LOCAL COHOMOLOGY OF MODULAR INVARIANT RINGS

KRITI GOEL, JACK JEFFRIES, AND ANURAG K. SINGH

Abstract

For K a field, consider a finite subgroup G of $\mathrm{GL}_{n}(K)$ with its natural action on the polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. Let \mathfrak{n} denote the homogeneous maximal ideal of the ring of invariants R^{G}. We study how the local cohomology module $H_{\mathfrak{n}}^{n}\left(R^{G}\right)$ compares with $H_{\mathfrak{n}}^{n}(R)^{G}$. Various results on the a-invariant and on the Hilbert series of $H_{\mathfrak{n}}^{n}\left(R^{G}\right)$ are obtained as a consequence.

1. Introduction

Let K be a field. Consider a finite group G acting on a polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$ via degree-preserving K-algebra automorphisms; the action of G on R is completely determined by its action on one-forms, so there is little loss of generality in taking G to be a finite subgroup of $\mathrm{GL}_{n}(K)$, with the action given by

$$
M: X \longmapsto M X,
$$

where X is a column vector of the indeterminates; this is the action of G on R considered throughout the present paper. In the nonmodular case-when the order of G is invertible in K-there is a wealth of results relating properties of the invariant ring R^{G} to properties of the group action; several of these fail in the modular case, i.e., when the order of G is a multiple of the characteristic of K. For instance, in the nonmodular case, the functor $(-)^{G}$ is exact, yielding an R^{G}-isomorphism of local cohomology modules

$$
H_{\mathfrak{m}}^{n}(R)^{G} \cong H_{\mathfrak{n}}^{n}\left(R^{G}\right),
$$

where \mathfrak{m} and \mathfrak{n} denote the respective homogeneous maximal ideals of R and R^{G}. This isomorphism no longer holds in the modular case; indeed, one of our goals is to study the failure of this isomorphism. Quite generally, the transfer map provides a surjection $H_{\mathfrak{m}}^{n}(R) \longrightarrow H_{\mathfrak{n}}^{n}\left(R^{G}\right)$; when G contains no transvections, we explicitly describe the kernel in Theorem 3.1. This result may be viewed as a dual formulation of a theorem of Peskin, [Pe, Theorem 1.8], that relates the canonical modules of R and of R^{G}.

We apply Theorem 3.1 to study the local cohomology a-invariant of R^{G} in $\S 4$, proving that the a-invariant of R^{G} equals that of R if and only if G is a subgroup of the special linear group with no pseudoreflections; see Theorem 4.4. In §5, we record a surprising consequence of our main theorem towards comparing the ranks of the graded components of the local cohomology modules $H_{\mathfrak{n}}^{n}\left(R^{G}\right)$ and $H_{\mathfrak{m}}^{n}(R)^{G}$, proving that they coincide when G is cyclic with no transvections. The study of local cohomology modules of invariant rings of finite groups goes back at least to work of Ellingsrud and Skjelbred [ES], where they use spectral sequences relating local cohomology and group cohomology to give upper bounds on the depth of modular invariant rings.

[^0]The article [St] by Stanley provides an excellent account of the theory in the nonmodular case; for sources that include the modular case as well, we refer the reader to Benson [Be] and Campbell and Wehlau [CW]. We have attempted to keep this paper largely self-contained, and accessible to the reader familiar with the basics of local cohomology; some preliminary results are reviewed or proved in $\S 2$, towards simplifying later arguments. Our study is closely related to earlier work on the canonical module and the Gorenstein property of invariant rings, e.g., [Wa1, Wa2, Pe, Bro, Br1, FW, Ha]; these are discussed briefly in $\S 2$.

2. PRELIMINARY REMARKS

We begin with some standard facts about finite group actions:
Pseudoreflections. An element $g \in \mathrm{GL}_{n}(K)$ of finite order is a pseudoreflection if it fixes a hyperplane; by convention, the group identity is not a pseudoreflection. It follows that g is a pseudoreflection precisely if the matrix $g-I$, with I the identity matrix, has rank one. An equivalent formulation is that the Jordan form of g, after extending scalars, is

$$
\left[\begin{array}{c|cccc}
\zeta & 0 & 0 & \cdots & 0 \\
\hline 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{cc|ccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\hline 0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & & 1
\end{array}\right]
$$

Since g has finite order, the element ζ in the first case is a root of unity. The second case only occurs when K has characteristic $p>0$; such an element is a transvection.

Remark 2.1. Fix $g \in G$. We use $(1-g) R$ to denote the ideal of $R:=K\left[x_{1}, \ldots, x_{n}\right]$ generated by all elements of the form $r-g(r)$ for $r \in R$. Since

$$
(1-g)\left(r_{1} r_{2}\right)=r_{2}(1-g)\left(r_{1}\right)+g\left(r_{1}\right)(1-g)\left(r_{2}\right),
$$

the ideal $(1-g) R$ is generated by the elements $(1-g)\left(x_{i}\right)$ for $1 \leqslant i \leqslant n$. Note that g is a pseudoreflection if and only if the ideal $(1-g) R$ has height one.

Transfer. Let G be a finite subgroup acting on a ring R. For a subgroup H, the transfer map $\operatorname{Tr}_{H}^{G}: R^{H} \longrightarrow R^{G}$ is defined as

$$
\operatorname{Tr}_{H}^{G}(r):=\sum_{g H \in G / H} g(r)
$$

where the sum is over a set of left coset representatives. It is straightforward to see that $\operatorname{Tr}_{H}^{G}$ is an R^{G}-linear map, independent of the coset representatives. Precomposing with the inclusion $R^{G} \subseteq R^{H}$, the composition

$$
R^{G} \longrightarrow R^{H} \xrightarrow{\operatorname{Tr}_{H}^{G}} R^{G}
$$

is multiplication by the integer $[G: H]$, i.e., by the index of H in G. It follows that $\operatorname{Tr}_{H}^{G}$ is surjective if $[G: H]$ is invertible in R.

When H is the subgroup consisting only of the identity element, we use Tr^{G} or Tr to denote the transfer map $R \longrightarrow R^{G}$.

The following lemma appears in various forms in the literature, e.g., [Fe, Theorem 2.4], [Br1, Proposition 3.7], and [NS, Theorem 2.4.5]; we include a self-contained proof:

Lemma 2.2. Let G be a finite subgroup of $\mathrm{GL}_{n}(K)$, without transvections, acting on the polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. Then the image of the transfer map $\operatorname{Tr}: R \longrightarrow R^{G}$ is an ideal of R^{G} of height at least two.

Proof. The transfer map is surjective in the nonmodular case, so assume that K has positive characteristic p. The claim reduces to the case where K is algebraically closed, as we now assume. Let \mathfrak{p} be a prime ideal of R^{G} height one, and \mathfrak{q} a height one prime of R containing \mathfrak{p}. It suffices to show that there is a maximal ideal \mathfrak{m} of R, containing \mathfrak{q}, such that $\operatorname{Tr}(R) \nsubseteq \mathfrak{m}$.

By Remark 2.1, the prime \mathfrak{q} does not contain an ideal of the form $(1-g) R$ for any group element g of order p, since such an element would then be a transvection. Let \mathfrak{a} denote the product of the ideals $(1-g) R$, taken over group elements g of order p. Then $\mathfrak{a} \nsubseteq \mathfrak{q}$, so there exists a point $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n}$ that lies in the algebraic set $V(\mathfrak{q})$ but not in $V(\mathfrak{a})$. Set $\mathfrak{m}:=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) R$. We claim that $g(\mathfrak{m}) \neq \mathfrak{m}$ for each $g \in G$ of order p.

If the claim is false, there exists an element g of order p such that

$$
g\left(x_{i}-a_{i}\right)=g\left(x_{i}\right)-a_{i} \in \mathfrak{m} \quad \text { for each } 1 \leqslant i \leqslant n
$$

But $x_{i}-a_{i} \in \mathfrak{m}$ as well, so $x_{i}-g\left(x_{i}\right) \in \mathfrak{m}$ for each i. These generate $(1-g) R$, yielding a contradiction. This proves the claim.

Consider the action of G on the set of maximal ideals of R. Since the stabilizer H of \mathfrak{m} has no elements of order p, the order of H is invertible in K. The transfer map $R \longrightarrow R^{G}$ factors as

$$
R \xrightarrow{\mathrm{Tr}^{H}} R^{H} \xrightarrow{\operatorname{Tr}_{H}^{G}} R^{G},
$$

where the first map is surjective, so it suffices to show that the image of $\operatorname{Tr}_{H}^{G}$ is not contained in \mathfrak{m}. Let $\left\{g_{1}, \ldots, g_{\ell}\right\}$ be coset representatives for G / H, where $g_{1} H=H$. Then

$$
\mathfrak{m}=g_{1}^{-1}(\mathfrak{m}), g_{2}^{-1}(\mathfrak{m}), \ldots, g_{\ell}^{-1}(\mathfrak{m})
$$

are distinct maximal ideals of R, so there exists an element $r \in R$ with $r \in g_{i}^{-1}(\mathfrak{m})$ for each $i \leqslant 2 \leqslant \ell$, and $r \notin \mathfrak{m}$. These conditions are preserved when r is replaced by its orbit product under H, so we may assume $r \in R^{H}$. But then

$$
\begin{aligned}
\operatorname{Tr}_{H}^{G}(r) & =g_{1}(r)+g_{2}(r) \cdots+g_{\ell}(r) \\
& \equiv r \quad \bmod \mathfrak{m}
\end{aligned}
$$

It follows that $\operatorname{Tr}_{H}^{G}\left(R^{H}\right)$ is not contained in \mathfrak{m}.
Local cohomology and the canonical module. Let S be an \mathbb{N}-graded ring that is finitely generated over a field $S_{0}=K$. Let \mathfrak{n} denote the homogeneous maximal ideal of S, and set $n:=\operatorname{dim} S$. Let y_{1}, \ldots, y_{n} be a homogeneous system of parameters for S, i.e., a sequence of n homogeneous elements that generate an ideal with radical \mathfrak{n}. For an S-module M and an integer $k \geqslant 0$, the local cohomology module $H_{\mathfrak{n}}^{k}(M)$ is defined as

$$
H_{\mathfrak{n}}^{k}(M)=\underset{i}{\lim } \operatorname{Ext}_{S}^{k}\left(S / \mathfrak{n}^{i}, M\right)
$$

and may be identified with the Čech cohomology module $\check{H}^{k}\left(y_{1}, \ldots, y_{n} ; S\right)$, i.e., the k-th cohomology of the Čech complex

$$
0 \longrightarrow M \longrightarrow \bigoplus_{i} M_{y_{i}} \longrightarrow \bigoplus_{i<j} M_{y_{i} y_{j}} \longrightarrow \cdots \longrightarrow M_{y_{1} \cdots y_{n}} \longrightarrow 0 .
$$

In particular, this identifies $H_{\mathfrak{n}}^{n}(M)$ with

$$
\frac{M_{y_{1} \cdots y_{n}}}{\sum_{i} M_{y_{1} \cdots \hat{y}_{i} \cdots y_{n}}} .
$$

Under this identification, a local cohomology class

$$
\left[\frac{m}{y_{1}^{d} \cdots y_{n}^{d}}\right] \in H_{\mathfrak{n}}^{n}(M)
$$

for $m \in M$, is zero if and only if there exists an integer $\ell \geqslant 0$ such that

$$
m\left(y_{1} \cdots y_{n}\right)^{\ell} \in\left(y_{1}^{d+\ell}, \ldots, y_{n}^{d+\ell}\right) M
$$

When M is a \mathbb{Z}-graded S-module, each $H_{\mathfrak{n}}^{k}(M)$ acquires a natural \mathbb{Z}-grading. Following Goto and Watanabe [GW], the a-invariant of the ring S, denoted $a(S)$, is the largest integer a such that the graded component $\left[H_{\mathfrak{n}}^{n}(S)\right]_{a}$ is nonzero.

Let M be a \mathbb{Z}-graded S-module. We use $M(i)$ to denote the module with the shifted grading $[M(i)]_{j}=[M]_{i+j}$ for each $j \in \mathbb{Z}$. The graded K-dual of M, denoted M^{*}, is the S module with graded components

$$
\left[M^{*}\right]_{i}=\operatorname{Hom}_{K}(M, K(i))
$$

where $\operatorname{Hom}_{K}(M, K(i))$ is the vector space of degree preserving K-linear maps $M \longrightarrow K(i)$. Assume now that S is normal; the canonical module of S is

$$
\omega_{S}:=H_{\mathfrak{n}}^{n}(S)^{*}
$$

When the ring S is Gorenstein, one has a degree-preserving isomorphism

$$
\omega_{S} \cong S(a)
$$

where $a=a(S)$. A normal \mathbb{N}-graded ring S is Gorenstein precisely if it is Cohen-Macaulay and ω_{S} is a cyclic S-module; dropping the Cohen-Macaulay condition, a normal \mathbb{N}-graded ring S is quasi-Gorenstein if ω_{S} is a cyclic S-module.

Let G be a finite subgroup of $\mathrm{GL}_{n}(K)$, acting on a polynomial ring R. In the nonmodular case, the invariant ring R^{G} is Cohen-Macaulay by [HE], though it need not be CohenMacaulay in the modular case; this leads to interest in the quasi-Gorenstein property. We summarize some of the work in this direction:

Suppose first that the order of G is invertible in the field K; this is the nonmodular case. Watanabe proved that if $G \subseteq \mathrm{SL}_{n}(K)$, then R^{G} is Gorenstein [Wa1], and that if G contains no pseudoreflections, then the converse holds as well, i.e., if R^{G} is Gorenstein, then $G \subseteq \mathrm{SL}_{n}(K)$, see [Wa2]. Braun [Br1] proved analogues of these in the modular case when G contains no pseudoreflections: the ring R^{G} is quasi-Gorenstein if and only if G is contained in $\mathrm{SL}_{n}(K)$. Some of these results are extended in [FW] and [Ha].

It was conjectured that if R^{G} is Cohen-Macaulay and $G \subseteq \mathrm{SL}_{n}(K)$, then R^{G} is Gorenstein, $\left[\mathrm{KKM}^{+}\right.$, Conjecture 5]; while this is true in the nonmodular case by [Wa1], the conjecture was shown to be false by Braun [Br 2], with the simplest example being the subgroup G of $\mathrm{SL}_{2}\left(\mathbb{F}_{9}\right)$ generated by

$$
\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

where ζ is a primitive 4-th root of unity. Note that G contains a transvection-as it must!
The group action on local cohomology. Let G be a finite subgroup of $\mathrm{GL}_{n}(K)$, acting on a polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. The action of G on $H_{\mathfrak{m}}^{n}(R)$ may be interpreted in several equivalent ways: for $g \in G$, the automorphism $g: R \longrightarrow R$ induces a map

$$
H_{\mathfrak{m}}^{n}(R) \stackrel{g}{\longrightarrow} H_{g(\mathfrak{m})}^{n}(R)=H_{\mathfrak{m}}^{n}(R),
$$

where the equality is simply because $g(\mathfrak{m})=\mathfrak{m}$.

Alternatively, let y_{1}, \ldots, y_{n} be a homogeneous system of parameters for R^{G}, and use the identification of $H_{\mathfrak{m}}^{n}(R)$ with Čech cohomology $\check{H}^{n}\left(y_{1}, \ldots, y_{n} ; R\right)$. Under this identification, for $g \in G$ and $r \in R$ one has

$$
\eta:=\left[\frac{r}{y_{1}^{d} \cdots y_{n}^{d}}\right] \longmapsto\left[\frac{g(r)}{y_{1}^{d} \cdots y_{n}^{d}}\right]=g(\eta)
$$

Note that η is fixed by g precisely if there exists an integer $\ell \geqslant 0$ such that

$$
(g(r)-r)\left(y_{1} \cdots y_{n}\right)^{\ell} \in\left(y_{1}^{d+\ell}, \ldots, y_{n}^{d+\ell}\right) R
$$

Since y_{1}, \ldots, y_{n} is a regular sequence on R, this is equivalent to

$$
g(r)-r \in\left(y_{1}^{d}, \ldots, y_{n}^{d}\right) R
$$

It follows that η as above if fixed by g precisely if the image of r in the Artinian ring

$$
A:=R /\left(y_{1}^{d}, \ldots, y_{n}^{d}\right) R
$$

is fixed by g under the induced action. More generally, A is isomorphic as a G-module to the submodule of $H_{\mathfrak{m}}^{n}(R)$ consisting of elements of the form

$$
\left[\frac{r}{y_{1}^{d} \cdots y_{n}^{d}}\right], \quad \text { for } r \in R
$$

Yet another point of view may be obtained from the ideas surrounding Remark 4.3; we leave this to the interested reader.

Recall that the transfer map $\operatorname{Tr}: R \longrightarrow R^{G}$ is a homomorphism of R^{G}-modules, and hence induces a map

$$
\begin{equation*}
H_{\mathfrak{n}}^{n}(R) \xrightarrow{\mathrm{Tr}} H_{\mathfrak{n}}^{n}\left(R^{G}\right) \tag{2.2.1}
\end{equation*}
$$

where \mathfrak{n} is the homogeneous maximal ideal of R^{G}. Since $\mathfrak{n} R$ has radical \mathfrak{m}, one may identify the modules $H_{\mathfrak{n}}^{n}(R)$ and $H_{\mathfrak{m}}^{n}(R)$. The transfer map (2.2.1) is then precisely the $\operatorname{map} H_{\mathfrak{m}}^{n}(R) \longrightarrow H_{\mathfrak{n}}^{n}\left(R^{G}\right)$ with

$$
\left[\frac{r}{y_{1}^{d} \cdots y_{n}^{d}}\right] \longmapsto\left[\frac{\operatorname{Tr}(r)}{y_{1}^{d} \cdots y_{n}^{d}}\right]
$$

where $r \in R$, and y_{1}, \ldots, y_{n} is a homogeneous system of parameters for R^{G}, as above.
Maps on local cohomology. For a local ring (S, \mathfrak{n}), and M a finitely generated S-module, the local cohomology modules $H_{\mathfrak{n}}^{k}(M)$ vanish for $k>\operatorname{dim} M$. It follows that the functor $H_{\mathfrak{n}}^{\operatorname{dim} S}(-)$ is right-exact. More generally:

Lemma 2.3. Let (S, \mathfrak{n}) be a local ring and set $n:=\operatorname{dim} S$. Let

$$
A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

be a complex of finitely generated S-modules.
(1) If $B_{\mathfrak{p}} \longrightarrow C_{\mathfrak{p}}$ is surjective for each prime ideal \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n$, then the induced map $H_{\mathfrak{n}}^{n}(B) \longrightarrow H_{\mathfrak{n}}^{n}(C)$ is surjective.
(2) If $B_{\mathfrak{p}} \longrightarrow C_{\mathfrak{p}}$ is injective for each prime ideal \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n$, and surjective for each \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n-1$, then $H_{\mathfrak{n}}^{n}(B) \longrightarrow H_{\mathfrak{n}}^{n}(C)$ is an isomorphism.
(3) If $B_{\mathfrak{p}} \longrightarrow C_{\mathfrak{p}}$ is surjective for each \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n-1$, and $A_{\mathfrak{p}} \longrightarrow B_{\mathfrak{p}} \longrightarrow C_{\mathfrak{p}}$ is exact for each \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n$, then the induced sequence

$$
H_{\mathfrak{n}}^{n}(A) \longrightarrow H_{\mathfrak{n}}^{n}(B) \longrightarrow H_{\mathfrak{n}}^{n}(C) \longrightarrow 0
$$

is exact.

Proof. The exact sequence $B \longrightarrow C \longrightarrow$ coker $\beta \longrightarrow 0$ induces

$$
H_{\mathfrak{n}}^{n}(B) \longrightarrow H_{\mathfrak{n}}^{n}(C) \longrightarrow H_{\mathfrak{n}}^{n}(\operatorname{coker} \beta) \longrightarrow 0 .
$$

Since $(\operatorname{coker} \beta)_{\mathfrak{p}}$ vanishes for each prime \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n$, one has $\operatorname{dim}(\operatorname{coker} \beta)<n$. But then $H_{\mathfrak{n}}^{n}(\operatorname{coker} \beta)=0$, proving (1).

For (2), consider the exact sequences

$$
0 \longrightarrow \operatorname{ker} \beta \longrightarrow B \longrightarrow \operatorname{im} \beta \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{im} \beta \longrightarrow C \longrightarrow \operatorname{coker} \beta \longrightarrow 0 .
$$

The hypothesis $(\operatorname{ker} \beta)_{\mathfrak{p}}=0$ for each \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n$ implies that $\operatorname{dim}(\operatorname{ker} \beta)<n$, so $H_{\mathfrak{n}}^{n}(\operatorname{ker} \beta)=0$. Using the first sequence, $H_{\mathfrak{n}}^{n}(B) \longrightarrow H_{\mathfrak{n}}^{n}(\operatorname{im} \beta)$ is an isomorphism.

Similarly, since $(\operatorname{coker} \beta)_{\mathfrak{p}}=0$ for each prime \mathfrak{p} with $\operatorname{dim} S / \mathfrak{p}=n-1$, it follows that $\operatorname{dim}(\operatorname{coker} \beta)<n-1$, so $H_{\mathfrak{n}}^{n-1}(\operatorname{coker} \beta)=0=H_{\mathfrak{n}}^{n}(\operatorname{coker} \beta)$. Passing to local cohomology, the second displayed sequence yields the isomorphism $H_{\mathfrak{n}}^{n}(\operatorname{im} \beta) \longrightarrow H_{\mathfrak{n}}^{n}(C)$.

For (3), we may replace A by its image in B, and then apply (2) to $B / A \longrightarrow C$ to obtain the isomorphism $H_{\mathfrak{n}}^{n}(B / A) \longrightarrow H_{\mathfrak{n}}^{n}(C)$. Combine this with the exact sequence

$$
H_{\mathfrak{n}}^{n}(A) \longrightarrow H_{\mathfrak{n}}^{n}(B) \longrightarrow H_{\mathfrak{n}}^{n}(B / A) \longrightarrow 0 .
$$

3. COMPARING LOCAL COHOMOLOGY

Theorem 3.1. For K a field, let G be a finite subgroup of $\mathrm{GL}_{n}(K)$, without transvections, acting on the polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. Then there is an exact sequence

$$
\underset{g \in G}{\bigoplus} H_{\mathfrak{m}}^{n}(R) \xrightarrow{\alpha} H_{\mathfrak{m}}^{n}(R) \stackrel{\mathrm{Tr}}{\longrightarrow} H_{\mathfrak{n}}^{n}\left(R^{G}\right) \longrightarrow 0
$$

where \mathfrak{m} and \mathfrak{n} denote the respective homogeneous maximal ideals of R and R^{G}, and

$$
\alpha:\left(\eta_{g}\right)_{g \in G} \longmapsto \sum_{g \in G}\left(\eta_{g}-g\left(\eta_{g}\right)\right) .
$$

Proof. Note that the ideal $\mathfrak{n} R$ is \mathfrak{m}-primary, so $H_{\mathfrak{m}}^{n}(R)=H_{\mathfrak{n}}^{n}(R)$. In view of Lemma 2.3 (3), it suffices to consider the complex of R^{G}-modules

$$
\begin{equation*}
\bigoplus_{g \in G} R \xrightarrow{\alpha} R \xrightarrow{\operatorname{Tr}} R^{G} \longrightarrow 0, \tag{3.1.1}
\end{equation*}
$$

where

$$
\alpha:\left(r_{g}\right)_{g \in G} \longmapsto \sum_{g \in G}\left(r_{g}-g\left(r_{g}\right)\right),
$$

and verify that $\operatorname{Tr}: R \longrightarrow R^{G}$ is surjective after localizing at each height one prime \mathfrak{p} of R^{G}, and that the sequence (3.1.1) is exact upon tensoring with the fraction field of R^{G}. The surjectivity of $\operatorname{Tr}: R \longrightarrow R^{G}$ at height one primes comes from Lemma 2.2. For the second verification, let L denote the fraction field of R, in which case $L^{G}=\operatorname{frac}\left(R^{G}\right)$ as G is finite. We then need to verify the exactness of the sequence

$$
\begin{equation*}
\underset{g \in G}{\bigoplus_{G}} L \xrightarrow{\alpha} L \xrightarrow{\mathrm{Tr}} L^{G} \longrightarrow 0 . \tag{3.1.2}
\end{equation*}
$$

But $\operatorname{Tr}: L \longrightarrow L^{G}$ is a surjective map of L^{G}-vector spaces, so its kernel is an L^{G}-vector space of rank $|G|-1$. By the normal basis theorem, there exists $\lambda \in L$ such that

$$
\{g(\lambda) \mid g \in G\}
$$

is an L^{G}-basis for L. But then the image of α in (3.1.2) contains the $|G|-1$ linearly independent elements $\lambda-g(\lambda)$, as g varies over the nonidentity elements of G.
Remark 3.2. In the statement of Theorem 3.1, one may replace $\bigoplus_{g \in G} H_{\mathfrak{m}}^{n}(R)$ by the direct sum over a generating set for G, and α by its restriction: if $g, h \in G$, then

$$
(1-h g)(\eta)=(1-g)(\eta)+(1-h)(g(\eta))
$$

The hypothesis that G does not contain transvections is indeed required in Theorem 3.1:
Example 3.3. Consider the symmetric group $S_{2}=\langle g\rangle$ acting on $R:=K[x, y]$ by permuting the variables. Then $R^{S_{2}}=K\left[e_{1}, e_{2}\right]$, where $e_{1}:=x+y$ and $e_{2}:=x y$. While g is a pseudoreflection independent of the characteristic of K, it is a transvection if and only if K has characteristic two. We examine the complex

$$
\begin{equation*}
H_{\mathfrak{m}}^{2}(R) \xrightarrow{1-g} H_{\mathfrak{m}}^{2}(R) \xrightarrow{\mathrm{Tr}} H_{\mathfrak{n}}^{2}\left(R^{S_{2}}\right) \longrightarrow 0 \tag{3.3.1}
\end{equation*}
$$

in degree -2 . Note that $\left[H_{\mathfrak{n}}^{2}\left(R^{S_{2}}\right)\right]_{-2}=0$, while $\left[H_{\mathfrak{m}}^{2}(R)\right]_{-2}$, computed via the Čech complex on e_{1}, e_{2}, is the rank one K-vector space spanned by

$$
\eta:=\left[\frac{x}{e_{1} e_{2}}\right]
$$

Since

$$
(1-g)(\eta)=\left[\frac{x-y}{e_{1} e_{2}}\right]=\left[\frac{2 x}{e_{1} e_{2}}\right]=2 \eta
$$

the degree -2 strand of (3.3.1) takes the form

$$
K \xrightarrow{2} K \longrightarrow 0 \longrightarrow 0
$$

which is exact precisely when the characteristic of K is other than two, i.e., precisely when the group contains no transvections.

4. WHEN IS THE a-INVARIANT INVARIANT?

We record in this section when the a-invariant of a ring of invariants coincides with that of the ambient polynomial ring. The following proposition is likely well-known to experts, for example, it is an extension of [Je, Lemma 2.17]; see also [KPU, Theorem 1.1].
Proposition 4.1. Let G be a finite subgroup of $\mathrm{GL}_{n}(K)$, acting on a polynomial ring R. Then, for each subgroup H of G, one has $a\left(R^{G}\right) \leqslant a\left(R^{H}\right)$.
Proof. Consider the transfer map $\operatorname{Tr}_{H}^{G}: R^{H} \longrightarrow R^{G}$ given by

$$
\begin{equation*}
\operatorname{Tr}_{H}^{G}(r):=\sum_{g H \in G / H} g(r) \tag{4.1.1}
\end{equation*}
$$

Let L denote the fraction field of R. Since G and H are finite, one has $L^{G}=\operatorname{frac}\left(R^{G}\right)$ and $L^{H}=\operatorname{frac}\left(R^{H}\right)$. Distinct cosets $g H$ induce distinct automorphisms $g: L^{H} \longrightarrow L^{H}$, so Dedekind's theorem implies that the corresponding characters $\left(L^{H}\right)^{\times} \longrightarrow\left(L^{H}\right)^{\times}$are linearly independent over L^{H}, and hence over L^{G}. It follows that their sum

$$
\sum g:\left(L^{H}\right)^{\times} \longrightarrow L^{H}
$$

taken over coset representatives, is a nonzero map, and hence that the transfer map (4.1.1) is nonzero. As the transfer is R^{G}-linear, one has an exact sequence of R^{G}-modules

$$
R^{H} \xrightarrow{\operatorname{Tr}_{H}^{G}} R^{G} \longrightarrow R^{G} / \mathrm{im}\left(\operatorname{Tr}_{H}^{G}\right) \longrightarrow 0
$$

Applying the functor $H_{\mathfrak{n}}^{n}(-)$, one obtains the surjection

$$
H_{\mathfrak{n}}^{n}\left(R^{H}\right) \xrightarrow{\mathrm{Tr}_{H}^{G}} H_{\mathfrak{n}}^{n}\left(R^{G}\right)
$$

since $R^{G} / \mathrm{im}\left(\operatorname{Tr}_{H}^{G}\right)$ has smaller dimension. The homogeneous maximal ideals of R^{H} and R^{G} agree up to radical, so the assertion follows.

The following is [Je, Theorem 2.18], and also related to work of Broer [Bro]:
Corollary 4.2. Let K be a field of characteristic $p>0$, and G a finite subgroup of $\mathrm{GL}_{n}(K)$ acting on a polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. If $a\left(R^{G}\right)=a(R)$, and p divides the order of G, then the inclusion $R^{G} \subseteq R$ is not R^{G}-split.

Proof. Consider the maps of rank one K-vector spaces

$$
\left[H_{\mathfrak{n}}^{n}\left(R^{G}\right)\right]_{-n} \xrightarrow{i}\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n} \xrightarrow{\operatorname{Tr}}\left[H_{\mathfrak{n}}^{n}\left(R^{G}\right)\right]_{-n},
$$

where i is induced by the inclusion $R^{G} \subseteq R$. The composition is then multiplication by $|G|$, which equals zero in K. As Tr above is surjective, the map i must be zero. But then the inclusion $R^{G} \subseteq R$ is not R^{G}-split.

Remark 4.3. Let G be a finite subgroup of $\mathrm{GL}_{n}(K)$, acting on $R:=K\left[x_{1}, \ldots, x_{n}\right]$. We claim that for each $g \in G$ and $\eta \in\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n}$, one has

$$
g \cdot \eta=(\operatorname{det} g)^{-1} \eta
$$

Since $\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n}$ has rank one, without loss of generality, take η to be

$$
\left[\frac{1}{x_{1} \cdots x_{n}}\right] .
$$

If f_{1}, \ldots, f_{n} is a homogeneous system of parameters for R, the natural isomorphism between Čech and local cohomology induces a natural isomorphism between the Čech cohomology modules $\check{H}^{n}\left(x_{1}, \ldots, x_{n} ; R\right)$ and $\check{H}^{n}\left(f_{1}, \ldots, f_{n} ; R\right)$. To make this explicit, following [Ku, Theorem 4.18], let A be a matrix over R, such that

$$
\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]=A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Then, under the isomorphism $\check{H}^{n}\left(x_{1}, \ldots, x_{n} ; R\right) \longrightarrow \check{H}^{n}\left(f_{1}, \ldots, f_{n} ; R\right)$, one has

$$
\left[\frac{1}{x_{1} \cdots x_{n}}\right] \longmapsto\left[\frac{\operatorname{det} A}{f_{1} \cdots f_{n}}\right] .
$$

It follows that

$$
g \cdot\left[\frac{1}{x_{1} \cdots x_{n}}\right]=\left[\frac{1}{g\left(x_{1}\right) \cdots g\left(x_{n}\right)}\right]
$$

viewed as an element of $\breve{H}^{n}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right) ; R\right)$, corresponds to

$$
\left[\frac{(\operatorname{det} g)^{-1}}{x_{1} \cdots x_{n}}\right]=(\operatorname{det} g)^{-1} \eta
$$

in $\check{H}^{n}\left(x_{1}, \ldots, x_{n} ; R\right)$.
The following theorem has been obtained independently by Hashimoto [Ha]:

Theorem 4.4. For K a field, let G be a finite subgroup of $\mathrm{GL}_{n}(K)$ acting on the polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. Then $a\left(R^{G}\right)=a(R)$ if and only if G is a subgroup of $\operatorname{SL}_{n}(K)$ that contains no pseudoreflections.
Proof. We first show that if G contains a pseudoreflection, then $a\left(R^{G}\right)<a(R)$. In view of Proposition 4.1, it suffices to consider the case where G is a cyclic group, generated by a pseudoreflection g. After extending scalars, we may assume that g takes the form

$$
\left[\begin{array}{c|cccc}
\zeta & 0 & 0 & \cdots & 0 \\
\hline 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{cc|ccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\hline 0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & & 1
\end{array}\right]
$$

where ζ is a primitive k-th root of unity. In the first case, $R^{G}=K\left[x_{1}^{k}, x_{2}, \ldots, x_{n}\right]$, and in the second $R^{G}=K\left[x_{1}^{p}-x_{1} x_{2}^{p-1}, x_{2}, \ldots, x_{n}\right]$, where $p>0$ is the characteristic of K. In each case R^{G} is a polynomial ring, with $a\left(R^{G}\right)$ strictly less than $a(R)$.

It remains to verify that if G has no pseudoreflections, then $a\left(R^{G}\right)=a(R)$ if and only if G is a subgroup of $\mathrm{SL}_{n}(K)$. The exact sequence from Theorem 3.1, when restricted to the degree $-n$ strand, gives an exact sequence of K-vector spaces

$$
\bigoplus_{g \in G}\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n} \xrightarrow{\alpha}\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n} \xrightarrow{\operatorname{Tr}}\left[H_{\mathfrak{n}}^{n}\left(R^{G}\right)\right]_{-n} \longrightarrow 0
$$

Since $\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n}$ is a rank one vector space, it follows that $a\left(R^{G}\right)=-n$ if and only if the map α above is identically zero, i.e., if and only if the map

$$
\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n} \xrightarrow{1-g}\left[H_{\mathfrak{m}}^{n}(R)\right]_{-n}
$$

is zero for each $g \in G$. Taking

$$
\eta:=\left[\frac{1}{x_{1} \cdots x_{n}}\right]
$$

as in Remark 4.3, this is equivalent to the condition that

$$
\eta-g(\eta)=\eta-(\operatorname{det} g)^{-1} \eta
$$

is zero for each g, i.e., that $\operatorname{det} g=1$ for each $g \in G$.

5. Hilbert series of local cohomology

Theorem 3.1 has an amusing consequence for the Hilbert series of local cohomology:
Corollary 5.1. For K a field, let G be a finite cyclic subgroup of $\mathrm{GL}_{n}(K)$, without transvections, acting on the polynomial ring $R:=K\left[x_{1}, \ldots, x_{n}\right]$. Then the Hilbert series of $H_{\mathfrak{n}}^{n}\left(R^{G}\right)$ and $H_{\mathfrak{m}}^{n}(R)^{G}$ coincide, i.e., for each integer k, one has

$$
\operatorname{rank}_{K}\left[H_{\mathfrak{n}}^{n}\left(R^{G}\right)\right]_{k}=\operatorname{rank}_{K}\left[H_{\mathfrak{m}}^{n}(R)^{G}\right]_{k}
$$

Proof. Let $G=\langle g\rangle$. Then, by Theorem 3.1 and Remark 3.2, one has an exact sequence

$$
H_{\mathfrak{m}}^{n}(R) \xrightarrow{1-g} H_{\mathfrak{m}}^{n}(R) \xrightarrow{\operatorname{Tr}} H_{\mathfrak{n}}^{n}\left(R^{G}\right) \longrightarrow 0 .
$$

But the kernel of the first map is precisely $H_{\mathfrak{m}}^{n}(R)^{G}$, so

$$
0 \longrightarrow H_{\mathfrak{m}}^{n}(R)^{G} \longrightarrow H_{\mathfrak{m}}^{n}(R) \xrightarrow{1-g} H_{\mathfrak{m}}^{n}(R) \xrightarrow{\operatorname{Tr}} H_{\mathfrak{n}}^{n}\left(R^{G}\right) \longrightarrow 0
$$

is exact. Taking the degree k strand, the alternating sum of the ranks is zero.

We will see in Example 5.3 that the equality of Hilbert series need not hold when G is not cyclic; however, before that, it is worth emphasizing that both $H_{\mathfrak{n}}^{n}\left(R^{G}\right)$ and $H_{\mathfrak{m}}^{n}(R)^{G}$ are graded R^{G}-modules, and Corollary 5.1 says precisely that they are isomorphic as graded K vector spaces. They need not be isomorphic as R^{G}-modules:
Example 5.2. Consider the alternating group A_{3} acting on $R:=\mathbb{F}_{3}[x, y, z]$ by permuting the variables. The ring of invariants $R^{A_{3}}$ is then generated by the elements

$$
e_{1}:=x+y+z, \quad e_{2}:=x y+y z+z x, \quad e_{3}:=x y z, \quad \Delta:=x^{2} y+y^{2} z+z^{2} x
$$

It follows that $R^{A_{3}}$ is a hypersurface; the defining equation is readily seen to be

$$
\Delta^{2}-e_{1} e_{2} \Delta+e_{2}^{3}+e_{1}^{3} e_{3}
$$

Taking a Čech complex on e_{1}, e_{2}, e_{3}, the socle of the $R^{A_{3}}$-module $H_{\mathfrak{n}}^{3}\left(R^{A_{3}}\right)$ is the rank one vector space spanned by the cohomology class

$$
\eta:=\left[\frac{\Delta}{e_{1} e_{2} e_{3}}\right] .
$$

Note that η belongs to the kernel of the natural map $H_{\mathfrak{n}}^{3}\left(R^{A_{3}}\right) \longrightarrow H_{\mathfrak{n}}^{3}(R)$ since $R^{A_{3}} \longrightarrow R$ is not $R^{A_{3}}$-split; alternatively, it is a routine verification that

$$
\Delta \in\left(e_{1}, e_{2}, e_{3}\right) R
$$

We claim that, in contrast with $H_{\mathfrak{n}}^{3}\left(R^{A_{3}}\right)$, the socle of $H_{\mathfrak{n}}^{3}(R)^{A_{3}}$, as an $R^{A_{3}}$-module, has larger rank: for this, one may verify that the elements

$$
\left[\frac{x \Delta}{e_{1}^{2} e_{2} e_{3}}\right], \quad\left[\frac{\Delta}{e_{1}^{2} e_{2} e_{3}}\right], \quad\left[\frac{\Delta}{e_{1} e_{2}^{2} e_{3}}\right], \quad\left[\frac{1}{e_{1} e_{2} e_{3}}\right],
$$

are all nonzero in $H_{\mathfrak{n}}^{3}(R)$, that they are A_{3}-invariant, and that they are annihilated by the ideal $\left(e_{1}, e_{2}, e_{3}, \Delta\right) R^{A_{3}}$. Note that they have degrees $-3,-4,-5,-6$ respectively.

The equality of Hilbert series, Corollary 5.1, fails for an action of the Klein-4 group:
Example 5.3. The following matrices over \mathbb{F}_{2} generate the Klein- 4 group:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Each of these is a transvection; the invariant ring for this action of the Klein-4 group on $\mathbb{F}_{2}[x, y, z]$ is the polynomial ring

$$
\mathbb{F}_{2}\left[z, x^{2}+x z, y^{2}+y z\right]
$$

The situation is more interesting if we take the 2 -fold diagonal embedding, i.e., if we consider the representation of the Klein- 4 group, over \mathbb{F}_{2}, determined by the matrices:

$$
g:=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad h:=\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Under the action of this group G on the polynomial ring $R:=\mathbb{F}_{2}[u, v, w, x, y, z]$, the following elements are readily seen to be invariant:

$$
w, \quad z, \quad u^{2}+u w, \quad v^{2}+v w, \quad x^{2}+x z, \quad y^{2}+y z, \quad u z+w x, \quad v z+w y .
$$

Indeed, the invariant ring R^{G} is generated by these elements, and is a complete intersection ring with defining equations

$$
(u z+w x)^{2}+(u z+w x) w z+\left(u^{2}+u w\right) z^{2}+\left(x^{2}+x z\right) w^{2}
$$

and

$$
(v z+w y)^{2}+(v z+w y) w z+\left(v^{2}+v w\right) z^{2}+\left(y^{2}+y z\right) w^{2} .
$$

It follows that R^{G} has Hilbert series

$$
\frac{\left(1-t^{4}\right)^{2}}{(1-t)^{2}\left(1-t^{2}\right)^{6}}=\frac{\left(1+t^{2}\right)^{2}}{(1-t)^{2}\left(1-t^{2}\right)^{4}}=1+2 t+9 t^{2}+\cdots
$$

Set \mathfrak{n} to be the ideal of R^{G} generated by the homogeneous system of parameters

$$
w^{2}, \quad z^{2}, \quad u^{2}+u w, \quad v^{2}+v w, \quad x^{2}+x z, \quad y^{2}+y z
$$

Since R^{G} is Gorenstein with $a\left(R^{G}\right)=-6$, the Hilbert series above yields

$$
\operatorname{rank}\left[H_{\mathfrak{n}}^{6}\left(R^{G}\right)\right]_{-6}=1 \quad \text { and } \quad \operatorname{rank}\left[H_{\mathfrak{n}}^{6}\left(R^{G}\right)\right]_{-7}=2
$$

We claim that, on the other hand,

$$
\operatorname{rank}\left[H_{\mathfrak{n}}^{6}(R)^{G}\right]_{-7}=4
$$

Consider the Artinian ring $A:=R / \mathfrak{n} R$; we identify $\left[H_{\mathfrak{n}}^{6}(R)\right]_{-6}$ with $[A]_{6}$, and $\left[H_{\mathfrak{n}}^{6}(R)\right]_{-7}$ with $[A]_{5}$ as G-modules.

The rank one space $[A]_{6}$ has basis $u v w x y z$, which is fixed by g and h, (as it must!) since

$$
g: u v w x y z \longmapsto u(v+w) w x(y+z) z \equiv u v w x y z
$$

in A, and

$$
h: u v w x y z \longmapsto(u+w) v w(x+z) y z \equiv u v w x y z .
$$

For $[A]_{5}$, we work with the basis $v w x y z, u w x y z, u v x y z, u v w y z, u v w x z, u v w x y$. The first of these elements is fixed since

$$
g: v w x y z \longmapsto(v+w) w x(y+z) z \equiv v w x y z
$$

and

$$
h: v w x y z \longmapsto v w(x+z) y z \equiv v w x y z .
$$

Similar calculations show that $u w x y z, u v w y z, u v w x z$ are fixed by g and h. On the other hand

$$
g: u v x y z \longmapsto u(v+w) x(y+z) z \equiv(u v+u w) x y z
$$

and

$$
g: u v w x y \longmapsto u(v+w) w x(y+z) \equiv u v w(x y+x z)
$$

so g fixes no nonzero \mathbb{F}_{2}-linear combination of $u v x y z$ and $u v w x y$. It follows that the subspace of $[A]_{5}$ fixed by G has basis $v w x y z, u w x y z, u v w y z, u v w x z$.

ACKNOWLEDGMENTS

We have benefitted from several examples computed using the computer algebra systems Macaulay2 [GS] and Magma [BCP]; the use of these is gratefully acknowledged. We are also deeply grateful to Gregor Kemper for sharing the database [KKM^{+}], and for related discussions, and to Mitsuyasu Hashimoto for valuable discussions.

REFERENCES

[Be] D. J. Benson, Polynomial invariants of finite groups, London Math. Soc. Lecture Note Ser. 190, Cambridge University Press, Cambridge, 1993. 2
[BCP] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. 11
[Br1] A. Braun, On the Gorenstein property for modular invariants, J. Algebra 345 (2011), 81-99. 2, 4
[Br2] A. Braun, The Gorenstein property for modular binary forms invariants, J. Algebra 451 (2016), 232247. 4
[Bro] A. Broer, The direct summand property in modular invariant theory, Transform. Groups 10 (2005), 5-27. 2, 8
[CW] H. E. A. Campbell and D. L. Wehlau, Modular invariant theory, Encyclopaedia Math. Sci. 139, Springer-Verlag, Berlin, 2011. 2
[ES] G. Ellingsrud and T. Skjelbred, Profondeur d'anneaux d'invariants en caractéristique p, Compositio Math. 41 (1980), 233-244. 1
[Fe] M. Feshbach, p-subgroups of compact Lie groups and torsion of infinite height in $H^{*}(B G), I I$, Michigan Math. J. 29 (1982) 299-306. 2
[FW] P. Fleischmann and C. Woodcock, Relative invariants, ideal classes and quasi-canonical modules of modular rings of invariants, J. Algebra 348 (2011), 110-134. 2, 4
[GW] S. Goto and K.-i. Watanabe, On graded rings I, J. Math. Soc. Japan 30 (1978), 179-213. 4
[GS] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/. 11
[Ha] M. Hashimoto, The a-invariant of the invariant subring under the action of finite group schemes, in preparation. 2, 4, 8
[HE] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058. 4
[Je] J. Jeffries, Rings of invariants, F-regularity, and local cohomology, Ph.D. thesis, The University of Utah, 2015. 7, 8
$\left[\mathrm{KKM}^{+}\right]$G. Kemper, E. Körding, G. Malle, B. H. Matzat, D. Vogel, and G. Wiese, A database of invariant rings, Experiment. Math. 10 (2001), 537-542. 4, 11
$[\mathrm{Ku}] \quad$ E. Kunz, Residues and duality for projective algebraic varieties, Univ. Lecture Ser. 47, American Mathematical Society, Providence, RI, 2008. 8
[KPU] A. Kustin, C. Polini, and B. Ulrich, Integral extensions and the a-invariant, J. Pure Appl. Algebra 216 (2012), 2800-2806. 7
[NS] M. D. Neusel and L. Smith, Invariant theory of finite groups, Math. Surveys Monogr. 94, American Mathematical Society, Providence, RI, 2002. 2
[Pe] B. R. Peskin, On the dualizing sheaf of a quotient scheme, Comm. Algebra 12 (1984), 1855-1869. 1, 2
[St] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. 1 (1979), 475-511. 2
[Wa1] K.-i. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka Math. J. 11 (1974), 1-8. 2, 4
[Wa2] K.-i. Watanabe, Certain invariant subrings are Gorenstein. II, Osaka Math. J. 11 (1974), 379-388. 2, 4
Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

Email address: kritigoel.maths@gmail.com
Department of Mathematics, University of Nebraska-Lincoln, 203 Avery Hall, Lincoln, NE 68588, USA

Email address: jack.jeffries@unl.edu
Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

Email address: singh@math.utah.edu

[^0]: 2010 Mathematics Subject Classification. Primary 13A50; Secondary 13D45, 13B05.
 K.G. was supported by a Fulbright-Nehru Postdoctoral Research Fellowship at the University of Utah, J.J. by NSF CAREER Award DMS 2044833, and A.K.S. by NSF grants DMS 1801285 and DMS 2101671.

