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K. R. Nagarajan constructed an example of a formal power 
series ring of dimension two, over a field of characteristic two, 
with the action of a cyclic group of order two, such that 
the ring of invariants is not noetherian. We point out how 
Nagarajan’s example readily extends to each positive prime 
characteristic, and also to a characteristic zero example: There 
exists a formal power series ring of dimension two, over a 
field of characteristic zero, with an action of the infinite cyclic 
group, such that the ring of invariants is not noetherian. 
Both the positive characteristic and the characteristic zero 
examples are sharp in multiple ways.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Consider a finite group G acting on a noetherian ring R via ring automorphisms. The 
question whether the invariant ring RG is noetherian is a classical one, with positive 
results, in a sense, going back to Hilbert and Noether: If the order of the finite group is 
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invertible in R, then RG is noetherian [6,7,16]; if R is a finitely generated algebra over 
a noetherian ring A, and the action of G on R is via A-algebra automorphisms, then, 
again, RG is noetherian [17].

On the other hand, Nagata gave an example of an artinian local ring R containing 
a field of characteristic p > 0, with an action of a cyclic group G of order p, such 
that RG is not noetherian [15, Proposition 0.10], see also [4, §1] and [8, Example 12]; 
while the ring in this example is of course not an integral domain, in the same paper, 
Nagata also constructs a pseudo-geometric local integral domain R of dimension one and 
characteristic p > 0, with an action of a cyclic group G of order p, such that RG is not 
noetherian [15, Proposition 0.11]. In contrast, if G is a finite group acting on a Dedekind 
domain R, then RG is noetherian [15, Proposition 0.3, Remark 0.7].

In light of the above, it is natural to impose stronger hypotheses on R and ask 
whether RG is noetherian when G is a finite group, and R is normal [15, Question 0.1], 
or even regular. These questions were settled in the negative by Nagarajan [12, §4], who 
constructed a formal power series ring R of dimension two, over a field of characteristic 
two, with the action of an involution σ such that R〈σ〉 is not noetherian. Our first goal 
in this paper is to point out how Nagarajan’s example readily extends to each positive 
prime characteristic p, providing an action of a cyclic group G of order p on a formal 
power series ring R := K�x, y�, with K a field of characteristic p, such that the invariant 
ring RG is not noetherian. Other variations of Nagarajan’s example may be found in [2]
and [1].

Our other goal is to note that Nagarajan’s construction extends readily to a curious 
characteristic zero example: there exists a formal power series ring R := K�x, y� over a 
field K of characteristic zero, with an action of the infinite cyclic group G, such that the 
invariant ring RG is not noetherian. The positive characteristic and the characteristic 
zero examples are all sharp: in each case, the dimension of the regular local ring R is the 
least possible, see Remark 2.2, as is the cardinality and the number of generators of the 
group G.

While we have focused here on the noetherian property of RG, related questions 
on the finite generation of RG have a rich history: in addition to Nagata’s celebrated 
counterexamples to Hilbert’s 14th Problem [13,14], we point the reader towards the 
papers [11,18,19,3,10,5,9,20], and the references therein.

2. The example

Let F be a field, and consider the purely transcendental extension field

K := F(a1, b1, a2, b2, . . . ),

where the elements an, bn are indeterminates over F . Set R := K�x, y�, i.e., R is the ring 
of formal power series in the variables x and y, with coefficients in K. Set

fn := anx + bny for n � 1.
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Define an F -algebra endomorphism σ of R as follows:

σ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x �−→ x,

y �−→ y,

an �−→ an + yfn+1,

bn �−→ bn − xfn+1.

It is readily seen that σ(fn) = fn for each n � 1, and also that σ is surjective, hence an 
automorphism of R. With this notation, we prove:

Theorem 2.1. Let K be a field constructed as above, R := K�x, y� a formal power series 
ring, and G := 〈σ〉 a cyclic group acting on R as described above. If the field K has 
positive characteristic p, then G is a cyclic group of order p, whereas G is infinite if K
has characteristic zero. In either case, the ring of invariants RG is not noetherian.

Proof. For each k ∈ Z, one has

σk(an) = an + kyfn+1 and σk(bn) = bn − kxfn+1,

so the group 〈σ〉 has order p if K has characteristic p > 0, and is infinite cyclic otherwise.
Let m denote the maximal ideal of R. We claim that for each α in K, one has

σ(α) ≡ α mod m2 (2.1.1)

in R. To see this, suppose α = g/h for nonzero g, h in F [a1, b1, a2, b2, . . . ]. It is immediate 
from the definition that σ(g) ≡ g mod m2. Since g is a unit in R, there exists g2 ∈ m2

with σ(g) = g(1 − g2). Similarly, there exists h2 ∈ m2 with σ(h) = h(1 − h2). But then

σ
( g
h

)
= g(1 − g2)

h(1 − h2)
= g

h
(1 − g2)(1 + h2 + h2

2 + · · · ) ≡ g

h
mod m2,

which proves the claim.
Given a power series r ∈ R, set r to be its constant term, i.e., r ∈ K, and r ≡ r mod m. 

We next claim that if r ∈ RG, then (2.1.1) can be strengthened to

σ(r) ≡ r mod (x2, y2)R. (2.1.2)

Given r ∈ RG, let α, β, γ be elements of K such that

r ≡ r + αx + βy + γxy mod (x2, y2)R.

Since σ(r) = r, one has
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σ(r) + σ(α)x + σ(β)y + σ(γ)xy ≡ r + αx + βy + γxy mod (x2, y2)R.

By (2.1.1), one has σ(α) ≡ α mod m2, and σ(β) ≡ β mod m2, and σ(γ) ≡ γ mod m2, 
so the above display yields σ(r) ≡ r mod (x2, y2)R as desired.

Lastly, we prove that RG is not noetherian by showing that

fn+1 /∈ (f1, . . . , fn)RG for n � 1,

which, then, gives a strictly ascending chain of ideals in RG. Suppose, to the contrary, 
that there exists an integer n such that

fn+1 =
n∑

k=1

rkfk

where rk ∈ RG for each k with 1 � k � n. The above may be written as

an+1x + bn+1y =
n∑

k=1

rk(akx + bky),

so comparing the coefficients of x yields

an+1 =
n∑

k=1

rk ak. (2.1.3)

Applying σ to the above equation gives

an+1 + yfn+2 =
n∑

k=1

σ(rk)(ak + yfk+1),

i.e.,

an+1 + an+2xy + bn+2y
2 =

n∑
k=1

σ(rk)(ak + ak+1xy + bk+1y
2).

Since σ(rk) ≡ rk mod (x2, y2)R for each k by (2.1.2), one obtains

an+1 + an+2xy ≡
n∑

k=1

rk(ak + ak+1xy) mod (x2, y2)R.

In light of (2.1.3), this simplifies to

an+2xy ≡
n∑

rk ak+1xy mod (x2, y2)R,

k=1
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from which one obtains

an+2 =
n∑

k=1

rk ak+1. (2.1.4)

Repeating the argument that (2.1.3) implies (2.1.4) gives

an+m+1 =
n∑

k=1

rk ak+m for each m � 1.

As r1, . . . , rn are finitely many elements of the field K, this contradicts the assumption 
that a1, a2, . . . are infinitely many elements algebraically independent over F . �
Remark 2.2. Consider a discrete valuation ring R, with an action of a group G. We claim 
that the invariant ring RG is either a field or a discrete valuation ring; in particular, RG

is noetherian. To see this, let v : R�{0} −� Z be the discrete valuation, and consider its 
restriction v : RG

�{0} −→ Z. If the image of this map is 0, then RG is a field; otherwise, 
the image is generated by a positive integer n, which yields the discrete valuation

1
n
v : RG

� {0} −� Z.
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