕp(detX ′), the ideal membership above implies

ϕp(detX ′)(x12x13x22x23)k ∈
(
p, detX ′, xp+k

12 , xp+k
13 , xp+k

22 , xp+k
23

)
S′.

Specializing xij 	−→ 0 for i � 4 and also for j � 4, we reduce to the case n = 3; 
specifically, it suffices to consider

X :=
(
x11 x12 x13
x21 x22 x23
x31 x32 x33

)

and S = Z[X], in which case (7.1.1) reads

ϕp(detX)(x12x13x22x23)k ∈
(
p, detX, xp+k

12 , xp+k
13 , xp+k

22 , xp+k
23

)
S. (7.1.2)

Specialize x31 	−→ 0. Using X ′′ for the image of X, one has

detX ′′ = −(x21x33)x12 + (x21x32)x13 + (x11x33)x22 − (x11x32)x23.
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In the hypersurface

R′ := Z[x11, x12, x13, x21, x22, x23, x32, x33]/(detX ′′),

set

λ := 1
p

(
− xp

21x
p
33x

p
12 + xp

21x
p
32x

p
13 + xp

11x
p
33x

p
22 − xp

11x
p
32x

p
23
)
.

Then (7.1.2) implies that

λ(x12x13x22x23)k ∈
(
xp+k

12 , xp+k
13 , xp+k

22 , xp+k
23

)
R′/pR′.

Take the Z5-grading on R′/pR′ defined by

deg x11 = (0, 0, 0, 1, 0)
deg x12 = (1, 0, −1, 0, −1)
deg x13 = (1, −1, 0, 0, −1)
deg x21 = (0, 0, 0, 0, 1)
deg x22 = (1, 0, −1, −1, 0)
deg x23 = (1, −1, 0, −1, 0)
deg x32 = (0, 1, 0, 0, 0)
deg x33 = (0, 0, 1, 0, 0)

and note that λ is homogeneous of degree (p, 0, 0, 0, 0). Hence

deg λ(x12x13x22x23)k = (p + 4k, −2k, −2k, −2k, −2k).

Fix a homogeneous equation

λ(x12x13x22x23)k = αxp+k
12 + βxp+k

13 + γxp+k
22 + δxp+k

23

with α, β, γ, δ in R′/pR′. The element α has degree

(3k, −2k, p− k, −2k, p− k).

Let μ be a monomial of the above degree. Examining the second and fourth components 
of the degree, the exponents on x13 and x23 in μ add up to at least 2k, as do the exponents 
on x22 and x23. Bearing in mind the first component, μ must be a multiple of xk

23. A 
similar analysis for β, γ, and δ shows that

λ(x12x13x22x23)k ∈
(
xk

23x
p+k
12 , xk

22x
p+k
13 , xk

13x
p+k
22 , xk

12x
p+k
23

)
R′/pR′.

Next, specialize x11 and x33 to 1 and x21 and x32 to −1, in which case one has
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λ′(x12x13x22x23)k ∈
(
xk

23x
p+k
12 , xk

22x
p+k
13 , xk

13x
p+k
22 , xk

12x
p+k
23

)
B, (7.1.3)

where λ′ denote the image of λ under the specialization, and B is the image of R′/pR′, 
i.e.,

B := Z/pZ[x12, x13, x22, x23]/(x12 + x13 + x22 + x23),

which we identify with the polynomial ring Z/pZ[x13, x22, x23]. With this identification,

λ′ = 1
p

(
xp

12 + xp
13 + xp

22 + xp
23
)

= 1
p

(
(−x13 − x22 − x23)p + xp

13 + xp
22 + xp

23
)

= ±xp−1
13 x22 + · · ·

is a polynomial in Z/pZ[x13, x22, x23] in which each indeterminate occurs with exponents 
strictly less than p. The ring B is a free module over its subring

Bp = Z/pZ[xp
13, xp

22, xp
23],

with a basis given by monomials in x13, x22, x23, with each exponent less than p. Let

π : B −→ Bp

be the Bp-linear map that sends xp−1
13 x22 to 1 and other basis elements to 0. Specifically,

π(λ′) = ±1.

Consider (7.1.3) where, without loss of generality, the exponent k is taken to be a power 
of p, and apply π. Then, in the ring Bp, one has

(x12x13x22x23)k ∈
(
xk

23x
p+k
12 , xk

22x
p+k
13 , xk

13x
p+k
22 , xk

12x
p+k
23

)
, (7.1.4)

where we retain the notation xp
12 = −(xp

13 + xp
22 + xp

23) for the sake of symmetry; note 
that Bp may be regarded as a polynomial ring in any three of the elements

xp
12, xp

13, xp
22, xp

23.

The ideal membership (7.1.4) implies the existence of elements a, b, c, d in Bp with

(x12x13x22x23)k = axk
23x

p+k
12 + bxk

22x
p+k
13 + cxk

13x
p+k
22 + dxk

12x
p+k
23 .

Rearranging terms, one has

xk
12((x13x22x23)k − axk

23x
p
12 − dxp+k

23 ) ∈ (xk
22x

p+k
13 , xk

13x
p+k
22 ).
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But xk
12 is a nonzerodivisor in the ring Bp/(xk

22x
p+k
13 , xk

13x
p+k
22 ), so the above implies that

(x13x22x23)k ∈ (xk
23x

p
12, xk

22x
p+k
13 , xk

13x
p+k
22 , xp+k

23 ).

Similarly, using that xk
13 is a nonzerodivisor modulo in Bp/(xk

23x
p
12, x

p+k
23 ), one obtains

(x22x23)k ∈ (xk
23x

p
12, xk

22x
p
13, xp+k

22 , xp+k
23 ).

Continuing, xk
22 is a nonzerodivisor in Bp/(xk

23x
p
12, x

p+k
23 ), yielding

xk
23 ∈ (xk

23x
p
12, xp

13, xp
22, xp+k

23 ),

and finally, with xk
23 being a nonzerodivisor in Bp/(xp

13, x
p
22), one obtains the contradic-

tion

1 ∈ (xp
12, xp

13, xp
22, xp

23). �
Determinantal hypersurfaces, in general, do not admit a lift of Frobenius modulo p2:

Theorem 7.2. Let X be an n × n matrix of indeterminates over Z, where n � 3. Fix a 
prime integer p > 0. Set S := Z[X] and R := S/(detX). Then the Frobenius endomor-
phism on R/pR does not lift to an endomorphism of R/p2R.

Proof. As in the proof of Theorem 7.1, one first reduces to the case n = 3 as follows. 
Suppose that the Frobenius endomorphism on R/pR lifts to R/p2R. Then, by Proposi-
tion 2.5,

ϕp(detX) ∈
((∂ detX

∂xij

)p
: 1 � i, j � n

)
S/(p, detX)S.

Each partial derivative above is, up to sign, the determinant of an (n − 1) × (n − 1)
submatrix of X, so the above may be restated as

ϕp(detX) ∈ In−1(X)[p] S/(p, detX)S, (7.2.1)

where In−1(X) denotes the ideal generated by the size n − 1 minors of X. Applying the 
specialization S −→ S′ in the proof of Theorem 7.1, one has

X 	−→
(
X ′ ∗
0 I

)
,

with I denoting the identity matrix of size n − 3. Hence In−1(X)S′ = I2(X ′), and the 
ideal membership (7.2.1) specializes to

ϕp(detX ′) ∈ I2(X ′)[p] S′/(p, detX ′)S′,
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which is essentially the n = 3 case.
Assume n = 3. Specializing x13 and x31 to 0, the resulting matrix

X ′′ :=
(
x11 x12 0
x21 x22 x23
0 x32 x33

)

has determinant x11x22x33 − x11x23x32 − x12x21x33, and the ideal membership implies

ϕp(detX ′′) ∈ I2(X ′′)[p] (7.2.2)

in the ring

Z/pZ[x11, x12, x21, x22, x23, x32, x33]/(detX ′′).

Using the Z5-grading in the proof of Theorem 7.1, detX ′′ has degree (p, 0, 0, 0, 0), so we 
obtain an ideal membership in the subring generated by elements of degree (∗, 0, 0, 0, 0), 
namely the ring

Z/pZ[x11x22x33, x11x23x32, x12x21x33]/(x11x22x33 − x11x23x32 − x12x21x33)
∼= Z/pZ[x11x23x32, x12x21x33].

Working with the degree of each generator of I2(X ′′), the statement (7.2.2) gives

1
p

(
(x11x23x32 +x12x21x33)p−(x11x23x32)p−(x12x21x33)p

)
∈
(
x11x23x32, x12x21x33

)[p]
in the ring above, which is readily seen to be false. �
8. Symmetric determinantal hypersurfaces

Let Z be an (n −1) ×n matrix of indeterminates over an infinite field K of characteristic 
other than two. Set T := K[Z]. The orthogonal group On−1(K) acts K-linearly on T
with

M : Z 	−→ MZ for M ∈ On−1(K).

By [8, §5], the invariant ring for this action is the K-algebra generated by the entries of 
the product matrix ZtrZ, and is isomorphic to K[X]/(detX) for X an n ×n symmetric 
matrix of indeterminates; see [24, §5] for the case where K has characteristic two. When 
K has characteristic zero, the ring of differential operators on this invariant ring is 
described explicitly in [18, IV 1.9 Case B].
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Theorem 8.1. Let X be a symmetric 3 × 3 matrix of indeterminates over Z, and set R
to be the hypersurface Z[X]/(detX). Then, for each odd prime integer p, the map

DR −→ DR/pR

is surjective.

The map displayed above is not surjective when p = 2, see Theorem 8.5.

Proof. In view of Proposition 3.13, it suffices to show that each odd prime p acts in-
jectively on the local cohomology module H6

ΔR
(PR). This is unaffected by inverting the 

integer 2, so we work instead with the rings Z2 = Z[1/2] and

R2 = Z2[X]/(detX).

Let T := Z[u, v, w, x, y, z] be a polynomial ring, and T2 = T [1/2]. It is readily checked 
that the symmetric matrix( 2ux uy + vx uz + wx

uy + vx 2vy vz + wy
uz + wx vz + wy 2wz

)

has determinant 0. By a dimension argument, it follows that R2 is isomorphic to the 
subring

Z2[ux, vy, wz, uy + vx, uz + wx, vz + wy].

of T2 and, indeed, we identify R2 with this subring.
We claim that R2 is a direct summand of T2 as an R2-module. To see this, first 

consider the Z-grading on T2 where the indeterminates u, v, w have degree 1, and x, y, z
have degree −1. It follows that the degree 0 component of T2, i.e., the ring

B := Z2[ux, uy, uz, vx, vy, vz, wx, wy, wz],

is a direct summand of T2 as a B-module. Next, let G := 〈σ〉 be a group of order 2 acting 
on T2, where σ is the involution with

u 	−→ x, v 	−→ y, w 	−→ z.

The action of G on T2 restricts to an action on the subring B, and

R2 ⊆ BG.

We claim that equality holds in the above display. The equation
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(uy)2 − (uy)(uy + vx) + (ux)(vy) = 0

shows that uy is integral over R2; similarly one sees that B is integral over R2. Moreover, 
it is readily checked that at the level of fraction fields one has

frac(R2)(uy) = frac(B),

so that [frac(B) : frac(R2)] � 2. Hence

frac(R2) = frac
(
BG
)
.

Each element of BG is integral over R2, and belongs to the fraction field of R2; but R2
is normal, so we conclude that R2 = BG.

Since 2 is a unit in R2, the Reynolds operator B −→ R2 shows that R2 is a direct 
summand of B as an R2-module. It follows that R2 is a direct summand of T2 as an 
R2-module. At this stage, one may invoke [14, Theorem 6.3] to conclude that the map 
DR −→ DR/pR is surjective for almost all integer primes p; we shall, however, go 
further and prove that the map is surjective for each odd prime integer p. Fix such a 
prime p; it suffices to prove that p acts injectively on the local cohomology module

H6
Δ(R2 ⊗Z2 R2),

where Δ is the diagonal ideal in R2 ⊗Z2 R2. Since R2 is a direct summand of T2 as an 
R2-module, it follows that R2⊗Z2 R2 is a direct summand of T2⊗Z2 T2 as an R2⊗Z2 R2-
module. It suffices to show that p acts injectively on H6

Δ(C), where C := T2 ⊗Z2 T2 is 
identified with

Z2[u, v, w, x, y, z, u′, v′, w′, x′, y′, z′]

and Δ is the ideal of C generated by the elements

ux− u′x′, vy − v′y′, wz − w′z′,

uy + vx− u′y′ − v′x′, uz + wx− u′z′ − w′x′, vz + wy − v′z′ − w′y′.

Consider the ideals of C as below:

p := I2

(
u v w x′ y′ z′

u′ v′ w′ x y z

)
and q := I2

(
u v w u′ v′ w′

x′ y′ z′ x y z

)
.

Since p and q are generated by minors of matrices of indeterminates, each is prime; 
moreover, p and q each contain Δ. It is a straightforward—albeit slightly tedious—
verification that p2q ⊆ Δ. It then follows that

p ∩ q = rad Δ.
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Since Hk
p (C) = 0 = Hk

q (C) for integers k other than 5 and 9, the Mayer-Vietoris sequence

−−→ H6
p(C) ⊕H6

q (C) −−→ H6
Δ(C) −−→ H7

p+q(C) −−→ H7
p(C) ⊕H7

q (C) −−→

gives an isomorphism H6
Δ(C) ∼= H7

p+q(C). It now suffices to check that p acts injectively 
on H7

p+q(C). We claim that the ideal (p + q)C/pC has height 7. To see this, note that 
there is an isomorphism

C/(p + q + pC) −→ Z/pZ[x1, x2] # Z/pZ[y1, y2] # Z/pZ[z1, z2, z3],

with # denoting the Segre product of graded rings, given by

u 	−→ x1y1z1, v 	−→ x1y1z2, w 	−→ x1y1z3,

u′ 	−→ x1y2z1, v′ 	−→ x1y2z2, w′ 	−→ x1y2z3,

x 	−→ x2y2z1, y 	−→ x2y2z2, z 	−→ x2y2z3,

x′ 	−→ x2y1z1, y′ 	−→ x2y1z2, z′ 	−→ x2y1z3.

It follows that H6
p+q(C/pC) = 0, which gives the desired injectivity using the exactness 

of

−−−−→ H6
p+q(C/pC) −−−−→ H7

p+q(C) p−−−−→ H7
p+q(C) −−−−→ H7

p+q(C/pC). �
Remark 8.2. Over a field K of odd characteristic, the orthogonal group O2(K) is linearly 
reductive: to see this, first enlarge K so that it contains i :=

√
−1. The special orthogonal 

group SO2(K) is then isomorphic to a torus K×, as seen by conjugating elements of

SO2(K) =
{(

a b
−b a

) ∣∣∣ a2 + b2 = 1, a, b ∈ K

}

by the matrix 
(

1 i
i 1

)
, so as to obtain

{(
a− ib 0

0 a + ib

) ∣∣∣ a2 + b2 = 1, a, b ∈ K

}
=
{(

t 0
0 t−1

) ∣∣∣ t ∈ K×
}
.

Since SO2(K) is a normal subgroup of O2(K) with index 2, the claim follows by [23, §3].
If Z is 2 × n matrix of indeterminates over a field K of odd characteristic, the fact 

that O2(K) is linearly reductive may be used to conclude that K[ZtrZ] is a direct sum-
mand of the polynomial ring K[Z] as a K[ZtrZ]-module. However, given the arithmetic 
nature of the paper, it is more advantageous to construct an explicit splitting over Z2[i], 
as we carry out in the remark below, and more generally in the proof of Theorem 9.1 (c).
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Remark 8.3. Let R be the hypersurface Z[X]/(detX), where X is a symmetric 3 × 3
matrix of indeterminates. Then R may be identified with Z[ZtrZ], for Z a 2 × 3 matrix 
of indeterminates. Set T := Z[Z]. Using arguments from the proof of Theorem 8.1, we 
show that R2 = R[1/2] is a direct summand of T2 = T [1/2] as an R2-module.

Take i =
√
−1 in C. It suffices to prove that R2[i] is a direct summand of T2[i] as 

an R2[i]-module: indeed, if � : T2[i] −→ R2[i] is a splitting of R2[i] ↪−→ T2[i], then

1
2(� + �) : T2 −→ R2,

with � denoting the complex conjugate, is a splitting of R2 ↪−→ T2. In the ring T2[i], set

u = z11 + iz21, x = z11 − iz21,

v = z12 + iz22, y = z12 − iz22,

w = z13 + iz23, z = z13 − iz23,

so that T2[i] = Z2[i][u, v, w, x, y, z]. But R2[i] is the Z2[i]-algebra generated by the entries 
of

ZtrZ =

⎛⎝ z2
11 + z2

21 z11z12 + z21z22 z11z13 + z21z23
z11z12 + z21z22 z2

12 + z2
22 z12z13 + z22z23

z11z13 + z21z23 z12z13 + z22z23 z2
13 + z2

23

⎞⎠
= 1

2

( 2ux uy + vx uz + wx
uy + vx 2vy vz + wy
uz + wx vz + wy 2wz

)
.

The proof of Theorem 8.1 shows that R2[i] is a direct summand of T2[i] as an R2[i]-
module.

To study the case of symmetric matrices in characteristic 2, we record the following 
variant of Lemma 4.1:

Lemma 8.4. Let S := Z[x] be a polynomial ring in the indeterminates x := x0, . . . , xd. 
Fix a prime integer p > 0, and let f(x) ∈ S be a polynomial of the form

f(x) = g(x) + ph(x),

where g(x) ∈ (x0, . . . , xm)S for some fixed integer m < d, and h(x) ∈ S is a poly-
nomial in the indeterminates xm+1, . . . , xd. Set R := S/(f(x)), and let ϕp denote the 
p-derivation of PS as in Theorem 3.15. Then, if the local cohomology element[

ϕp

(
g(x)

)
(x0 · · ·xm)p

]
∈ Hm+1

(x0, ..., xm)(R/pR)
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is nonzero, so is the element[
ϕp

(
f(y) − f(x)

)∏d
i=0(yi − xi)p

]
∈ Hd+1

ΔR
(PR/pPR).

Proof. Suppose the displayed element of Hd+1
ΔR

(PR/pPR) is zero. Then there exists an 
integer k � 0 such that

Λp

(
f(y) − f(x)

)
−
(
f(y) − f(x)

)p
p

(y0 − x0)k · · · (yd − xd)k

∈
(
p, f(y), f(x), (y0 − x0)p+k, . . . , (yd − xd)p+k

)
PS .

Specialize xi 	−→ 0 for 0 � i � m, in which case f(x) specializes to ph(x), so

Λp

(
f(y) − ph(x)

)
−
(
f(y) − ph(x)

)p
p

yk0 · · · ykm (ym+1 − xm+1)k · · · (yd − xd)k

∈
(
p, f(y), yp+k

0 , . . . , yp+k
m , (ym+1 − xm+1)p+k, . . . , (yd − xd)p+k

)
.

Since ym+1 − xm+1, . . . , yd − xd are algebraically independent over

Z[y]/(p, f(y), yp+k
0 , . . . , yp+k

m ),

it follows that

Λp

(
f(y) − ph(x)

)
−
(
f(y) − ph(x)

)p
p

yk0 · · · ykm

∈
(
p, f(y), yp+k

0 , . . . , yp+k
m , (ym+1 − xm+1)p, . . . , (yd − xd)p

)
.

Next, specialize xi 	−→ yi for m + 1 � i � d. Then ph(x) specializes to ph(y), giving

Λp

(
g(y)

)
−
(
g(y)

)p
p

yk0 · · · ykm ∈
(
p, f(y), yp+k

0 , . . . , yp+k
m

)
Z[y],

where Λp is the standard lift of Frobenius on Z[y] with respect to y. Renaming yi 	−→ xi

for each i, it follows that 
[

ϕp

(
g(x)

)
(x0 · · ·xm)p

]
∈ Hm+1

(x0, ..., xm)(R/pR) is zero. �

Theorem 8.5. Let X be a symmetric 3 × 3 matrix of indeterminates over Z, and set R
to be the hypersurface Z[X]/(detX). Then the Frobenius trace on R/2R does not lift to 
a differential operator on R/4R.
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Proof. Set S := Z[X]. Modulo the ideal (2, x11, x22, x33), the image of X is a 3 × 3
alternating matrix, and hence has determinant zero; it follows that

detX ∈ (2, x11, x22, x33)S.

Indeed, detX = g(x) + 2h(x), where

g(x) := x11x22x33 − x11x
2
23 − x22x

2
13 − x33x

2
12 and h(x) := x12x13x23.

In light of Lemma 8.4, it suffices to check that[
ϕ2
(
g(x)

)
(x11x22x33)2

]
∈ H3

(x11, x22, x33)(R/2R)

is nonzero. We shall go a step further and prove that while detX ≡ g(x) mod 2,[
ϕ2
(
detX

)
(x11x22x33)2

]
= 0 =

[
ϕ2
(
g(x)

)
(x11x22x33)2

]
.

It is a straightforward calculation that modulo the ideal (x2
11, x

2
22, x

2
33)R/2R, one has

ϕ2
(
detX

)
≡ x11x

2
23x22x

2
13 + x2

12x
2
13x

2
23 and ϕ2

(
g(x)

)
≡ x11x

2
23x22x

2
13.

In the ring R/2R, we set

a := x11x
2
23, b := x22x

2
13, c := x33x

2
12, d := x11x22x33, e := x12x13x23.

Note that a + b + c = d and abc = de2 in R/2R. Working modulo (x3
11, x

3
22, x

3
33)R/2R,

ϕ2
(
detX

)
x11x22x33 ≡ (ab + e2)d ≡ ab(d + c) ≡ ab(a + b) ≡ a3 + b3 + (a + b)3.

Since a ∈ (x11)R/2R, and b ∈ (x22)R/2R, and a + b = c + d ∈ (x33)R/2R, it follows 
that ϕ2

(
detX

)
x11x22x33 ∈ (x3

11, x
3
22, x

3
33)R/2R. This proves the first assertion.

Next, suppose 
[

ϕ2
(
g(x)

)
(x11x22x33)2

]
= 0. Then there exists an integer k � 0 such that

x11x
2
23x22x

2
13 (x11x22x33)k ∈

(
x2+k

11 , x2+k
22 , x2+k

33
)
R/2R. (8.5.1)

Consider the Z2-grading on R/2R defined by

deg x11 = (2, 0), deg x23 = (−1, 0),

deg x22 = (0, 2), deg x13 = (0,−1),

deg x33 = (−2,−2), deg x12 = (1, 1).
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The element on the left in (8.5.1) has degree (0, 0), so we work in the subring [R/2R](0,0), 
which is the Z/2Z-algebra generated by

x11x
2
23, x22x

2
13, x33x

2
12, x11x22x33, x12x13x23.

Using c = d − a − b, this subring may be identified with

B := Z/2Z[a, b, d, e]/
(
ab(d− a− b) − de2).

In the hypersurface B, (8.5.1) implies that

abdk ∈ (a, d)2+k + (b, d)2+k + (c, d)2+k ⊆ (a2, b2, dk+1).

But the image of abdk is nonzero in

B/(a2, b2, dk+1, ab− e2) = Z/2Z[a, b, d, e]/(a2, b2, dk+1, ab− e2),

which is a contradiction. �
Lastly, we examine the existence of Frobenius lifts for hypersurfaces defined by deter-

minants of symmetric matrices of indeterminates:

Theorem 8.6. Let X be an n × n symmetric matrix of indeterminates over Z. Set S :=
Z[X] and R := S/(detX).

(a) If n = 3 and p is an odd prime integer, then the Frobenius endomorphism on R/pR

lifts to an endomorphism of R/p2R.
(b) If n � 3, then the Frobenius endomorphism on R/2R does not lift to an endomor-

phism of R/4R.
(c) For n � 4, and p an odd prime integer, the Frobenius endomorphism on R/pR does 

not lift to an endomorphism of R/p2R.

Proof. (a) In the case n = 3, the ring R[1/2] is a direct summand, as an R[1/2]-module, 
of a polynomial ring over Z[1/2], see Remark 8.3. But then, for p odd, the ring R/p2R is 
a direct summand, as an R/p2R-module, of a polynomial ring over Z/p2Z. The existence 
of a Frobenius lift now follows using [31, Lemma 4.1].

In the remaining cases, in view of Proposition 2.5, we need to verify that

ϕp(detX) /∈
(
p, detX,

(∂ detX
∂xij

)p
: 1 � i � j � n

)
S. (8.6.1)

A partial derivative of the form ∂ detX/∂xii is the determinant of a size n − 1 principal 
submatrix of X, whereas, for i < j, the partial derivative ∂ detX/∂xij is, aside from a 
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sign, twice the determinant of a size n − 1 submatrix. This necessitates the distinction 
between the cases where p equals 2, and where p is an odd prime.

For (b), suppose (8.6.1) fails for some n � 3. In view of the above paragraph, one has

ϕ2(detX) ∈
(

2, detX,
(∂ detX

∂xii

)p
: 1 � i � n

)
S. (8.6.2)

Specialize the symmetric matrix X as

X 	−→
(
X ′ 0
0 I

)
, where X ′ :=

( 0 x12 x13
x12 0 x23
x13 x23 0

)
,

and I is the size n − 3 identity matrix. Then detX specializes to detX ′ = 2x12x13x23, 
so ϕ2(detX) specializes to

ϕ2(detX ′) = 1
2
(
2x2

12x
2
13x

2
23 − (2x12x13x23)2

)
= −x2

12x
2
13x

2
23.

With S′ denoting the image of S, the ideal membership (8.6.2) implies that

x2
12x

2
13x

2
23 ∈

(
x2

12, x2
13, x2

23
)[2]

S′/2S′,

which is a contradiction.
For (c), suppose (8.6.1) fails for some n � 4, and p odd. Then

ϕp(detX) ∈ In−1(X)[p] S/(p, detX)S, (8.6.3)

where In−1(X) denotes the ideal generated by the size n − 1 minors of X. Specialize

X 	−→
(
X ′ 0
0 I

)
, where X ′ :=

⎛⎜⎝ 0 x12 x13 x14
x12 0 x23 x24
x13 x23 0 x34
x14 x24 x34 0

⎞⎟⎠ ,

and I is the size n − 4 identity matrix. Then In−1(X)S′ = I3(X ′), with S′ denoting the 
image of S, and (8.6.3) specializes to

ϕp(detX ′) ∈ I3(X ′)[p] S′/(p, detX ′)S′. (8.6.4)

Consider the Z4-grading on S′/(p, detX ′)S′ defined by

deg x12 = e1 + e4, deg x34 = e4 − e1,

deg x13 = e2 + e4, deg x24 = e4 − e2,

deg x23 = e3 + e4, deg x14 = e4 − e3,
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under which detX ′ has degree (0, 0, 0, 4), and ϕp(detX ′) has degree (0, 0, 0, 4p). Let Δij

denote the determinant of the submatrix of X ′ obtained by deleting the i-th row and 
j-th column. Then

deg Δij = 4e4 − deg xij for i < j,

whereas

deg Δ11 = (−1,−1, 1, 3), deg Δ33 = (1,−1,−1, 3)

deg Δ22 = (−1, 1,−1, 3), deg Δ44 = (1, 1, 1, 3).

Hence a homogeneous equation for (8.6.4) forces

ϕp(detX ′) ∈
(
xp
ijΔ

p
ij : 1 � i < j � 4

)
S′/(p, detX ′)S′.

It is readily checked that

x12Δ12 = x34Δ34, x13Δ13 = x24Δ24, x14Δ14 = x23Δ23,

so

ϕp(detX ′) ∈
(
xp

12Δ
p
12, xp

13Δ
p
13)S′/(p, detX ′)S′. (8.6.5)

Since the elements in question have degree of the form (0, 0, 0, ∗), this ideal membership 
holds in the subring [S′/(p, detX ′)S′](0,0,0,∗), which may be identified with

B := Z/pZ[a, b, c]/(a2 + b2 + c2 − 2ab− 2ac− 2bc),

where a := x12x34, b := x13x24, and c := x14x23. In this ring, (8.6.5) implies that

1
p

(
a2p + b2p + c2p − 2apbp − 2apcp − 2bpcp

)
∈
(
a2 − ab− ac, b2 − ab− bc

)[p]
B.

Enlarge the ring B by adjoining u :=
√
a and v :=

√
b, in which case the defining 

equation of B factors as (
c− (u + v)2

)(
c− (u− v)2

)
We work modulo the first factor c − (u + v)2, i.e., in the polynomial ring

Z/pZ[u, v],

where c is identified with (u + v)2. The ideal membership then implies that
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1
p

(
u4p + v4p + (u + v)4p − 2u2pv2p − 2u2p(u + v)2p − 2v2p(u + v)2p

)
is a linear combination of (u2v2 + u3v)p and (u2v2 + uv3)p with coefficients from Z/pZ. 
This is not possible, for example by examining the coefficient of u3p−1vp+1; the interested 
reader—if one remains—may verify that this coefficient is 8. �
9. Pfaffian, determinantal, and symmetric determinantal rings

We extend some earlier results to rings defined by minors and Pfaffians of arbitrary 
size; the following theorem subsumes Theorem 1.4 and Corollary 1.5.

Theorem 9.1. Let V denote either the ring of integers, or the ring of p-adic integers Ẑ(p).

(a) Let R := V [X]/ Pft(X), where X is an n × n alternating matrix of indeterminates, 
and Pft(X) the ideal generated by the Pfaffians of the size t principal submatrices 
of X, where t is even, and n � t � 2. Then R is a direct summand of a polynomial 
ring over V , as an R-module, if and only t = 2.

(b) Let R := V [X]/It(X), where X is an m × n matrix of indeterminates, and It(X)
the ideal generated by the size t minors of X, where min{m, n} � t � 2. Then R is 
a direct summand of a polynomial ring over V , as an R-module, if and only t = 2.

(c) Let R := V [X]/It(X), where X is a symmetric n × n matrix of indeterminates, 
and It(X) the ideal generated by the size t minors of X, where n � t � 2. Then R
is a direct summand of a polynomial ring over V , as an R-module, if and only t = 2
or if t = 3 and the prime p is odd in the case V = Ẑ(p).

In each of the case above where R is not a direct summand of a polynomial ring, the 
Frobenius endomorphism on R/pR does not lift to an endomorphism of R/p2R.

Proof. In each case, when proving that R is not a direct summand of any polynomial ring 
over V , or that the Frobenius endomorphism on R/pR does not lift to an endomorphism 
of R/p2R, it suffices to consider the case where V = Ẑ(p). Next, reduce to the case where 
X is a t × t matrix, since such a matrix may be enlarged by adding additional rows or 
columns of indeterminates, with a retraction from the larger determinantal ring to the 
hypersurface obtained by killing the additional indeterminates. Thus, we may assume in 
each case that R is a hypersurface over V . The three cases then follow from Theorem 6.3, 
Theorem 7.2, and Theorem 8.6 respectively.

It remains to settle the cases where R is a direct summand of a polynomial ring over 
V . When t = 2 in (a), one simply has R = V . In case (b), when t = 2, consider the 
polynomial ring T := V [y1, . . . , ym, z1, . . . , zn]. It is readily seen that xij 	−→ yizj induces 
an inclusion of V -algebras. The ring T admits a Z-grading where V has degree 0, each 
yi has degree 1, and each zj has degree −1. The projection to the degree 0 component
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T0 = V [yizj : 1 � i � m, 1 � j � n] ∼= R

gives the R-linear splitting.
In case (c), when t = 2, the ring R may be identified with the Veronese subring

V [yiyj : 1 � i � j � n]

which is a direct summand of the polynomial ring V [y1, . . . , yn]. Lastly, when t = 3, 
the ring Z2[X]/I3(X) may be identified with Z2[ZtrZ], where Z is a 2 × n matrix of 
indeterminates and Z2 = Z[1/2]; we show that

Z2[ZtrZ] −→ Z2[Z]

is Z2[ZtrZ]-split. As in Remark 8.3, one may adjoin i =
√
−1 and perform a change of 

variables, which reduces the problem to proving that the Z2-algebra generated by the 
entries of the product matrix⎛⎜⎜⎝

z1 y1
z2 y2
...

...
zn yn

⎞⎟⎟⎠(y1 y2 . . . yn
z1 z2 . . . zn

)
=

⎛⎜⎜⎝
2y1z1 y1z2 + y2z1 . . . y1zn + ynz1

y1z2 + y2z1 2y2z2 . . . y2zn + ynz2
...

...
. . .

...
y1zn + ynz1 y2zn + ynz2 . . . 2ynzn

⎞⎟⎟⎠
is a direct summand of the polynomial ring T2 := Z2[y1, . . . , yn, z1, . . . , zn]. For this, as 
in the proof of Theorem 8.1, note that the ring

B := Z2[yizj : 1 � i, j � n]

is a direct summand of T2 as a B-module, and that the involution

yi 	−→ zi

on T2 restricts to an action on the subring B, with the invariant ring being the Z2-algebra 
generated by the entries of the product matrix. �
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