
Advances in Mathematics 458 (2024) 109978
Contents lists available at ScienceDirect

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Frobenius representation type for invariant rings of 
finite groups ✩

Mitsuyasu Hashimoto a, Anurag K. Singh b,∗

a Department of Mathematics, Osaka Metropolitan University, Sumiyoshi-ku, 
Osaka 558–8585, Japan
b Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake 
City, UT 84112, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 February 2024
Received in revised form 16 July 
2024
Accepted 9 October 2024
Available online xxxx
Communicated by Karen Smith

Dedicated to Professor Kei-ichi 
Watanabe, in celebration of his 80th 
birthday

MSC:
primary 13A50
secondary 13A35

Keywords:
Ring of invariants
Finite Frobenius representation type
F -pure rings

Let V be a finite rank vector space over a perfect field of 
characteristic p > 0, and let G be a finite subgroup of 
GL(V ). If V is a permutation representation of G, or more 
generally a monomial representation, we prove that the ring of 
invariants (SymV )G has finite Frobenius representation type. 
We also construct an example with V a finite rank vector 
space over the algebraic closure of the function field F3(t), 
and G an elementary abelian subgroup of GL(V ), such that 
the invariant ring (SymV )G does not have finite Frobenius 
representation type.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

✩ M.H. was partially supported by JSPS KAKENHI Grant number 20K03538 and MEXT Promotion 
of Distinctive Joint Research Center Program JPMXP0723833165; A.K.S. was supported by NSF grants 
DMS 2101671 and DMS 2349623.
* Corresponding author.

E-mail addresses: mh7@omu.ac.jp (M. Hashimoto), singh@math.utah.edu (A.K. Singh).
https://doi.org/10.1016/j.aim.2024.109978
0001-8708/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, 
and similar technologies.

https://doi.org/10.1016/j.aim.2024.109978
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2024.109978&domain=pdf
mailto:mh7@omu.ac.jp
mailto:singh@math.utah.edu
https://doi.org/10.1016/j.aim.2024.109978


2 M. Hashimoto, A.K. Singh / Advances in Mathematics 458 (2024) 109978
1. Introduction

The study of rings of finite Frobenius representation type was initiated by Smith 
and Van den Bergh [29], as part of an attack on the conjectured simplicity of rings of 
differential operators on invariant rings; indeed, using this notion, they proved that if 
R is a graded direct summand of a polynomial ring over a perfect field k of positive 
characteristic, e.g., if R is the ring of invariants for a linearly reductive group acting 
linearly on the polynomial ring, then the ring of k-linear differential operators on R is a 
simple ring [29, Theorem 1.3].

A reduced ring R of prime characteristic p > 0, satisfying the Krull-Schmidt theorem, 
has finite Frobenius representation type (FFRT) if there exists a finite set S of R-modules 
such that for each integer e � 0, each indecomposable R-module summand of R1/pe is 
isomorphic to an element of S; the FFRT property and its variations are reviewed in §2. 
Examples of rings with FFRT include Cohen-Macaulay rings of finite representation 
type, graded direct summands of polynomial rings [29, Proposition 3.1.6], and Stanley-
Reisner rings [20, Example 2.3.6]. More recently, Raedschelders, Špenko, and Van den 
Bergh proved that over an algebraically closed field of characteristic p � max{n − 2, 3}, 
the Plücker homogeneous coordinate ring of the Grassmannian G(2, n) has FFRT [23]. 
In another direction, work of Hara and Ohkawa [8] investigates the FFRT property for 
two-dimensional normal graded rings in terms of Q-divisors.

In addition to the original motivation, the FFRT property has found several applica-
tions. Suppose a ring R has FFRT. Then Hilbert-Kunz multiplicities over R are rational 
numbers by [24]; tight closure and localization commute in R, [31]; local cohomology 
modules of the form Hk

a (R) have finitely many associated primes, [30,18,5]. For more on 
the FFRT property, we point the reader towards [1,20,22,25,26,28].

Our goal here is to investigate the FFRT property for rings of invariants of finite 
groups. Let V be a finite rank vector space over a perfect field k of characteristic p > 0, 
and let G be a finite subgroup of GL(V ). In the nonmodular case, that is, when the order 
of G is not divisible by p, the invariant ring SG is a direct summand of the polynomial 
ring S := SymV via the Reynolds operator; it follows by [29, Proposition 3.1.4] that SG

has FFRT. The question becomes more interesting in the modular case, i.e., when p
divides |G|. We prove that if V is a monomial representation of G, then the ring of 
invariants SG has FFRT, Theorem 4.1; this includes the case of a subgroup G of the 
symmetric group Sn, acting on a polynomial ring S := k[x1, . . . , xn] by permuting the 
indeterminates. On the other hand, while it had been expected that rings of invariants 
of reductive groups have FFRT (see for example the abstract of [23]), we prove that this 
is not the case:

Theorem 1.1. Set k to be the algebraic closure of the function field F3(t). Then there is 
an order 9 subgroup G of GL3(k), such that k[x1, x2, x3]G does not have FFRT.
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This is proved as Theorem 3.1; the reader will find that a similar construction may be 
performed over any algebraically closed field k that is not algebraic over Fp. However, 
we do not know if (SymV )G always has FFRT when V is a finite rank vector space over 
Fp, the algebraic closure of Fp.

Returning to the nonmodular case, let k be an algebraically closed field of charac-
teristic p > 0, and V a finite rank k-vector space. Set S := SymV and R := SG, for 
G a finite subgroup of GL(V ) of order coprime to p. The rings S1/q and R1/q admit 
Q-gradings extending the standard N-grading on the polynomial ring S. Let M be a 
Q-graded finitely generated indecomposable R-module. By [29, Proposition 3.2.1], the 
module M(d) is a direct summand of R1/q for some d ∈ Q if and only if

M ∼= (S ⊗k L)G

for some irreducible representation L of G. Let V1, . . . , V� be a complete set of represen-
tatives of the isomorphism classes of irreducible representations of G, and set

Mi := (S ⊗k Vi)G

for i = 1, . . . , �. Then, for each integer e � 0, the decomposition of R1/pe into indecom-
posable R-modules takes the form

R1/pe ∼=
�⊕

i=1

cie⊕
j=1

Mi(dij),

where dij ∈ Q and cie ∈ N. Suppose additionally that G does not contain any pseudo-
reflections; by [12, Theorem 3.4], the generalized F -signature

s(R,Mi) := lim
e−→∞

cie
pe(dimR)

then agrees with

(rankk Vi)/|G|.

By [13, Theorem 5.1], this description of the asymptotic behavior of R1/pe remains 
valid in the modular case. It follows that for the invariant ring R := k[x1, x2, x3]G
in Theorem 1.1, while there exist infinitely many nonisomorphic indecomposable R-
modules that are direct summands of some R1/pe up to a degree shift, almost all are 
“asymptotically negligible.”

In §2, we review some basics on the FFRT property and on equivariant modules; 
these are used in §3 in the proof of Theorem 1.1. In §4, we prove that if V is a monomial 
representation then (SymV )G has FFRT, and also that (SymV )G is F -pure in this case; 
the latter extends a result of Hochster and Huneke [16, page 77] that (SymV )G is F -pure 
when V is a permutation representation. Lastly, in §5, we construct a family of examples 
that are not F -regular or F -pure, but nonetheless have the FFRT property.
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2. Preliminaries

We collect some definitions and results that are used in the sequel.

Krull-Schmidt category. Let k be a perfect field of characteristic p > 0, and R a finitely 
generated positively graded commutative k-algebra, i.e., R is N-graded with [R]0 = k. 
Let RQ grmod denote the category of finitely generated Q-graded R-modules. For mod-
ules M, N in RQ grmod, the module HomR(M, N) again lies in RQ grmod; in particular,

HomRQ grmod(M,N) = [HomR(M,N)]0

is a finite rank k-vector space. Since HomRQ grmod(M, M) = [HomR(M,M)]0 has finite 
rank for each M in RQ grmod, the category RQ grmod is Krull-Schmidt; see [14, §3].

Frobenius twist. Let e be a nonnegative integer. For a k-vector space V , we use eV
to denote the k-vector space that coincides with V as an abelian group, but has the 
left k-action α · v = αpe

v for α ∈ k and v ∈ V , with the right action unchanged. An 
element v ∈ V , when viewed as an element of eV , will be denoted ev, so

eV = {ev | v ∈ V }.

The map v �−→ ev is an isomorphism of abelian groups, but not an isomorphism of 
k-vector spaces in general. Note that α · ev = e(αpe

v). When V is Q-graded, we define a 
Q-grading on eV as follows: for a homogeneous element v ∈ V , set

deg ev := (deg v)/pe.

Let V and W be k-vector spaces. For f ∈ Homk(V, W ), we define ef : eV −→ eW

by ef(ev) = e(fv). It is easy to see that ef ∈ Homk(eV, eW ). This makes e(−) an 
auto-equivalence of the category of k-vector spaces. Note that the map

eV ⊗k
eW −→ e(V ⊗k W )

with ev ⊗ ew �−→ e(v ⊗ w) is well-defined, and an isomorphism. It is easy to check that 
e(−) is a monoidal functor; the composition e(−) ◦ e′(−) is canonically isomorphic to 
e+e′(−), and 0(−) is the identity.

For a k-vector space V , the map e(−) : GL(V ) −→ GL(eV ) given by f �−→ ef is an 
isomorphism of abstract groups. If V is a G-module, then the composition

G −→ GL(V ) −→ GL(eV )

gives eV a G-module structure. Thus, g(ev) = e(gv) for g ∈ G and v ∈ V . Suppose 
x1, . . . , xn is a k-basis of V . Then for each integer e � 0, the elements ex1, . . . , exn form 
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a k-basis for eV . If f ∈ GL(V ) has matrix (mij) with respect to the basis x1, . . . , xn, 
then the matrix for ef with respect to ex1, . . . , exn is (m1/pe

ij ). Indeed,

ef(exj) = e(fxj) = e(
∑
i

mijxi) =
∑
i

e(mijxi) =
∑
i

m
1/pe

ij · exi.

When R is a k-algebra, the k-algebra eR has multiplication defined by (er)(es) :=
e(rs). For R a commutative k-algebra, the iterated Frobenius map F e : R −→ eR with

r �−→ e(rp
e

)

is a homomorphism of k-algebras. When R is a positively graded finitely generated 
commutative k-algebra, the ring eR admits a Q-grading where for homogeneous r ∈ R,

deg er := (deg r)/pe.

The ring eR is then positively graded in the sense that [eR]j = 0 for j < 0, and [eR]0 =
k. The iterated Frobenius map F e : R −→ eR is degree-preserving and module-finite. 
Moreover,

e(−) : RQ grmod −→ RQ grmod

is an exact functor. If M ∈ RQ grmod, then the graded k-vector space eM is equipped 
with the R-action r · em = e(rpe

m), so eM is the graded eR-module with the action 
er · em = e(rm), and the action of R on eM is induced via F e : R −→ eR.

When R is reduced, it is sometimes more transparent to use the notation r1/pe in 
place of er, and R1/pe in place of eR.

Graded FFRT. When the equivalent conditions in the following lemma are satisfied, the 
ring R is said to have finite Frobenius representation type (FFRT) in the graded sense:

Lemma 2.1. Let R be a positively graded finitely generated commutative k-algebra. Then 
the following are equivalent:

(1) There exist M1, . . . , M� ∈ RQ grmod such that for any e � 1, one has

eR ∼= M⊕c1e
1 ⊕ · · · ⊕M⊕c�e

�

as (non-graded) R-modules.
(2) There exist M1, . . . , M� ∈ RQ grmod such that for any e � 1, the R-module eR is 

isomorphic, as a Q-graded R-module, to a finite direct sum of copies of modules of 
the form Mi(d) with 1 � i � � and d ∈ Q.
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Proof. The direction (2) =⇒ (1) is obvious; we prove the converse. Fix e � 1. For a 
positive integer c, set M 〈c〉 to be M with the grading [M 〈c〉]cj = [M ]j . Then M 〈c〉 is 
a Q-graded module over the graded ring R〈c〉. Taking c sufficiently divisible, we may 
assume that R〈c〉 is peZ-graded and each M 〈c〉

i is Z-graded. By [14, Corollary 3.9], eR〈c〉

is isomorphic to a finite direct sum of modules of the form (M 〈c〉
i )(d) with 1 � i � �

and d ∈ Z. It follows that eR is a finite direct sum of modules of the form Mi(d/c). �
It follows from [14, Corollary 3.9] that R has FFRT in the graded sense if and only if 

the m-adic completion R̂ has FFRT, for m the homogeneous maximal ideal of R.

Pseudoreflections. Let V be a finite rank k-vector space. An element g ∈ GL(V ) is a 
pseudoreflection if rank(1V − g) = 1. Let G be a finite group and V a G-module. The 
action of G on V is small if ρ : G −→ GL(V ) is injective, and ρ(G) does not contain a 
pseudoreflection. If in addition G ⊂ GL(V ), then G is a small subgroup of GL(V ).

The twisted group algebra. Let V be a finite rank k-vector space. Let G be a subgroup 
of GL(V ), and set S := SymV . If x1, . . . , xn is a basis for V , then SymV = k[x1, . . . , xn]
is a polynomial ring in n variables. The action of G on V induces an action of G on the 
polynomial ring S by degree preserving k-algebra automorphisms.

We say that M is a Q-graded (G, S)-module if M is a G-module as well as a Q-
graded S-module such that the underlying k-vector space structures agree, each graded 
component [M ]i is a G-submodule of M , and g(sm) = (gs)(gm) for all g ∈ G, s ∈ S, 
and m ∈ M .

We recall the twisted group algebra construction S∗G from [2]. Set S∗G to be S⊗kkG

as a k-vector space, with kG the group algebra, and define

(s⊗ g)(s′ ⊗ g′) := s(gs′) ⊗ gg′.

For s ∈ S homogeneous, set the degree of s ⊗ g to be that of s; this gives S ∗G a graded 
k-algebra structure. A Q-graded S ∗G-module M is a Q-graded (G, S)-module where

sm := (s⊗ 1)m and gm := (1 ⊗ g)m.

Conversely, if M is a Q-graded (G, S)-module, then (s ⊗g)m := sgm, gives M the struc-
ture of a Q-graded S ∗ G-module. Thus, a Q-graded S ∗ G-module and a Q-graded 
(G, S)-module are one and the same thing. Similarly, a homogeneous (i.e., degree-
preserving) map of Q-graded (G, S)-modules is precisely a homomorphism of graded 
S ∗G-modules.

With this setup, one has the following equivalence of categories:

Lemma 2.2. Let V be a finite rank k-vector space, and G a small subgroup of GL(V ). 
Set S := SymV and T := S ∗G. Let TQ grmod denote the category of finitely generated 
Q-graded left T -modules, and ∗ Ref(G, S) denote the full subcategory of TQ grmod con-
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sisting of those that are reflexive as S-modules; let ∗ Ref SG denote the full subcategory 
of SGQ grmod consisting of modules that are reflexive as SG-modules.

Then one has an equivalence of categories

∗ Ref(G,S) −→ ∗ Ref SG, where M �−→ MG,

with quasi-inverse N �−→ (N ⊗SG S)∗∗, where (−)∗ := HomS(−, S).

For the proof, see [11, Lemma 2.6]; an extension to group schemes may be found in [9]. 
Note that under the functor displayed above, one has eS �−→ (eS)G = e(SG).

3. An invariant ring without FFRT

We construct the counterexample promised in Theorem 1.1; more precisely, we prove:

Theorem 3.1. Let k be the algebraic closure of F3(t), the rational function field in one 
indeterminate over F3. Let G be the subgroup of GL(k3) generated by the matrices[1 1 0

0 1 1
0 0 1

]
and

[1 t 0
0 1 t
0 0 1

]
.

Then G is isomorphic to Z/3Z × Z/3Z. The invariant ring for the natural action of G
on the polynomial ring Sym(k3) does not have FFRT.

Lemma 3.2. Let k := F3(t) as above. Let G = Z/3Z ×Z/3Z = 〈σ, τ〉, where σ3 = id = τ3, 
and στ = τσ. Then the group algebra kG equals the commutative ring k[a, b]/(a3, b3), 
where a := σ − 1 and b := τ − 1. For α ∈ k, set V (α) to be k3 with the G-action 
determined by the homomorphism G −→ GL3(k) with

σ �−→
[1 1 0

0 1 1
0 0 1

]
and τ �−→

[1 α 0
0 1 α
0 0 1

]
.

Then:

(1) If α /∈ F3, then the action of G on V (α) is small.
(2) For α �= β in k, the G-modules V (α) and V (β) are nonisomorphic.
(3) The Frobenius twist e(V (α)) is isomorphic to V (α1/3e) as a G-module.
(4) For each α ∈ k, the G-module V (α) is indecomposable.

Proof. Setting

N :=
[0 1 0

0 0 1
]

0 0 0
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and taking I to be the identity matrix, one has

σiτ j = (I + N)i(I + αN)j =
[
I + iN +

(
i

2

)
N2

] [
I + jαN +

(
j

2

)
α2N2

]
= I + (i + jα)N +

[(
i

2

)
+ ijα +

(
j

2

)
α2

]
N2,

so σiτ j − I has rank 2 unless α ∈ F3 or (i, j) = (0, 0) in F2
3 . This proves (1).

For (2), note that the annihilators of V (α) and V (β) are the ideals (b − αa) and 
(b − βa) respectively in kG = k[a, b]/(a3, b3). These ideals are distinct when α �= β.

The representation matrices for σ and τ in GL(e(V (α))) are

e(I + N) = I + N and e(I + αN) = I + α1/3e

N

respectively, so eV (α) ∼= V (α1/3e) as G-modules, proving (3).
For (4), note that kG is an artinian local ring, so each nonzero kG-module has a 

nonzero socle. The socle of V (α) is spanned by the vector (1, 0, 0)tr, and hence has rank 
one. It follows that V (α) is an indecomposable kG-module. �
Proof of Theorem 3.1. Set S to be the polynomial ring Sym(k3), and T := S ∗ G. For 
M a nonzero module in TQ grmod, set

LD(M) := min{i ∈ Q | [M ]i �= 0} and LRep(M) := [M ]LD(M),

i.e., LRep(M) is the nonzero Q-graded component of M of least degree. Note that for d
a rational number, LRep(M(d)) and LRep(M) are isomorphic as G-modules.

As TQ grmod is Krull-Schmidt, there is a unique decomposition M = N1 ⊕ · · · ⊕Nr

of M into indecomposable objects. Setting d := LD(M), we have

LRep(M) = [M ]d = [N1]d ⊕ · · · ⊕ [Nr]d.

Suppose LRep(M) is an indecomposable G-module. After a possible change of indices, 
we may assume that LRep(M) = [N1]d and that [Nj ]d = 0 for j > 1. Note that, up to 
isomorphism, N1 is the unique indecomposable direct summand of M with LD(N1) =
LD(M). We define LInd(M) := N1. Note that we have LRep(N1) ∼= LRep(M).

For M as above, and d ∈ Q, define

M〈d〉 :=
⊕

i≡dmodZ

[M ]i,

which is also an element of TQ grmod.
Since the degree 1/3e-component of eS is eV (t) = V (t1/3e), one has

LRep
(
eS〈1/3e〉

)
= V (t1/3

e

),
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which is indecomposable by Lemma 3.2 (4). The G-modules V (t), V (t1/3), V (t1/32), . . .
are nonisomorphic by Lemma 3.2 (2), so the isomorphism classes of the indecomposable 
T -modules

LInd
(
S〈1〉

)
, LInd

(1S〈1/3〉
)
, LInd

(2S〈1/32〉
)
, . . .

are distinct; specifically, any two of these indecomposable objects of Q grmodT are non-
isomorphic even after a degree shift. By Lemma 2.2, it follows that the indecomposable 
Q-graded SG-modules

(
LInd

(
S〈1〉

))G

,
(

LInd
(1S〈1/3〉

))G

,
(

LInd
(2S〈1/32〉

))G

, . . .

are nonisomorphic. These occur as indecomposable summands of e(SG) for e � 1, so the 
ring SG does not have FFRT. �
Remark 3.3. For the interested reader, we give a presentation of the invariant ring SG

in Theorem 3.1. This was obtained using Magma [4], though one may verify all claims by 
hand, after the fact. Take S := SymV to be the polynomial ring k[x1, x2, x3], where the 
indeterminates x1, x2, x3 are viewed as the standard basis vectors in V := k3. Then the 
invariant ring SG is generated by the polynomials

f1 := x1,

f3 := tx2
1x2 − (t + 1)x2

1x3 − (t + 1)x1x
2
2 + x3

2,

f5 := t(t− 1)2x4
1x3 + t(t2 + 1)x3

1x
2
2 − t(t + 1)x3

1x2x3 − (t + 1)2x3
1x

2
3

− (t + 1)(t− 1)2x2
1x

3
2 + (t + 1)2x2

1x
2
2x3 + x2

1x
3
3 − (t− 1)2x1x

4
2

− (t + 1)x1x
3
2x3 − (t + 1)x5

2,

f9 := x3(x2 + x3)(x1 − x2 + x3)(tx2 + x3)(tx1 + x2 + tx2 + x3)

× (x1 − tx1 − x2 + tx2 + x3)(t2x1 − tx2 + x3)(t2x1 − tx1 + x2 − tx2 + x3)

× (x1 + tx1 + t2x1 − x2 − tx2 + x3),

where f9 is the product over the orbit of x3. These four polynomials satisfy the relation

t(t− 1)2(t2 + 1)f3
1 f

4
3 − t2(t− 1)2f4

1 f
2
3 f5 + (t3 + 1)f5

3 + (t3 + 1)f1f
3
3 f5 − f6

1 f9 + f3
5

that defines a normal hypersurface. Using this defining equation, one may see that SG

is not F -pure. The defining equation also confirms that the a-invariant is a(SG) = −3, 
as follows from [10, Theorem 3.6] or [6, Theorem 4.4] since G is a subgroup of SL(V )
without pseudoreflections.
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4. Ring of invariants of monomial actions

Let k be a field of positive characteristic, and let G be a finite group. Consider a finite 
rank k-vector space V that is a G-module. A k-basis Γ of V is a monomial basis for the 
action of G if for each g ∈ G and γ ∈ Γ, one has gγ ∈ kγ′ for some γ′ ∈ Γ. We say that V
is a monomial representation of G if V admits a monomial basis.

A monomial representation V as above is a permutation representation of G if V
admits a k-basis Γ such that each g ∈ G permutes the elements of Γ.

Theorem 4.1. Let k be a perfect field of positive characteristic, G a finite group, and V a 
monomial representation of G over k. Then the ring of invariants (SymV )G has FFRT.

Proof. Set q := pe, where k has characteristic p and e ∈ N. The action of G on S :=
SymV extends uniquely to an action of G on eS = S1/q; note that

(S1/q)G = (SG)1/q.

Let {x1, . . . , xn} be a monomial basis for V . The ring S1/q then has an S-basis

Be :=
{
x
λ1/q
1 · · · xλn/q

n | λi ∈ Z, 0 � λi � q − 1
}
. (4.1.1)

For μ ∈ Be, set γμ to be the k-vector space spanned by the elements gμ for all g ∈ G. 
Then S1/q is a direct sum of modules of the form Sγμ, and the action of G on S1/q

restricts to an action on each Sγμ. To prove that SG has FFRT, it suffices to show that 
there are only finitely many isomorphism classes of SG-modules of the form

(Sγμ)G =
(∑

g∈G

Sgμ
)G

as e varies. Fix μ ∈ Be, and consider the rank one k-vector space kμ. Set

H := {g ∈ G | gμ ∈ kμ}.

Let g1, . . . , gm be a set of left coset representatives for G/H, where g1 is the group 
identity. We claim that the map

m∑
i=1

gi : (Sμ)H −→ (Sγμ)G (4.1.2)

is an isomorphism of Q-graded SG-modules. Assuming the claim, (Sμ)H = (S ⊗k kμ)H
is isomorphic, up to a degree shift, with a module of the form (S ⊗k χ)H , where χ is 
a rank one representation of H. Since there are only finitely many subgroups H of G, 
only finitely many rank one representations χ of H, and only finitely many isomorphism 
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classes of indecomposable Q-graded SG-summands of (S ⊗k χ)H by the Krull-Schmidt 
theorem, the claim indeed completes the proof.

It remains to verify the isomorphism (4.1.2). Given g ∈ G, there exists a permuta-
tion σ ∈ Sm such that ggi = gσihi for each i, with hi ∈ H. Given sμ ∈ (Sμ)H , one 
has

g
(∑

i

gi(sμ)
)

=
∑
i

gσihi(sμ) =
∑
i

gσi(sμ) =
∑
i

gi(sμ),

so 
∑

i gi(sμ) indeed lies in (Sγμ)G. Since each gi is SG-linear and preserves degrees, the 
same holds for their sum. As to the injectivity, if∑

i

gi(sμ) =
∑
i

(gis)(giμ) = 0,

then gis = 0 for each i, since g1μ, . . . , gmμ are distinct elements of the basis Be as 
in (4.1.1), and hence linearly independent over S. But then s = 0. For the surjectivity, 
first note that an element of Sγμ may be written as 

∑
i sigiμ. Consider

f := s1g1μ + s2g2μ + · · · + smgmμ ∈ (Sγμ)G.

Apply gi to the above; since gif = f , and g1μ, . . . , gmμ are linearly independent over S, 
it follows that gis1 = si. But then

f =
∑
i

gi(s1μ),

so it remains to show that s1μ ∈ (Sμ)H . Fix h ∈ H. Since hf = f , one has∑
i

hgi(s1μ) =
∑
i

gi(s1μ).

As hg1 ∈ H and hgi /∈ H for i � 2, the linear independence of g1μ, . . . , gmμ over S
implies that h(s1μ) = s1μ. �
Remark 4.2. For k a field of positive characteristic, and V a finite rank permutation 
representation of G, Hochster and Huneke showed that the invariant ring (SymV )G is 
F -pure [16, page 77]; the same holds more generally when V is a monomial representation:

It suffices to prove the F -purity in the case where the field k is perfect. With the 
notation as in the proof of Theorem 4.1, (SG)1/q is a direct sum of SG-modules of the 
form (Sγμ)G, where γμ is the k-vector space spanned by gμ for g ∈ G. When μ := 1 one 
has γμ = k, so SG indeed splits from (SG)1/q.

Remark 4.3. In Theorem 4.1 suppose, moreover, that V is a permutation representation 
of G. Then one may choose a basis {x1, . . . , xn} for V whose elements are permuted 
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by G. In this case, each g ∈ G permutes the elements of Be for e ∈ N, and each rank 
one representation χ : H −→ k∗ is trivial; it follows that (SG)1/q is a direct sum of 
SG-modules of the form SH , for subgroups H of G.

Example 4.4. Let p be a prime integer. Set S := Fp[x1, . . . , xp], and let G := 〈σ〉 be the 
cyclic group of order p acting on S by cyclically permuting the variables. The ring SG

has FFRT by Theorem 4.1. Let q = pe be a varying power of p.
If p = 2, then SG is a polynomial ring, and each (SG)1/q is a free SG-module; thus, up 

to isomorphism and degree shift, the only indecomposable summand of (SG)1/q is SG.
Suppose p � 3. For μ ∈ Be, consider the kG-submodule γμ = kgμ of S1/q. If the 

stabilizer of μ is G, then γμ = kμ is an indecomposable kG module, and (Sμ)G =
SGμ ∼= SG is an indecomposable SG-summand of (SG)1/q. Since the only subgroups of 
G are {id} and G, the only other possibility for the stabilizer of an element μ of Be is 
{id}, in which case the orbit is a free orbit, i.e., an orbit of size |G|, and γμ ∼= kG. We 
claim that

(S ⊗k kG)G ∼= S

is an indecomposable SG-module. Since the group G contains no pseudoreflections in the 
case p � 3, Lemma 2.2 is applicable, and it suffices to verify that S ⊗k kG is an inde-
composable graded (G, S)-module. Note that kG = k[σ]/(1 − σ)p is an indecomposable 
kG-module. Suppose one has a decomposition as graded (G, S)-modules

S ⊗k kG ∼= P1 ⊕ P2,

apply (−) ⊗S S/m where m is the homogeneous maximal ideal of S. Then

kG ∼= P1/mP1 ⊕ P2/mP2.

The indecomposability of kG implies that Pi/mPi = 0 for some i. But then Nakayama’s 
lemma, in its graded form, gives Pi = 0, which proves the claim. Lastly, it is easy to see 
that both of these types of G-orbits appear in Be if e � 1 so, up to isomorphism and 
degree shift, the indecomposable SG-summands of (SG)1/q are indeed SG and S.

Example 4.5. As a specific example of the above, consider the alternating group A3 with 
its natural permutation action on the polynomial ring S := F3[x1, x2, x3]. For q = 3e, 
consider the S-basis (4.1.1) for S1/q. It is readily seen that the monomials

(x1x2x3)λ/q where λ ∈ Z, 0 � λ � q − 1

are fixed by A3, whereas every other monomial in Be has a free orbit. It follows that, 
ignoring the grading, the decomposition of (SA3)1/q into indecomposable SA3-modules 
is
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(SA3)1/q ∼= (SA3)q ⊕ S(q3−q)/3.

Example 4.6. Let k be a perfect field of characteristic 2 that contains a primitive third 
root ω of unity. Let G be the group generated by

σ :=
[
ω 0
0 ω

]
acting on S := k[x1, x2]. The invariant ring SG is the Veronese subring

k[x1, x2](3) = k[x3
1, x2

1x2, x1x
2
2, x3

2].

The action of G on S extends to an action on S1/q where σ(x1/q
i ) = ωqx

1/q
i . For Be as 

in (4.1.1), consider

S1/q =
⊕
μ∈Be

Sμ.

Suppose μ = x
λ1/q
1 x

λ2/q
2 , where λi are integers with 0 � λi � q − 1. Then

(Sμ)G =

⎧⎪⎪⎨⎪⎪⎩
SGμ if λ1 + λ2 ≡ 0 mod 3,
SGx1μ + SGx2μ if λ1 + λ2 ≡ 2q mod 3,
SGx2

1μ + SGx1x2μ + SGx2
2μ if λ1 + λ2 ≡ q mod 3.

The SG-modules that occur in the three cases above are, respectively, isomorphic to the 
ideals SG, (x3

1, x
2
1x2)SG, and (x3

1, x
2
1x2, x1x

2
2)SG, that constitute the indecomposable 

summands of S1/q. The number of copies of each of these is asymptotically q2/3.
This extends readily to Veronese subrings of the form k[x1, x2](n), for k a perfect field 

of characteristic p that contains a primitive nth root of unity; see [19, Example 17].

Example 4.7. Let G := 〈σ〉 be a cyclic group of order 4, acting on S := F2[x1, x2, x3, x4]
by cyclically permuting the variables. In view of [3], the invariant ring SG is a UFD that 
is not Cohen-Macaulay; SG has FFRT by Theorem 4.1.

We describe the indecomposable summands that occur in an SG-module decomposi-
tion of (SG)1/q for q = 2e. The group G contains no pseudoreflections, so Lemma 2.2
applies. Consider the S-basis Be for S1/q, as in (4.1.1). The monomials

(x1x2x3x4)λ/q where 0 � λ � q − 1

are fixed by G; each such monomial μ gives an indecomposable kG module γμ = kμ, and 
an indecomposable SG-summand (Sμ)G ∼= SG of (SG)1/q. The monomials μ of the form

(x1x3)λ1/q(x2x4)λ2/q with 0 � λi � q − 1, λ1 �= λ2
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have stabilizer H := 〈σ2〉. In this case, γμ ∼= k[σ]/(1 − σ)2 is an indecomposable kG

module, corresponding to an indecomposable SG-summand (S⊗k γμ)G ∼= SH . Any other 
monomial in Be has a free orbit that corresponds to a copy of (S ⊗k kG)G ∼= S.

Ignoring the grading, the decomposition of (SG)1/q into indecomposable SG-modules 
is

(SG)1/q ∼= (SG)q ⊕ (SH)(q
2−q)/2 ⊕ S(q4−q2)/4.

5. Examples that are FFRT but not F -regular

The notion of F -regular rings is central to Hochster and Huneke’s theory of tight 
closure, introduced in [15]; while there are different notions of F -regularity, they coincide 
in the graded case under consideration here by [21, Corollary 4.3], so we downplay the 
distinction. The FFRT property and F -regularity are intimately related, though neither 
implies the other: The hypersurface

Fp[x, y, z]/(x2 + y3 + z5)

has FFRT for each prime integer p, though it is not F -regular if p ∈ {2, 3, 5}; Stanley-
Reisner rings have FFRT by [20, Example 2.3.6], though they are F -regular only if they 
are polynomial rings. For the other direction, the hypersurface

R := Fp[s, t, u, v, w, x, y, z]/(su2x2 + sv2y2 + tuvxy + tw2z2)

is F -regular for each prime integer p, but admits a local cohomology module H3
(x,y,z)(R)

with infinitely many associated prime ideals, [27, Theorem 5.1], and hence does not 
have FFRT by [30, Corollary 3.3] or [18, Theorem 1.2]. Nonetheless, for the invariant 
rings of finite groups that are our focus here, F -regularity implies FFRT; this follows 
readily from well-known results, but is recorded here for the convenience of the reader:

Proposition 5.1. Let k be a perfect field, G a finite group, and V a finite rank k-vector 
space that is a G-module. If the invariant ring (SymV )G is F -regular, then it has FFRT.

Proof. An F -regular ring is splinter by [17, Theorem 5.25], i.e., it is a direct summand 
of each module-finite extension ring. Hence, if (SymV )G is F -regular, then it is a direct 
summand of SymV . But then it has FFRT by [29, Proposition 3.1.4]. �

We next present a family of examples where (SymV )G is not F -regular or even F -
pure, but has FFRT:

Example 5.2. Let p be a prime integer, V := F4
p , and G the subgroup of GL(V ) generated 

by the matrices
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⎡⎢⎣1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤⎥⎦ ,

⎡⎢⎣1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ ,

⎡⎢⎣1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤⎥⎦ .

It is readily seen that the matrices commute, and that the group G has order p3. Con-
sider the action of G on the polynomial ring S := SymV = Fp[x1, x2, x3, x4], where 
x1, x2, x3, x4 are viewed as the standard basis vectors in V . While x1 and x2 are fixed 
under the action, the orbits of x3 and x4 respectively consist of all linear forms

x3 + αx1 + γx2 and x4 + βx1 + αx2,

where α, β, γ are in Fp. Using Moore determinants as in [7, Chapter 1.3], the respective 
orbit products may be expressed as

u :=

det

⎡⎢⎣ x1 x2 x3

xp
1 xp

2 xp
3

xp2

1 xp2

2 xp2

3

⎤⎥⎦
det

[
x1 x2
xp

1 xp
2

] and v :=

det

⎡⎢⎣ x1 x2 x4

xp
1 xp

2 xp
4

xp2

1 xp2

2 xp2

4

⎤⎥⎦
det

[
x1 x2
xp

1 xp
2

] .

In addition to these, it is readily seen that the polynomial t := x1x
p
4−xp

1x4+x2x
p
3−xp

2x3

is invariant. These provide us with a candidate for the invariant ring, namely

C := Fp[x1, x2, t, u, v].

Note that S is integral over C as x3 and x4 are, respectively, roots of the monic polyno-
mials ∏

α,γ ∈Fp

(T + αx1 + γx2) − u and
∏

β,α∈Fp

(T + βx1 + αx2) − v

that have coefficients in C. Using the first of these polynomials, one also sees that

[frac(C)(x3) : frac(C)] � p2.

Bearing in mind that t ∈ C, one then has [frac(C)(x3, x4) : frac(C)(x3)] � p, and hence

[frac(S) : frac(C)] � p3.

Since C ⊆ SG ⊆ S and |G| = p3, it follows that frac(C) = frac(SG). To prove that 
C = SG, it suffices to verify that C is normal. Note that C must be a hypersurface; we 
arrive at its defining equation as follows: One readily verifies the identity
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det
[
x1 x2
xp

1 xp
2

](
det

[
x1 x4
xp

1 xp
4

]
+ det

[
x2 x3
xp

2 xp
3

])p

− xp
1 det

⎡⎢⎣ x1 x2 x4

xp
1 xp

2 xp
4

xp2

1 xp2

2 xp2

4

⎤⎥⎦− xp
2 det

⎡⎢⎣ x1 x2 x3

xp
1 xp

2 xp
3

xp2

1 xp2

2 xp2

3

⎤⎥⎦
=

(
det

[
x1 x2
xp

1 xp
2

])p (
det

[
x1 x4
xp

1 xp
4

]
+ det

[
x2 x3
xp

2 xp
3

])
,

which may be rewritten as

tp det
[
x1 x2
xp

1 xp
2

]
− vxp

1 det
[
x1 x2
xp

1 xp
2

]
− uxp

2 det
[
x1 x2
xp

1 xp
2

]
= t

(
det

[
x1 x2
xp

1 xp
2

])p

.

Dividing by the determinant that occurs on the left, one then has

tp − vxp
1 − uxp

2 = t(x1x
p
2 − xp

1x2)p−1. (5.2.1)

The Jacobian criterion shows that a hypersurface with (5.2.1) as its defining equation 
must be normal; it follows that C is indeed a normal hypersurface, with defining equa-
tion (5.2.1), and hence that C is precisely the invariant ring SG. Equation (5.2.1) shows 
that SG is not F -pure: t is in the Frobenius closure of (x1, x2)SG, though it does not 
belong to this ideal.

It remains to prove that the ring C = SG has FFRT. For this, note that after a change 
of variables, one has

SG ∼= Fp[x1, x2, t, ũ, ṽ]/(tp − ṽxp
1 − ũxp

2).

But then SG has FFRT by [25, Observation 3.7, Theorem 3.10]: Set A := Fp[x1, x2, ̃u, ṽ], 
and note that

A ⊆ SG ⊆ A1/p,

where A is a polynomial ring.
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