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ABSTRACT. The goal of this paper is to explain how basic properties of perverse sheaves sometimes trans-

late via Riemann-Hilbert correspondences (in both characteristic 0 and characteristic p) to highly non-trivial

properties of singularities, especially their local cohomology. Along the way, we develop a theory of per-

verse Fp-sheaves on varieties in characteristic p, expanding on previous work by various authors, and including

a strong version of the Artin vanishing theorem.
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1. INTRODUCTION

Perverse sheaves [GM1, GM2, BBDG] were invented to study the topology of singular spaces, especially

algebraic varieties; in the last 40 years, they have had a deep impact on many areas of mathematics, es-

pecially representation theory and arithmetic geometry. Commutative algebra, to some extent, can also be

regarded as a study of singularities of algebraic varieties. The goal of this paper is to use perverse sheaves

to give relatively soft “topological” proofs, in both characteristic 0 and characteristic p, of several impor-

tant results in commutative algebra concerning invariants of singularities, especially local cohomology. Our

main tool is the Riemann-Hilbert correspondence, which relates perverse sheaves to holonomic D-modules

(over C) or to Frobenius modules (in characteristic p).

We remark that holonomic D-modules have been used in commutative algebra over C for at least 30

years [Ly1]; however, perverse sheaves seem less common. But already over C, the topological perspective

offers some concrete benefits as the theory of perverse sheaves works perfectly well directly on arbitrarily

singular spaces (unlike the theory of holonomic D-modules, which works most directly using a smooth

embedding); see §3.4 for an application where this benefit becomes transparent. Secondly, the topological

proofs sometimes work surprisingly uniformly in all characteristics (compare §3.2 and §5.5). Finally, the

topological perspective suggests approaches in mixed characteristic, where neither the theory of holonomic

D-modules nor the theory of Frobenius modules is natively available; see Remark 5.28 for an example.
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Foundation 622511; M.B. by DFG grant SFB/TRR45 and CRC326 GAUS; G.L. by NSF grant DMS 1800355, A.K.S. by NSF

grants DMS 1801285 and DMS 2101671; and W.Z. by NSF grant DMS 1752081. The authors are also grateful to the American

Institute of Mathematics (AIM) and the Institute for Advanced Study (IAS) for supporting their collaboration.
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Results. In §2, we recall the classical Riemann-Hilbert correspondence in characteristic zero, emphasizing

the connection between local cohomology and perverse truncations under this correspondence. Using this

relation, we give topological proofs of the following results:

(1) Fundamental results of Ogus [Og] connecting local cohomological dimension to de Rham depth —

(§3.1).

(2) The main result of Ma-Zhang [MZ] on possible gradings of certain local cohomology modules of

homogeneous ideals in characteristic zero — (§3.2).

(3) The topological interpretation of the Bass numbers of certain local cohomology modules, as given in

Lyubeznik-Singh-Walther [LSW, Theorem 3.1] — (§3.3).

(4) The embedding independence (from E2 onwards) of the Hodge-to-de-Rham spectral sequence for

algebraic de Rham homology due to Bridgland [Br] — (§3.4).

(5) The embedding independence of Lyubeznik numbers of (affine cones over) smooth projective vari-

eties due to Switala [Sw1] — (§3.5).

An earlier instance where Riemann-Hilbert techniques have been used to determine local cohomological

invariants can be found in [GLS].

We next turn our attention to characteristic p. The theory of perverse Fp-sheaves on varieties in charac-

teristic p is not as well behaved as in characteristic 0, e.g., there is no Verdier duality, and certain functors

do not preserve constructibility. Furthermore, the theory is also not as well developed as its characteristic 0

counterpart. In §4, we develop basic properties of this theory using the Riemann-Hilbert correspondence

from [BL1], generalizing earlier works of [EK, Ga, BP]. One of our basic results here is the following

surprisingly strong version (to us, at any rate) of Artin vanishing:

Theorem 1.1 (The perverse Artin vanishing theorem for Fp-coefficients in characteristic p). Let f : X −→Y

be an affine map of varieties over a field of characteristic p. Then

f! : Db
c(Xét ,Fp)−→ Db

c(Yét ,Fp)

is t-exact for the perverse t-structure on the source and the target. In particular, for any affine variety Z, we

have H i
c(Z,F) = 0 for i 6= 0, and F a perverse Fp-sheaf.

Armed with these basic results, we use the Riemann-Hilbert correspondence to obtain topological proofs

of the following results on invariants of singularities in characteristic p:

(1) A new interpretation of generalized Cohen-Macaulay and rational singularities in terms of the perver-

sity and perverse simplicity of the constant sheaf Fp[dim] — (§5.2)

(2) The embedding independence of Lyubeznik numbers of (affine cones over) arbitrary projective vari-

eties due to W. Zhang [ZhW] — (§5.3).

(3) A new topological interpretation of Bass numbers, mirroring that in characteristic p as in Lyubeznik-

Singh-Walther [LSW, Theorem 3.1] — (§5.4).

(4) The main result of Y. Zhang [ZhY] on possible gradings of certain local cohomology modules of

homogeneous ideals in characteristic p — (§5.5).

(5) Fundamental results of Hochster-Huneke [HH] and Smith [Sm1] on the Cohen-Macaulay and F-

rationality properties of the absolute integral closure — (§5.6).

(6) The graded version of the Cohen-Macaulay and F-rationality properties in (5), originally proven in

[HH, Sm2], giving Kodaira vanishing up to finite covers — (§5.7).

Notation. We follow standard notational conventions regarding cohomology and derived categories. Let us

recall some of them here to avoid future confusion. Fix a space X , an object K ∈D(X) and an integer i ∈ Z.

We shall often say “K ∈ D6i” (without specifying the ambient category where K lives) to indicate

that H j(K) = 0 for j 6 i; similarly for the perverse t-structure as well.

We shall write H i(X ,K) := H i(RΓ(X ,K)). Thus, when K = CX is the constant sheaf and i is negative, we

are setting H i(X ,C) to be 0.
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2. RECOLLECTIONS ON THE RIEMANN-HILBERT CORRESPONDENCE IN CHARACTERISTIC 0

Let X be a smooth connected algebraic variety over C of dimension d. Write DX for the sheaf of differ-

ential operators on X , and let Db(DX ) be the bounded derived category of quasi-coherent left DX -modules.

Let Db
rh(DX ) be the full subcategory of Db(DX) spanned by complexes whose cohomology sheaves are

regular holonomic DX -modules [HTT, Definition 6.1.1]. If f : X −→ Y is a morphism of smooth alge-

braic varieties, then the two corresponding pushforward functors take Db
rh(DX) to Db

rh(DY ), and the two

corresponding pullback functors take Db
rh(DY ) to Db

rh(DX ) [HTT, Theorem 6.1.5 (ii)].

Let X an be the analytic space associated to X , let CXan denote the constant sheaf of complex numbers C

on X an, and let Db(CXan) be the bounded derived category of CXan-modules. A stratification of the variety X

is a locally finite partition X = ∪Xα by mutually disjoint strata Xα , such that each stratum Xα is a smooth

locally closed subvariety of X , and for every α the closure Xα is the union of some subset of the strata. An

algebraically constructible sheaf F on X an is a CXan-module such that all its stalks are finite-dimensional

vector spaces over C and there is a stratification X = ∪Xα with the property that the restriction F|Xan
α

is

locally constant for every α [HTT, Definition 4.5.6]. We write Db
c(X) for the full subcategory of Db(CXan)

consisting of bounded complexes of CXan-modules with algebraically constructible cohomology sheaves

[HTT, Notation 4.5.7].

According to [HTT, page 111], there is the (contravariant) Verdier duality functor

DXan(−) = RHomCXan (−,ω•) : Db(CXan)−→ Db(CXan),

where ω• ∈ Db(CXan) is the dualizing complex of X an [HTT, Definition 4.5.2]; if X is smooth, then

ω• ∼= CXan [2dimX ],

[HTT, page 111]. Verdier duality preserves the category Db
c(X) [HTT, Theorem 4.5.8 (i)]. If f : X −→Y is

a morphism of algebraic varieties, then there are two pullback functors

f ∗, f ! : Db
c(Y

an)−→ Db
c(X

an)

that satisfy

f ! = D◦ f ∗ ◦D,

i.e., D◦ f ! = f ∗ ◦D [HTT, Theorem 4.5.8 (ii)]; note that the functor (−)∗ is denoted (−)−1 in [HTT].

The de Rham complex of M• ∈ Db(DXan) is defined in [HTT, Section 4.2] as

dR(M•) = Ω⊗L
DXan M•,

where Ω is the canonical sheaf of X an, i.e., the highest exterior power of the sheaf Ω1
Xan/C

of C-linear

differentials of X an; the canonical sheaf Ω has a natural structure of a right DXan -module. There results a

de Rham functor

dR: Db(DXan)
M• 7−→dR(M•)−−−−−−−−−→ Db(CXan).

It is clear from the definition that the de Rham functor respects the translation functor and takes distinguished

triangles to distinguished triangles.

1During the long preparation period of this paper, some of the results/techniques discussed here have been rediscovered inde-

pendently. These include, for example, [RSW2] for results in characteristic zero, and [Ca, Ba] for results in positive characteristic.
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For the theory of perverse sheaves and perverse t-structure on Db
c(X), we refer to [HTT, Chapter 8]. We

write pτ6i, pτ>i, and pHi for the perverse truncation and cohomology functors [HTT, Definition 8.1.28];

more generally, we follow the notation in [BBDG] unless otherwise specified.

We will use the following covariant form of the Riemann-Hilbert correspondence, see [HTT, §7]:

Theorem 2.1. The de Rham functor induces an equivalence of categories

dR: Db
rh(DX )−→ Db

c(X),

that satisfies the following properties:

(1) dR commutes with the duality functors and with the standard pushforward and pullback functors for

every morphism f : X −→Y of smooth algebraic varieties. In particular, it commutes with restriction

to open subsets.

(2) dR identifies the standard t-structure on Db
rh(DX ) with the perverse t-structure on Db

c(X
an). In par-

ticular, for K• ∈ Db
rh(DX ), and each integer i, we have

dR(Hi(K•))≃ pHi(dR(K•)).

(3) dR(OX)≃CX [d], where d = dimX.

(4) dR is functorial with respect to automorphisms of X. In particular, if G is an algebraic group acting

on X, then dR induces an identification of the G-equivariant analogs of Db
rh(DX) and Db

c(X
an), as

defined in [BeL].

Proof. The fact that the de Rham functor is an equivalence is proven in [HTT, Theorem 7.2.2].

(1) Commutativity with the duality functors is proven in [HTT, Corollary 4.6.5 and Proposition 4.7.9].

Commutativity with the pushforward and pullback functors is proven in [HTT, Theorem 7.1.1].

(2) This is straightforward from [HTT, Theorem 7.2.5] that says that the de Rham functor dR induces an

equivalence between Modrh(DX), i.e., the category of regular holonomic DX -modules on X , which is the

core of the standard t-structure, and Perv(CXan), i.e., the category of perverse sheaves on X an, which is the

core of the perverse t-structure.

(3) There is a locally free resolution of the right DXan-module Ω described in [HTT, Lemma 1.5.27]. This

resolution is concentrated in homological degrees −d through 0. Applying −⊗DXan OX to this resolution

yields a complex whose cohomology in degree −d is the constant sheaf CXan , and whose cohomology in all

higher degrees vanish by the holomorphic Poincaré lemma. Hence dR(OXan) is quasi-isomorphic to CX [d].
(4) is a consequence of the commutativity of the de Rham functor with pullbacks and pushforwards. �

Next we summarize the relevant features of local cohomology in the context of the Riemann-Hilbert

correspondence:

Example 2.2 (Local cohomology under Riemann-Hilbert). Let i : Z −֒→ X be a closed immersion with open

complement j : U −֒→ X . For every M• ∈ Db
rh(DX) there is a distinguished triangle

RΓZ(M
•)−→M• −→ j∗ j∗(M•).

As standard pushforwards and pullbacks preserve regular holonomicity, j∗ j∗(M•) ∈ Db
rh(OX), so RΓZ(M

•)
is also in Db

rh(DX). Thus, local cohomology modules of regular holonomic modules are regular holonomic.

In particular, as OX ∈ Db
rh(DX), it follows that RΓZ(OX ) ∈ Db

rh(DX). Setting M• =OX in the above distin-

guished triangle and applying the functor dR gives the following distinguished triangle in Db
c(CX):

dR(RΓZ(OX ))−→ dR(OX )−→ dR( j∗ j∗(OX )).

Since dR(OX)∼= CX [d] by Theorem 2.1.3, and dR( j∗ j∗(OX )) = j∗ j∗(CX [d]) by Theorem 2.1.1, comparing

this distinguished triangle with the distinguished triangle

i∗i
!(CX [d])−→ CX [d]−→ j∗ j∗(CX [d]),
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we conclude that

(2.2.1) dR(RΓZ(OX))≃ i∗i
!CX [d].

In particular, we obtain

(2.2.2) dR(Hi
Z(OX ))≃ pHi(i∗i

!CX [d]).

As a special case, assume that X = SpecR is (smooth and) affine of dimension d, and that Z = {x} is a closed

point of X defined by the maximal ideal m⊆ R. Then

RΓZ(OX ) = Hd
m(R)[−d],

and Hd
m(R)≃ E is the injective hull of the residue field of R. Since the inclusion

j : U = X \{x} −→ X

locally on X an looks like the inclusion

(Cd \{0}) ⊂Cd ≃ R2d ,

one calculates that

i∗i
!CX [d]≃ i∗C{x}[−d].

The preceding formula then shows that dR(Hd
m(R)) ≃ C{x}. In other words, the regular holonomic DX -

module Hd
m(R) corresponds to the skyscraper sheaf with value C supported at x ∈ X an.

In the sequel, it will be useful to record the Verdier dual form of (2.2.1) and (2.2.2). Let D be the Verdier

duality functor Db
c(X

an); it is an anti-equivalence, and t-exact for the perverse t-structure. One defines2

SolC := D◦dR .

Together with the standard formulae D(CX [d])≃ CX [d], and D◦ i∗ ≃ i∗ ◦D, and D◦ i! ≃ i∗ ◦D, one obtains

the following translation of (2.2.1):

(2.2.3) SolC(RΓZ(OX))≃ i∗i
∗CX [d]≃ i∗CZ[d].

As i∗ is t-exact, (2.2.2) then becomes

(2.2.4) SolC(Hi
Z(OX))≃ i∗

(
pHd−i(CZ)

)
.

In particular, as the Riemann-Hilbert correspondence is compatible with restriction to open subsets, ques-

tions about the support of local cohomology modules Hi
Z(OX) translate to questions about the support of

the perverse sheaves pHd−i(CZ).

3. APPLICATIONS OF THE RIEMANN-HILBERT CORRESPONDENCE IN CHARACTERISTIC 0

Our goal in this section is to exploit the Riemann-Hilbert correspondence (RHC) to study local cohomol-

ogy, recovering the results mentioned in §1. A particular feature of this approach is that the proofs on the

topological side (as explained below) involve far fewer calculations than those on the algebraic side, and use

nothing beyond the basic formalism of perverse sheaves and standard pullback/pushforward functors.

2There are concrete formulae for SolC and dR but they do not play a role in our applications, see [HTT, §5]. In our treatment

of the characteristic p case later, it is the Sol functor that has an analog in that situation.
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3.1. Recovering results of Ogus. We recover some fundamental results of Ogus [Og] using the perverse

sheaf perspective. For the rest of this section, fix a smooth affine algebraic variety X of dimension d over C,

as well as a closed subvariety i : Y −֒→ X . Ogus studies the local cohomological dimension

lcd(Y,X) := max{i | Hi
Y (OX) 6= 0},

which, via Riemann-Hilbert as noted in equation (2.2.4), satisfies

d− lcd(Y,X) = min{ j | pH j(CY ) 6= 0}.

In other words, RΓY (OX)∈D6d−r
rh (DX ) if and only if CY ∈ pD>r

c (Y an). In [Og, Theorem 2.13], Ogus relates

lcd(Y,X) to the de Rham depth of Y to show:

Theorem 3.1 (Ogus). Fix an integer r. Then the following are equivalent:

(1) Hi
Y (OX ) = 0 for i > d− r, i.e., lcd(Y,X)6 d− r.

(2) There exists a stratification {ki : Zi −֒→ Y} of Y such that for all closed points z ∈ Zi, we have

H i
z(Y

an,CY ) = 0 for i < r+di, where di = dimZi.

Here, H i
z(Y,CY ) is defined to be the i-th cohomology of the homotopy-kernel of the map

RΓ(Y an,CY )−→ RΓ((Y −{z})an,CY−{z})

and we point out that by Hartshorne [Ha, §IV, Theorem 1.1] this can be expressed in terms of algebraic

de Rham cohomology of Y , see [Ha, §III]. We have also used [Ha, Theorem 6.2] to simplify the condition

of de Rham depth occurring in [Og], avoiding all mention of non-closed points.

Proof. Assume (1), so RΓY (OX) ∈ D6d−r
rh (DX ). By (2.2.4), this translates to CY ∈ pD>r

c (X an). By con-

structibility of the Verdier dual DX(i∗CY ), choose a stratification {ki : Zi −֒→ Y} such that Zi is smooth of

dimension di and k∗i DX(i∗CY ) is lisse, i.e., has locally constant cohomology sheaves. As Verdier duality on

a smooth scheme preserves lisse complexes, dualizing again shows that k!
iCY = DZi

k∗i DX(i∗CY ) is lisse.

As k!
i is left t-exact, we obtain k!

iCY ∈ pD>r. Moreover, as the perverse and standard t-structure on

lisse complexes are the same up to a shift by the dimension of the variety [HTT, Corollary 8.1.23], we

get k!
iCY ∈D>r−di . If kz : {z} −֒→ Zi is the inclusion of a closed point, then k!

z = k∗z [−2di] on lisse complexes

[HTT, Theorem 4.5.8 (ii)], so

k!
zk

!
iCY ≃ k∗z

(
k!

iCY

)
[−2di] ∈ D>r−di[−2di] = D>r+di,

where we use that k∗z is exact for the standard t-structure. Now ki ◦ kz is simply the inclusion h : {z} −֒→ Y .

If ℓ : Y −{z} −→Y denotes the open complement, then there is an exact triangle

h∗h
!CY −→ CY −→ ℓ∗CY−{z}.

As {z} is a point, the complex h!CY is identified (via the previous triangle) with the homotopy-kernel of

RΓ(Y an,C)−→ RΓ((Y −{z})an,C).

Thus, the condition h!CY ∈ D>r+di translates to H i
z(Y

an,CY ) = 0 for i < r+di, which gives (2).

By definition of the perverse t-structure, the condition CY ∈ pD>r
c (Y an) is equivalent to: For any locally

closed immersion h : Z −֒→ Y one has h!CY ∈ D>r−dimZ
c (Zan). By passing to a finer stratification (that also

respects Z), the above reasoning is essentially reversible, so we get the converse as well. �

As an application of this, we can prove another result of Ogus, which, in some ways, is a specialization

of the former (see [Og, Theorem 2.8]):

Theorem 3.2 (Ogus). Fix a closed point x ∈ Y . If Hi
Y (OX ) = 0 for all i > d − r, then H i

x(Y
an,CY ) = 0

for i < r. The converse is also true ifHi
Y (OX ) is known to be supported at x for i > d− r.
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Proof. The forward direction follows from the previous result as x must lie in some stratum. For the con-

verse, consider the inclusion k : {x} −֒→ Y . If H i
x,dR(Y ) = 0 for i < r, then k!CY ∈ D>r. If we additionally

know that τ>d−rRΓY (OX ) is supported at x, we learn, by (2.2.4), that pτ<rCY is supported at x, i.e., is of the

form k∗A for suitable A ∈ D<r. On the other hand, applying k! to the exact triangle

k∗A := pτ<rCY −→ CY −→ pτ>rCY

then gives a triangle

A≃ k!k∗A−→ k!CY −→ B

where B ∈ D>r by the left t-exactness of k!. Since k!CY ∈ D>r by our assumption, we must have A = 0,

so CY ∈D>r. This proves the claim by (2.2.4). �

Results using the same techniques in the analytic context have independently appeared in [RSW2].

In [MP] a further interesting characterization of lcd(Y,X) in terms of resolutions of singularities is obtained.

3.2. Gradings. We now explain how to use RHC to understand gradings of certain local cohomology mod-

ules with finite support. For this, note that, by RHC, it is trivial to classify regular holonomic DX -modules

supported at a point: it amounts to the classification of finite dimensional vector spaces. After incorporating

group actions, this lets us recover the main consequence of [MZ] in the regular holonomic case (which is

the only one relevant to the prequel); from this optic, the main idea is that Gm is connected.

Proposition 3.3. Let X = SpecR be a smooth affine variety of dimension d over C. Let M be a regular

holonomic DX -module that vanishes away from a closed point x ∈ X corresponding to a maximal ideal m.

Then M ≃ Hd
m(R)

⊕µ , i.e., M is isomorphic to a finite direct sum of copies of the injective hull of R/m.

Assume, moreover, that X admits a Gm-action that fixes x, and that M is Gm-equivariant. Then any

DX -module isomorphism M ≃ Hd
m(R)

⊕µ is automatically Gm-equivariant.

Proof. Since the support is preserved under the Riemann-Hilbert correspondence, regular holonomic DX -

modules that vanish away from x correspond to perverse sheaves that vanish away from x. Since {x} is

0-dimensional, the latter category is the same as that of constructible sheaves supported at x, i.e., that of

finite dimensional vector spaces (via taking stalks). Thus, dR(M) ≃ C
⊕µ
{x}. By Example 2.2, we know

that dR(Hd
m(R))≃ C{x}. As dR is an equivalence, we get M ≃ Hd

m(R)
⊕µ as wanted.

For the second part, our hypothesis ensures that M defines a Gm-equivariant regular holonomic DX -

module on X supported at x, and thus corresponds to a Gm-equivariant constructible sheaf on X supported at x

(via Theorem 2.1.4 and the previous paragraph). The latter category is (essentially by definition, see [BeL])

the category of constructible sheaves on the quotient stack Y := [Speck/Gm]. As |Y| is a point, constructible

sheaves on Y are locally constant. Moreover, since Gm is connected, the fundamental group of Y is trivial,

so such sheaves are direct sums of the constant sheaf. Translating back via RHC then gives the claim. �

Remark 3.4. The second half of Proposition 3.3 is a special case of the following more general, and well-

known fact: if G is a connected algebraic group acting on a smooth variety X , then the forgetful functor

from G-equivariant regular holonomic DX -modules to all regular holonomic DX -modules is fully faithful.

Indeed, this follows from RHC and [BBDG, Proposition 4.2.5] applied to the universal G-torsor X −→ X/G.

In particular, a regular holonomic DX -module carries at most one G-equivariant structure.

Upon observing that Gm-equivariant R-modules are synonymous with Z-graded R-modules, this leads to

the following consequence, which roughly corresponds to [MZ, Theorem 1.2]:

Example 3.5. Let R = C[x1, . . . ,xd ] be a polynomial ring with its standard grading, and m the homogenous

maximal ideal. Let J1, . . . ,Jn be a collection of homogeneous ideals. The local cohomology module Hd
m(R)

is then naturally a graded R-module. Proposition 3.3 implies that for any sequence of integers i0, . . . , in, if

M := H i0
m(H

i1
J1
(· · · (H in

Jn
(R)))),
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then M ≃ Hd
m(R)

⊕µ as a graded R-module, for suitable µ , since the support of M is contained in {m} by

construction. In particular, if I is a homogeneous ideal such that H i
I(R) vanishes away from {m} for some i,

then H i
I(R)≃Hd

m(R)
⊕µ as a graded R-module. Moreover, we learn that µ is equal to the C-dimension of the

stalk at the closed point of dR(H i
I(R)).

3.3. Bass numbers. Next, we want to recover [LSW, Theorem 3.1] via RHC, which gives a topological

interpretation of the number µ appearing in Proposition 3.3 in certain situations arising from local cohomol-

ogy (this number µ is the Bass number of M = Hd
m(R)

⊕µ ; recall that more generally, the Bass number of

a module M supported at the maximal ideal m is by definition the dimension of the socle of M). For this,

recall that if a constructible sheaf has finite support, then its global sections are identified with the direct

sum of all its stalks. The next lemma provides a generalization of this fact to complexes, except that only

some of the (perverse) cohomology sheaves are required to have finite support:

Lemma 3.6. Assume that X is a smooth affine connected variety over C. Fix a complex K• ∈ Db
c(X

an) such

that pHi(K•) has finite support for i > 0. Then, for i > 0, one has

H i(RΓ(X ,K•))≃⊕x∈X H i(K•x ).

Proof. We have a canonical exact triangle

pτ60K• −→ K• −→ pτ>0K•.

By perversity, the stalks of pτ60K• lie in D60
c . Hence the triangle implies that for i > 0 the stalks of H i(K•)

and H i(pτ>0K•) are isomorphic. As X is affine, the Artin vanishing theorem [BBDG, Theorem 4.1.1] shows

that RΓ(X ,−) carries pD60
c (X an) to D60(C). Applying this to the previous triangle then shows that

H i(RΓ(X ,K•))≃ H i(RΓ(X , pτ>0K•))

for i > 0. Since pτ>0K• is supported at finitely many points, applying RΓ(X ,−) is the same as taking the

direct sum over all the stalks, which gives the claim. �

Using the preceding formalism, we recover the promised theorem:

Theorem 3.7 ([LSW, Theorem 3.1]). Let X = SpecR be a smooth affine connected variety of dimension d

over C. Let I ⊂R be an ideal, and let m be the maximal ideal corresponding to a closed point x∈X. Assume

that there exists an integer k0 such that Hk
I (R) vanishes away from x for k > k0. Then:

(1) If k0 > 1, then Hk
I (R) ≃ Hd

m(R)
⊕µ for µ := rank Hd+k−1

sing (U ; C), where U is the complement of the

vanishing locus of I.

(2) If Hd
sing(X ; CX) = 0, then the previous conclusion is also valid for k0 = 1.

Proof. By Proposition 3.3, for k as above, we have Hk
I (R)≃ Hd

m(R)
⊕µ , where µ is the rank of dR(Hk

I (R))x.

To determine µ , set Z = SpecR/I, and let Z
i−֒→ X

j←−U be the resulting decomposition of X into closed

and open sets. Now consider K• = dR(RΓZ(OX )), so K• ≃ i∗i!CX [d] by Example 2.2. Our assumptions

show that pHk(K•) vanishes away from x for k > k0. Lemma 3.6 then shows that for k > k0 one has

dR(Hk
I (R))x ≃ pHk(K•)x ≃Hk(X ,K•).

It remains to identify Hk(X ,K•) with Hd+k−1
sing (U ; C), which is just the sheaf cohomology of the constant

sheaf CU . For this, consider the exact triangle

K• = i∗i
!CX [d]−→ CX [d]−→ j∗CU [d].

As k0 is positive, we have Hk(X ,CX [d]) = 0 for k > k0 by Artin vanishing [BBDG, Corollary 4.1.4]. Now

both (1) and (2) follow from the long exact sequence of cohomology. �
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3.4. Hodge-to-de-Rham spectral sequence for de Rham homology of affine schemes. We use RHC

to reinterpret the Hodge-to-de-Rham spectral sequence for de Rham homology of a singular affine space Y

embedded in a smooth affine space X ; this interpretation shows that, from E2 onwards, the spectral sequence

has finite dimensional terms and is independent of the embedding (up to a shift), recovering a recent result

of Bridgland [Br] (we refer the interested reader to [Sw2] for analogous results over complete local rings).

In fact, we obtain a slightly better result: the spectral sequence depends only on the topological space Y an

(up to a shift that depends only on the dimension of X ).

Let X be a smooth affine algebraic variety over C of dimension n, and let i : Y −֒→ X be a closed alge-

braic subscheme of dimension d. Following [Ha, §II.3], one defines the de Rham homology of Y as the

cohomology of

RΓY,dR(X) := RΓY (X ,Ω•X)≃ RΓY (X
an,dR(OX )[−n]).

Using the stupid filtration of the de Rham complex Ω•X , one obtains the Hodge-to-de-Rham spectral sequence

(3.7.1) E
a,b
1 (Y −֒→ X) : Hb

Y (X ,Ωa
X)⇒ Ha+b

Y,dR(X).

The E
a,b
1 -term above evidently depends on the embedding i : Y −֒→ X and is typically infinite dimen-

sional. Nevertheless, these features disappear after turning a page by a recent theorem of Bridgland [Br].

For a more precise formulation, let E
a,b
2 (Y −֒→ X) denote the spectral sequence obtained from (3.7.1) by

turning the page once. Then Bridgland shows:

Theorem 3.8 ([Br]). The terms E
a,b
2 (Y −֒→ X) are finite dimensional for all a,b. Moreover, up to bidegree

shift, the spectral sequence E
a,b
2 (Y −֒→ X) depends only on Y and not the choice of embedding i : Y −֒→ X.

We will prove this using RHC. In fact, we can “explain” the embedding independence purely in topolog-

ical terms. For this, recall that for every complex K• ∈ Db
c(Y

an), there is a canonical E2-spectral sequence

P
a,b
2 (K•) : Ha(Y an, pHb(K•))⇒ Ha+b(Y an,K•)

associated to the filtration of M by its perverse cohomology sheaves. The preceding theorem is then a

consequence of the following:

Theorem 3.9. The spectral sequence E
a,b
2 (Y −֒→ X) coincides with the spectral sequence P

a,b
2 (K•) where

K• := D(CY )[−2n]. In particular, both spectral sequences have finite dimensional terms, and are indepen-

dent of the embedding i : Y −֒→ X, up to a degree shift.

Proof. Recall that the de Rham cohomology functor on Db
rh(DX) is defined as

RΓdR(X ,M•) := RHomDX
(OX ,M

•)≃ dR(M•)[−n],

where the isomorphism holds by [HTT, Proposition 4.2.1]. In particular, if M• ∈Db
rh(DX ), using the canoni-

cal filtration of M• by its cohomology sheaves (via the standard t-structure), there is an E2-spectral sequence

F
a,b
2 (M•) : Ha

dR(X ,Hb(M•))⇒ Ha+b
dR (X ,M•).

Concretely, if M• ∈ Db
rh(DX) is a complex of DX -modules, then dR(M•)[−n] is computed as the total com-

plex of the bicomplex Ω•X⊗OX
M• by [HTT, Proposition 4.2.1]. Hence F

a,b
2 (M•) is the E2-spectral sequence

defined by the column filtration on the bicomplex (a,b) 7−→ Ωa
X ⊗OX

Mb. This description also shows that

the E1-spectral sequence for the same filtration is the Hodge-to-de-Rham spectral sequence

F
a,b

1 (M•) : Hb(M•)⊗Ωa
X ⇒ Ha+b

dR (X ,M•).

Applying this to M• := RΓY (OX ) ∈ Db
rh(DX) shows that

F
a,b
1 (RΓY (OX )) = Hb

Y (X ,OX)⊗Ωa
X
∼= Hb

Y (X ,Ωa
X) = E

a,b
1 (Y −֒→ X)

and hence the spectral sequence E
a,b
2 (Y −֒→ X) coincides with the spectral sequence F

a,b
2 (M•). On the

other hand, the construction of F
a,b
2 (M•) merely depends on the knowledge of M• ∈ Db

rh(DX) together with
9



the t-structure on the latter category. Passing through RHC, and using Theorem 2.1.3, and the equality

dR(RΓY (CX)) = i∗i!CX [n] (2.2.1) then shows that F
a,b
2 (M•) is isomorphic to the spectral sequence

P
a,b
2 (dR(M•)[−n]) : Ha(Xan, pHb(i∗i

!CX)⇒ Ha+b(Xan, i∗i
!CX).

By the exactness of i∗ and (2.2.2) this simplifies to the spectral sequence P
a,b
2 (i!CX) on Y . The formula

i!CX ≃ i!D(CX)[−2n]≃ D(i∗CX)[−2n] ≃D(CY )[−2n]

then proves the first part. The second part is then simply a consequence of the fact that the dualizing complex

D(CY ) is intrinsic to Y . �

Remark 3.10. Theorem 3.9 implies that the Hodge filtration on H i
Y,dR(X) is determined by the topology of

the affine variety Y : indeed, it is isomorphic to the filtration on H i−2n(Y,D(CY )) induced by the spectral se-

quence P
a,b
2 (D(CY )[−2n]) above, and the latter, being determined by the perverse filtration on D(CY )[−2n],

only depends on the underlying topological space of Y . This is in stark contrast with the global cohomolog-

ical situation: if X is a smooth and proper variety over C, the Hodge filtration on H i
dR(X) is not determined

by the topology of X . Indeed, Campana found examples of homeomorphic (and even diffeomorphic) smooth

projective surfaces over C with different Hodge numbers; see [Ku].

3.5. Embedding independence for Lyubeznik numbers.

Notation 3.11. Let Z −֒→ Pn be a projective variety of dimension d > 1 over C, and let i : Y ⊂ X := An+1 be

the affine cone on Z with vertex {0}; write k : {0} −֒→Y for the inclusion of the vertex, and let j : U −֒→Y

be the open complement. The Lyubeznik numbers in this situation are defined as

λi, j := ℓ(Hi
{0}(H

n+1− j
Y (OX ))),

where ℓ(−) denotes the length of the displayed DX -module; note that this DX -module is regular holonomic

and supported at {0}, so it must have finite length.

It was expected in [Ly3, p. 133] that the λi, j depend only on Z, and not the embedding Z −֒→Pn. However,

recently there have been counterexamples to this in characteristic 0 by Reichelt, Saito, and Walther [RSW1]

for reducible Z and also in the irreducible case by Wang [Wa]. Here we recover a positive result by Switala

[Sw1] which shows the embedding independence in the case that Z is a smooth complex projective variety:

Theorem 3.12. If Z is smooth, then the λi, j defined above are independent of the embedding Z −֒→ Pn.

Remark 3.13. More generally, the proof of Theorem 3.12 given below applies as long as Z is an intersection

cohomology manifold, i.e., we have CZ[d]≃ ICZ . This condition is satisfied, for example, by varieties with

quotient singularities.

We begin by reinterpreting λi, j via RHC, see also [BBR, GLS].

Lemma 3.14. One has

λi, j = ℓ
(
H−i

(
k∗(pH j(CY ))

))
.

Proof. Moving the definition of λi, j through RHC, we know that λi, j is the length of

Hi(k!(pHn+1− j(i!CX [n+1]))).

Applying duality, and using D(CX [n+1])≃ CX [n+1], as X is smooth of dimension n+1, and i∗CX ≃CY ,

this is also the length of

H−i(k∗(pH j(CY ))),

as wanted. �
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Thus, we must calculate the perverse cohomology sheaves of CY . For this, it will be quite convenient

to use the intersection cohomology complex as an intermediary. For Y the affine cone over a smooth d-

dimensional projective variety Z as above, this can be identified as

(3.14.1) ICY ≃ τ6−1( j∗CU [d +1]).

This is a special case of Deligne’s formula for intermediate extensions in the case of isolated singularity,

see [BBDG, Proposition 2.1.11], [HTT, Proposition 8.2.11], and [Bh2, Claim 12.8, page 47]; we recall the

statement and proof of this special case for convenience:

Lemma 3.15 (Deligne’s formula for intermediate extensions). Let W be an s-dimensional variety over C.

Fix a point i : {x} −→W with open complement j : V =W −{x} −→W. For any perverse sheaf M on V ,

there is a natural identification

j!∗(M)≃ τ6−1 j∗M.

In the special case where V is smooth and M = CV [s], this gives the promised formula

ICW ≃ τ6−1( j∗CV [s]).

Proof. Let K = τ6−1 j∗M. Since K|V ≃M is already perverse, it suffices (see [HTT, Proposition 8.2.5]) to

show the following: (1) i∗K ∈ D6−1, and (2) i!K ∈D>1.

Before proceeding, we remark that weaker versions of (1) and (2) — merely requiring i∗K ∈ D60 and

i!K ∈ D>0 — already ensure that K is perverse by the definition of middle perversity in terms of stalks and

costalks (see [BBDG, §4.0] or [HTT, Proposition 8.1.22]). Part (1) is immediate since K ∈ D6−1 and i∗ is

exact for the standard t-structure. For (2) we shall use the defining triangle

K −→ j∗M −→ Q := τ>0 j∗M.

Applying i! and noting that i! j∗ = 0, we learn that i!K ≃ i!Q[−1]. Now Q is supported on {x}, so Q = i∗i∗Q
with i∗Q ∈ D>0. Since i!i∗ = id, we conclude that i!K = i∗Q[−1], which lies in D>1 as wanted. �

To proceed further, we need the stalks at 0 of ICY . Thanks to the previous formula, these are calculated

in terms of the cohomology of U as follows:

Lemma 3.16. One has

k∗ICY ≃
⊕

i6−1

Hd+1+i(U,C)[−i].

By Hard Lefschetz on Z, this simplifies to

k∗ICY ≃
⊕

i6−1

coker
(
Hd−1+i(Z,C)

c1−−→ Hd+1+i(Z,C)
)
[−i],

where c1 ∈ H2(Z,C) is the first Chern class of OX (1). In particular,

ℓ
(
H− jk∗ICY

)
= βd+1− j−βd−1− j for j 6−1,

and 0 otherwise.

Proof. The first identification comes directly from Deligne’s formula (3.14.1) and the observation that for

any sufficiently small ball V ⊂ Y about 0, the “Milnor” ball V −{0}=V ∩U is homotopy-equivalent to U .

In fact, either of these is homotopy-equivalent to the S1-bundle over Z defined by the Gm-torsor OX(1). In

particular, this gives

k∗ICY ≃ τ6−1RΓ(U,C[d +1])≃
⊕

i6−1

Hd+1+i(U,C)[−i],

as asserted. To simplify further, let π : U −→ Z be the projection. By calculating locally on Z, we see that

there is an exact triangle

CZ −→ Rπ∗CU −→ CZ[−1]
11



in Db
c(X

an). Moreover, the boundary map for this triangle is identified (up to a unit) with multiplication by

the first Chern class c1 of the ample line bundle O(1)|Z : indeed, this can be checked by reducing to the

universal case of projective space, and noting that the boundary map is nonzero (e.g., as H2(U,C) = 0 in

this case) and must thus be a nonzero multiple of c1. The Leray spectral sequence for π gives a long exact

sequence

0−→ coker
(
H j−2(Z,C)

c1−−→ H j(Z,C)
)
−→ H j(U,C)−→ ker

(
H j−1(Z,C)

c1−−→ H j+1(Z,C)
)
−→ 0

for any j. Now for j6 d, the last term above vanishes by Hard Lefschetz. This then gives the second formula

for k∗ICY in the lemma. Finally, the assertion about lengths again follows from Hard Lefschetz. �

Using the preceding lemma, one can completely calculate all the perverse cohomology sheaves of CY ,

and thus each λi, j, explicitly in terms of Z. The bookkeeping of indices is a bit messy, but recorded below.

Proof of Theorem 3.12. By Deligne’s formula (3.14.1), the canonical map CY −→ j∗CU induces a map

CY [d +1] −→ ICY which is an isomorphism outside {0} ⊂ Y , as well as on τ6−d−1. Since CY [d +1] itself

lies in D6−d−1, this gives an exact triangle

K −→ CY [d +1]−→ ICY

with K[1] ≃ k∗k∗K[1] ≃ k∗k∗τ>−d−1ICY . Using Lemma 3.16 and the exactness of k∗ for the standard t-

structure, this simplifies to

K ≃
(
k∗τ

>−d−1k∗ICY

)
[−1]≃

⊕

−d−1<i6−1

k∗ coker
(
Hd−1+i(Z,C)

c1−−→ Hd+1+i(Z,C)
)
[−i−1].

Note that all complexes in the preceding triangle lie in pD60, and that ICY is perverse. In particular, we have

pH j+d+1(CY ) =
pH j(CY [d+1]) = 0 for j > 0,

and therefore that

(3.16.1) λi, j+d+1 = 0 for j > 0.

Taking perverse cohomology, the previous exact triangle gives a short exact sequence

(3.16.2) 0−→ k∗ coker
(
Hd−2(Z,C)

c1−−→ Hd(Z,C)
)
−→ pH0(CY [d +1])−→ ICY −→ 0

and isomorphisms

(3.16.3) pH j(CY [d +1]) = pH j(K) = k∗ coker
(
Hd+ j−2(Z,C)

c1−−→ Hd+ j(Z,C)
)

for j 6−1. Applying k∗ to (3.16.3) then shows that

(3.16.4) k∗(pH j+d+1(CY ))≃ k∗(pH j(CY [d +1])) = coker
(
Hd+ j−2(Z,C)

c1−−→ Hd+ j(Z,C)
)

for j 6−1. This shows that

(3.16.5) λ0, j+d+1 = ℓ
(

coker
(
Hd+ j−2(Z,C)

c1−−→ Hd+ j(Z,C)
))

= βd+ j−βd+ j−2 if j 6−1,

and

(3.16.6) λi, j+d+1 = 0 if i 6= 0, j 6−1.

On the other hand, applying k∗ to the sequence (3.16.2) gives an exact triangle

coker
(
Hd−2(Z,C)

c1−−→ Hd(Z,C)
)
−→ k∗(pH0(CY [d +1]))−→ k∗(ICY ).

Since the first term is already a vector space placed in degree 0, this collapses to a 5-term exact sequence

0−→ H−1(k∗(pH0(CY [d+1])))−→ H−1(k∗ICY )
δ−→ coker

(
Hd−2(Z,C)

c1−−→ Hd(Z,C)
)

−→ H0(k∗(pH0(CY [d +1])))−→ H0(k∗ICY )−→ 0

12



and isomorphisms

H j(k∗pH0(CY [d +1]))≃ H j(k∗ICY ) for j 6−2.

One can check that δ is an isomorphism (essentially by construction). Thus, we see that

H−1(k∗pHd+1(CY )) = H−1(k∗pH0(CY [d +1])) = 0

and that one has isomorphisms

H j(k∗pHd+1(CY )≃ H j(k∗pH0(CY [d +1]))≃ H j(k∗ICY )

for j 6−2 and j = 0. Using the calculation of k∗ICY , this gives

(3.16.7) λ0,d+1 = λ1,d+1 = 0

and

(3.16.8) λi,d+1 = ℓ
(

coker
(
Hd−1−i(Z,C)

c1−−→ Hd+1−i(Z,C)
))

= βd+1−i−βd−1−i for i> 2.

Combining (3.16.1), (3.16.5), (3.16.6), (3.16.7) and (3.16.8) then proves the theorem as the right hand side

in each formula is embedding independent. �

4. THE RIEMANN-HILBERT FUNCTOR IN CHARACTERISTIC p AND PERVERSE Fp-SHEAVES

The goal of this section is to recall and study the perverse t-structure on constructible Fp-sheaves on a

large class of schemes of characteristic p. In particular, in §4.4 we define the perverse t-structure on con-

structible Fp-sheaves by transporting the perverse t-structure on coherent sheaves (recalled in §4.1) across

the Riemann-Hilbert correspondence from [BL1] (recalled in §4.2); this construction gives excellent control

on the commutative algebra properties of the Riemann-Hilbert partners of perverse sheaves. In §4.5, we

show that our definition coincides with the standard one in terms of support conditions on the stalks and

co-stalks as introduced by Gabber [Ga] and further studied in [EK, Ca]. As in the analytic case, we use the

version of a characteristic p Riemann-Hilbert correspondence in [BL1] (with precursors in [Ly2, EK, BP])

to relate quasi-coherent sheaves with various Frobenius actions to perverse constructible Fp-sheaves.

4.1. Perverse coherent sheaves. We define and study a notion of perverse coherent sheaves obtained by

applying Grothendieck duality to the usual notion of coherent sheaves. This notion will be useful later in our

definition of the perverse t-structure on Fp-étale sheaves and was previously also considered by Deligne (see

for example [AB]) and Gabber [Ga]. We do not strive for the most general context to develop this theory

here, but stick to a situation that we need in the applications of the following section.

Notation 4.1 (Normalized dualizing complexes). Fix a noetherian local ring (A,m,k) admitting a dualizing

complex; for example, A could be any complete noetherian local ring with F-finite residue field. Choose a

dualizing complex ω•A normalized by the requirement that RΓm(ω
•
A) = E[0] lives in degree 0; the module E

is identified with the injective hull of the residue field k of A.

We shall work with A-schemes of finite type and use the duality theory from [SP, Tag 0AU3]. Thus, given

a finite type map f : X −→ SpecA, we write ω•X := f !ω•A ∈ Db
coh(X) for the normalized dualizing complex,

and DX(−) := RHomX(−,ω•X) for the resulting Grothendieck duality equivalence Db
coh(X)≃ Db

coh(X)op.

This notion is compatible with various operations.

Remark 4.2 (Reduction to the regular case). We shall often be in a setting where the ring A is the quotient of

a regular local ring R; for instance, this always holds true when A is m-adically complete, or if R is F-finite

by [Ga]. In this case, there is an isomorphism ω•A ≃ RHomR(A,ω
•
R), where

ω•R :=
dim R∧

ΩR[dimR]

with ΩR the module of Kähler differentials, is a normalized dualizing complex on R. As any finite type

A-scheme is also a finite type R-scheme, this allows one to often reduce to the case where A = R is regular.
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Remark 4.3 (Compatibility between local and global duality). For finite A-algebras B, the dualizing com-

plex ω•B ≃ RHomA(B,ω
•
A) is normalized; more precisely, the B-complex RΓm(ω

•
B) is concentrated in de-

gree 0, and identifies with EB ≃ HomA(B,E), which is an injective hull of the residue field of B. Under this

identification, we have the following compatibility of global and local duality: for any M ∈ Db
coh(B), the

complex RΓm(DB(M)) identifies with the Matlis dual RHomB(M,EB) of M.

Remark 4.4 (Compatibility with localization and the d(−) function). Let X be a finite type A-scheme. For

any x ∈ X , the stalk ω•X ,x of ω•X is a dualizing complex over the local ring OX ,x. Hence, the complex

Ex := RΓ{x}(ω
•
X ,x)[−d(x)]

is concentrated in degree 0 for a fixed integer d(x) ∈Z. As the formation of normalized dualizing complexes

is compatible with passage to open subsets, the integer d(x) can be calculated after replacing X by any open

subset containing x. The function x 7−→ d(x) has good properties:

(1) For X := SpecB with B finite over A, one has d(x) = 0 for any closed point x∈ SpecB. More generally,

for any finite type X/A, if i : {x} −→ X is the inclusion of a closed point lying over the closed point of A

(inducing a necessarily finite residue field extension κ(x)/k), then d(x) = 0: indeed, we have

HomOX ,x(κ(x),Ex[d(x)]) = RHomOX ,x(κ(x),RΓx(ω
•
X ,x)) = RHomX(i∗O{x},ω•X )

≃ RHomA(κ(x),ω
•
A)≃ HomA(κ(x),E),

where the third isomorphism uses Grothendieck duality for f : X −→SpecA with respect to coherent sheaves

on X with proper support over A.

(2) If x y is an immediate specialization of points in X , then d(x) = d(y)+1: this is a general feature

of dualizing complexes, see [SP, Tag 0A7Z].

(3) If S⊂ X is a locally closed subset, then we set

d(S) = max{d(x) | x ∈ S}.
It follows from the observation in (2) that d(S) = d(S) as each point of S is a specialization of a point of S.

It follows from these properties that if X is proper over A, then d(X) = d(η) for some generic point η ∈X ,

and that d(η) = dim({η}) = dimX . In general, if X admits a dense open immersion j : X −֒→ X into a

proper A-scheme, then d(X) = dimX .

Using duality, one can define a perverse t-structure on the derived category of coherent sheaves:

Definition 4.5 (Perverse coherent sheaves of A-schemes). Let X be a finite type A-scheme. Write

Pervcoh(X)⊂ Db
coh(X)

for the essential image of Coh(X) under DX ; we refer to objects M ∈ Pervcoh(X) as perverse coherent

sheaves on X . More generally, applying Grothendieck duality DX(−) to the standard t-structure on Db
coh(X)

induces the perverse t-structure on Db
coh(X); the heart of the latter is the category Pervcoh(X) defined above.

Thus, by construction, we have an equivalence Coh(X)op ≃ Pervcoh(X) given by the Grothendieck duality

functor DX(−) in either direction.

At least for X := SpecA itself, we shall later give a duality-free approach to the perverse t-structure (see

Remark 4.14). The most basic example of a perverse sheaf is the following.

Example 4.6. The dualizing complex ω•X ≃ DX(OX) is perverse. If ω•X is concentrated in a single degree d

(e.g., if X is Cohen-Macaulay), then OX [d] is perverse.

More examples arise by the following construction.

Lemma 4.7. If f : X −→Y is a finite map of finite type A-schemes, then the pushforward functor f∗ carries

perverse coherent sheaves to perverse coherent sheaves.
14
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Proof. Fix N ∈Coh(X) corresponding M := DX(N)∈ Pervcoh(X). We must check that f∗M ∈ Pervcoh(Y ) or

equivalently that DY ( f∗M) ∈ Db
coh(Y ) actually lives in Coh(Y ). But Grothendieck duality for f shows that

DY ( f∗M)≃ f∗DX(M)≃ f∗N,

so the claim follows from the acyclicity of f∗ for finite maps. �

Remark 4.8. The definition of perverse coherent sheaves above works for any noetherian scheme equipped

with a dualizing complex. The reason we insist on working relative to a fixed base scheme is that it permits

us access to normalized dualizing complexes via !-pullbacks, i.e., for a finite type map f : X −→ SpecA, we

could define ω•X := f !ω•A in Notation 4.1. This normalization property is critical to ensure that the notion

of perversity is preserved by finite pushforwards as in Lemma 4.7; if we had not normalized our dualizing

complexes, this would only be true up to shifts.

Let us explain why Definition 4.5 naturally passes to localizations.

Construction 4.9 (Perverse coherent sheaves on stalks). It is convenient to extend Definition 4.5 to stalks.

Thus, let X be an A-scheme of finite type, and let x ∈ X . As explained in Remark 4.4, the complex ω•X ,x is

a dualizing complex over the local ring OX ,x, and RΓ{x}(ω
•
X ,x) is concentrated in homological degree d(x).

In particular, we define perverse coherent sheaves on Xx := SpecOX ,x as the image of Coh(Xx)⊂ Db
coh(Xx)

under the duality functor

DXx
(−) := RHomOX ,x(−,ω•X ,x).

With this definition, the stalk functor Db
coh(X)−→ Db

coh(OX ,x) is t-exact for both the standard and perverse

t-structures. In particular, the perversity of an object in Db
coh(X) can be checked after passing to stalks.

Moreover, for M ∈ Db
coh(OX ,x), the following are equivalent:

(1) M is perverse.

(2) RΓ{x}(M)[−d(x)] is concentrated in degree 0.

Indeed, (1) is equivalent to the Grothendieck dual DXx
(M) being concentrated in degree 0. On the other hand,

since RΓ{x}(ω
•
X ,x)[−d(x)] ≃ Ex where Ex is the injective hull of the residue field, (2) above is equivalent to

the Matlis dual of M being concentrated in degree 0. The equivalence of (1) and (2) now follows from the

compatibility of Grothendieck and Matlis duality under local cohomology, as in Remark 4.3.

Using the previous construction, we have the following criterion for detecting perversity of a coherent

complex in terms of the local cohomology of its stalks:

Corollary 4.10 (Recognizing perversity via local cohomology). Fix a finite type A-scheme X and some

M ∈Db
coh(X). Then the following are equivalent:

(1) M ∈ Db
coh(X) is perverse.

(2) For each point x ∈ X, the stalk Mx ∈ Db
coh(OX ,x) is perverse.

(3) For each closed point x ∈ X, the stalk Mx ∈ Db
coh(OX ,x) is perverse.

(4) For each point x ∈ X, the OX ,x-complex RΓ{x}(Mx) is concentrated in homological degree d(x).
(5) For each closed point x∈X, theOX ,x-complex RΓ{x}(Mx) is concentrated in homological degree d(x).

Proof. The equivalence of (1), (2), and (4) is clear from Construction 4.9. For the rest, it is enough to

observe that taking stalks is t-exact for the perverse t-structure and that M ∈ Db
coh(X) vanishes if and only

if Mx = 0 for each closed point x. �

In particular, for X = A itself, perversity of a coherent complex can be tested using a single local coho-

mology computation. This observation can be lifted to an equivalence of categories using the notion:

Definition 4.11 (Cofinite modules). An A-module M is cofinite if it is m∞-torsion and HomA(k,M) is a finite

dimensional k-vector space; write Modcof (A) for the category of cofinite A-modules. Write Db
cof (A)⊂Db(A)

for the full subcategory spanned by K ∈ Db(A) with H i(K) ∈Modcof (A).
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Using Matlis duality, an A-module is cofinite precisely if it is artinian. In particular, Modcof (A) is an

abelian subcategory of Mod(A) closed under passage to subquotients and extensions. Under the complete-

ness hypothesis, it turns out that the local cohomology functor identifies Pervcoh(A) with Modcof (A).

Proposition 4.12. Assume A is m-adically complete. The following triangulated categories are equivalent

via t-exact functors:

(1) The opposite of Db
coh(A) equipped with the usual t-structure.

(2) The category Db
coh(A) equipped with the perverse t-structure.

(3) The category Db
cof (A) equipped with the usual t-structure.

The functor DA(−) relates (1) and (2) in both directions. The functors relating (2) and (3) are:

M ∈ Db
coh(A) 7−→ RΓm(M), and N ∈Db

cof (A) 7−→ N̂ := R lim(N⊗L
A A/mn),

i.e., N̂ is the derived m-adic completion The equivalence relating (1) and (3) obtained by composing the

previous equivalences coincides with the one given by Matlis duality, i.e., RΓm(DA(M)) is the Matlis dual

of M for any M ∈ Db
coh(A).

Proof. The last statement follows from Remark 4.3. It is also clear from the definitions that DA(−) induces a

t-exact equivalence between (1) and (2). For (2) and (3), recall that it is a general fact [SP, Tag 0A6X], due

to Dwyer-Greenlees-May, that the functors M 7−→ RΓm(M) and N 7−→ N̂ induce an equivalence between

the full subcategories Dm−comp(A) and Dm−nilp(A) of D(A) spanned by derived m-complete and m∞-torsion

objects respectively. We shall check that these functors carry Pervcoh(A) ⊂ Dm−comp(A) and Modcof (A) ⊂
Dm−nilp(A) to each other; this implies that they give a t-exact equivalence relating (2) and (3). By writing A

as a quotient of a regular local ring, we may assume A is regular. The claim for RΓm(−) was already shown

in Lemma 4.10. Conversely, if N is a cofinite A-module, then Matlis duality implies that

N ≃ HomA(M,E)≃M∨⊗L
A E,

where M ≃ HomA(N,E) is a finitely generated A-module and M∨ ∈ D(A) as before is the linear dual. As

tensoring with a perfect A-complex commutes with completion, we get that

N̂ ≃M∨⊗L
A Ê ≃M∨⊗L

A
̂RΓA(ω•A)≃M∨⊗L

A ω•A ≃ DA(M)

is a perverse coherent A-module. �

Corollary 4.13 (Perverse coherent sheaves as cofinite modules). Assume A is m-adically complete. The

functors in Proposition 4.12 restrict to give equivalences of the following abelian categories:

(1) The opposite of the category Modcoh(A) of finitely generated A-modules.

(2) The category Pervcoh(A) of perverse coherent A-modules.

(3) The category Modcof (A) of cofinite A-modules.

Remark 4.14 (A formula for the perverse cohomology groups via derived completions). For future refer-

ence, we note the following consequence of Proposition 4.12, giving a duality-free formula for the perverse

cohomology groups: when A is m-adically complete and M ∈ Db
coh(A), then pH i(M) identifies with the

derived m-adic completion of H i
m(M).

4.2. Recollection on the Riemann-Hilbert correspondence from [BL1]. In this subsection, we recall

some of the main results of [BL1] on the covariant Riemann-Hilbert correspondence for Fp-étale sheaves on

a scheme of characteristic p.

Notation 4.15. Let R be a ring of characteristic p. Write R[F] for the associative ring freely generated by R

and a formal symbol F (for Frobenius) subject to the relation apF = Fa for any a ∈ R; thus, the category

Mod(R[F]) of left R[F]-modules is identified with the category of pairs (M,ϕM), where M is an R-module,

and ϕM : M −→ F∗M is an R-linear map; we call such objects Frobenius modules on R and sometimes drop
16
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the Frobenius map ϕM from the notation. Write D(R[F]) for the derived category of Frobenius modules;

tensor products over R induces a natural symmetric monoidal structure on Mod(R[F]) and D(R[F]).

The main results of [BL1], summarized in Theorems 4.17 and 4.20 below, roughly state that Frobenius

modules provide the algebraic counterpart to the theory of Fp-étale sheaves on SpecR. The connection

between the two is provided by the following construction:

Construction 4.16 (The Sol-functor). There is a natural exact functor

Sol : D(R[F])−→ D(Spec(R)ét ;Fp)

given informally by the formula

Sol(M,ϕM)(R−→ S) := cone
(
M⊗R S

ϕM−1−−−−→M⊗R S
)
[−1] ∈D(Fp)

for every étale morphism R−→ S. More formally, one may define

Sol := RHomD(R[F])((R,ϕR),−),

where (R,ϕR) denotes the Frobenius module R
ϕ−−→ ϕ∗R determined by the Frobenius on R.

Theorem 4.17 (The covariant Riemann-Hilbert correspondence for Fp-sheaves). The Sol-functor from Con-

struction 4.16 admits a left adjoint RH: D(Spec(R)ét ,Fp)−→ D(R[F]) with the following properties:

(1) RH is fully faithful, t-exact for the standard t-structures on the source and target, and symmetric

monoidal for the standard ⊗-product on the source and the target.

(2) The essential image of RH is given by the full subcategory Dalg(R[F])⊂D(R[F]) of algebraic Frobe-

nius complexes, i.e., those (M,ϕM) ∈ D(R[F]) such that each cohomology group

(N,ϕN) := (H i(M),ϕi := H i(ϕM))

is algebraic in the sense that it satisfies the conditions:

(i) (N,ϕN) is perfect, i.e., ϕN : N −→ F∗N is an isomorphism.

(ii) Each x ∈ N is annihilated by a monic polynomial in ϕN .

Thus, RH induces an equivalence

RH: D(Spec(R)ét ,Fp)≃ Dalg(R[F]).

(3) The RH equivalence above commutes with proper pushforward and arbitrary pullback.

The fundamental example of this construction is the following.

Example 4.18 (The RH-functor on constant sheaves). We have RH(Fp,R)≃ Rperf with its natural Frobenius

structure. More generally, if j : U −֒→ SpecR is an open immersion whose complement is defined by an

ideal I ⊂ R, then RH carries the inclusion j!Fp,U ⊂ Fp,R to the inclusion

Iperf := lim−→(I
ϕ−−→ F∗I

ϕ−−→ F2
∗ I

ϕ−−→ ·· · )⊂ Rperf .

In applications, it is convenient to restrict Theorem 4.17 to “finite” objects on both sides. The natural

finiteness condition on the étale side is that of constructibility. The corresponding finiteness conditions on

the algebraic side is dubbed holonomicity, recalled next.

Construction 4.19 (Perfect, nilpotent, and holonomic Frobenius modules). A Frobenius module (M,ϕM)
over R is perfect if ϕM is an isomorphism; note that restriction of scalars along R −→ Rperf identifies the

categories of perfect Frobenius modules on these rings, so we may often restrict to perfect rings when

working with perfect Frobenius modules. Any Frobenius module (M,ϕM) admits a perfection (M,ϕM)perf

(or simply Mperf , if ϕM is clear) given concretely as the direct limit

Mperf := lim−→
(
M −→ F∗M −→ F2

∗M −→ ·· ·
)
.
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A Frobenius module (M,ϕM) is nilpotent (resp. locally nilpotent) if the n-fold composite ϕn
M : M −→ Fn

∗M

is 0 (resp. Mperf = 0); if M is finitely generated as an R[F]-module, these two conditions are equivalent.

A perfect Frobenius module is holonomic if it arises as the perfection of a Frobenius module (M,ϕM)
with M finitely presented over R; write Modhol(R[F]) ⊂ Mod(R[F]) for the full subcategory spanned by

such modules. This subcategory is closed under kernels, cokernels, and extensions. Consequently, the

full subcategory Db
hol(R[F]) ⊂ Db(R[F]) spanned by complexes of Frobenius modules with holonomic co-

homology groups is itself a triangulated category. Moreover, the t-structure on Db(R[F]) induces one on

Db
hol(R[F]), and we have Db

hol(R[F])⊂ Db
alg(R[F]), i.e., holonomic Frobenius R-modules are algebraic.

With this notion, Theorem 4.17 restricts to the following:

Theorem 4.20 (The Riemann-Hilbert equivalence for constructible sheaves). The RH-functor from Theo-

rem 4.17 restricts to an equivalence

RH: Db
c(Spec(R)ét ,Fp)≃ Db

hol(R[F]).

This equivalence is t-exact (resp. symmetric monoidal) for the standard t-structure (resp. standard ⊗-

product) on the source and target. Moreover, it commutes with proper pushforward and arbitrary pullback.

Remark 4.21 (Holonomic Frobenius complexes as a Verdier quotient). For R noetherian, one can also

identify Db
hol(R[F]) as a Verdier quotient: if Db

coh(R[F]) denotes the full subcategory of Db(R[F]) spanned

by R[F]-complexes whose cohomology groups are finitely generated R-modules, and if Db
coh,nil(R[F]) ⊂

Db
coh(R[F]) denotes the full subcategory spanned by complexes whose cohomology groups are nilpotent,

then the perfection functor induces an equivalence

Db
coh(R[F])/Db

coh,nil(R[F ])≃ Db
hol(R[F]),

see [BL1, Remark 12.4.5]. The same discussion also applies if we replace Db
coh(R[F]) with the full subcate-

gory of Db(R[F]) spanned by complexes that are perfect when regarded as R-complexes (and Db
coh,nil(R[F ])

must be replaced with the full subcategory of nilpotents); when formulated in this fashion, the description

applies to all Fp-algebras R.

4.3. A nilpotency result for Frobenius modules. In this subsection, we record (with a new proof) a par-

tially global variant of a result due to Hartshorne-Speiser, Lyubeznik, and Gabber (see Corollary 4.24); it

will be useful later in understanding perverse Fp-sheaves on local rings.

Proposition 4.22. Let A0 be a noetherian ring of characteristic p, and m0 ⊂ A0 an ideal contained in the

Jacobson radical. If M ∈ Db
hol(A0[F]) is a holonomic Frobenius complex with RΓm0

(M)≃ 0, then M ≃ 0.

We prove this by reduction to the case of a rank 1 valuation ring with algebraically closed fraction field:

Proof. Let A be the perfection of A0, so M is naturally an A-module. Write m := m0A, so m lies in the

Jacobson radical of A. Assume M 6= 0. By [BL1, Proposition 5.3.3], there exists a prime ideal p ⊂ A such

that M⊗L
A κ(p) 6= 0. Since RΓm(M)= 0, we also have M⊗L

A κ(q)= 0 for any prime q containing m, so m 6⊂ p.

As m is contained the Jacobson radical, there exists some prime q containing m such that p ⊂ q. Since A is

the perfection of a noetherian ring, we may choose an absolutely integrally closed valuation ring V of rank 1

and a map f : A−→V that witnesses the specialization p q, i.e., f−1(0) = p and f−1(mV ) = q, where mV

is the maximal ideal of V ; let K and k denote the fraction and residue fields of V respectively. Since m 6⊂ p,

the ideal mV ⊂V is nonzero, so
√
mV =

√
mV as V is a rank 1 valuation ring. Our assumptions on M then

imply that if we set MV := M⊗L
AV , then RΓmV

(MV )≃ 0 and MV⊗L
V K 6= 0. Consider the holonomic complex

N :=mV ⊗L
V MV ∈ Db

hol(V [F]).

The previous properties for MV show that N⊗L
V K 6= 0 and that RΓmV

(N) = 0. But, under Riemann-Hilbert,

the complex N =mV ⊗L
V MV corresponds to j!Sol(MV ⊗L

V K), where j : SpecK ⊂ SpecV is the inclusion of
18



the generic point (see [BL1, §5.2]). As K is algebraically closed, the complex

Sol(MV ⊗L
V K) ∈ Db

c(Spec(K)ét ,Fp)

is constant, i.e., a finite direct sum of copies of shifts of the constant sheaf Fp. It follows that N ∈Db
hol(V [F ])

is a finite direct sum of copies of shifts of RH( j!Fp) ≃ mV ; moreover, since N 6= 0, there is at least one

nonzero direct summand. Our hypothesis RΓmV
(N)= 0 then implies that RΓmV

(mV )≃ 0. But this means that

RΓmV
(V )≃ RΓmV

(k)≃ k. Now it is easy to see that RΓmV
(V )≃ K/V , so we get a contradiction since K/V

and k are not isomorphic V -modules. �

Remark 4.23. Proposition 4.22 is false without some noetherianness assumptions on A (even if m is required

to be finitely generated). For instance, say V is a perfect valuation ring of rank 2. Then the poset of prime

ideals of V is given by 0 ( p ( q with q maximal. Fix some f ∈ p−{0} and g ∈ q− p. As radical ideals

in valuation rings are prime, we get that
√

fV = p and
√

gV = q, so all primes are finitely generated up to

radicals. Set m = gV , so m ⊂ V is a finitely generated ideal contained in the Jacobson radical. Consider

the V -module M := p, viewed as a V [F ]-module with its natural Frobenius. It is easy to see that M is

holonomic: it arises as the perfection of M0 = fV with its natural Frobenius. We claim that RΓm(M) = 0,

even though M 6= 0. To see this, note that

RΓm(N)≃
(
N[1/g]/N

)
[−1]

for any V -module N since V [1/g] ≃ RΓ(SpecV −{√m},O). Thus, to show that RΓm(p) = 0, it is enough

to show that g acts invertibly on p; this is a general fact about valuation rings. Indeed, given x ∈ p, we

cannot have g ∈ xV since g /∈ p, so we must have x ∈ gV as V is a valuation ring, whence x/g ∈V ; moreover,

since g(x/g) = x ∈ p and p is prime with g /∈ p, we must have x/g ∈ p, so multiplication by both g and 1/g

preserve p, whence g acts invertibly on p.

Corollary 4.24 (Hartshorne-Speiser, Lyubeznik, Gabber). Let A be a noetherian local ring, and M a cofinite

A-module with an A-linear map ϕM : M −→ F∗M. If (M,ϕM) is locally nilpotent, then it is nilpotent.

For the original versions, see [HaS, Proposition 1.11], [Ly2, Proposition 4.4], and [Ga, Lemma 13.1].

Proof. Let M̂ be the perverse coherent A-module corresponding to M under Corollary 4.13. Our hypothesis

is that M ≃ RΓm(M̂) has trivial perfection. As RΓm(−) commutes with filtered colimits, Proposition 4.22

implies that the perfection of M̂ is 0. As M̂ is coherent, this implies that the Frobenius on M̂ is nilpotent,

whence the same also holds true for M ≃ RΓm(M̂). �

4.4. Perverse Fp-sheaves. In this subsection, we introduce the perverse t-structure on constructible Fp-

étale sheaves. Our approach is to define this t-structure as the image of the perverse t-structure on coherent

sheaves under the Riemann-Hilbert equivalence; this makes certain properties of this t-structure (e.g., preser-

vation of constructibility under perverse truncations) obvious. In §4.5, we shall show that our definition of

the perverse t-structure agrees with the more classical one (in terms of support conditions for stalks and

costalks) studied by Gabber [Ga].

Notation 4.25. As above, we work with schemes of finite type over a noetherian local F-finite ring A. Any

such scheme X comes endowed with a perverse t-structure on Db
coh(X) as in §4.1.

Construction 4.26 (Perverse coherent Frobenius modules). Fix a finite type A-scheme X . As explained in

Construction 4.2, the perfection functor gives an equivalence

Db
coh(X [F])/Db

coh,nil(X [F])≃Db
hol(X [F]).

It is easy to see using Lemma 4.7 that the perverse t-structure on Db
coh(X) induces one on Db

coh(X [F]) via

the forgetful functor; write Pervcoh(X [F]) ⊂ Db
coh(X [F]) for the heart, so it is the full subcategory spanned

by Frobenius complexes M −→ F∗M on X with M ∈ Pervcoh(X). We refer to objects of Pervcoh(X [F]) as

perverse coherent Frobenius modules on X .
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To study this notion, we need a couple of lemmas on the behavior of nilpotent Frobenius modules with

respect to the perverse t-structure.

Lemma 4.27. Fix a finite type A-scheme X. Fix a Frobenius complex M ∈ Db
coh(X [F]) which is nilpotent.

Then each pH i(M) is also nilpotent.

Proof. Fix a point x ∈ X . It is enough to show that each pH i(M) is nilpotent in a neighborhood of x. By

an approximation argument, it is enough to show that the stalk pH i(M)x is a nilpotent Frobenius complex

over OX ,x. As taking stalks is perverse t-exact (see Construction 4.9), we are reduced to the following

local analog: if N ∈ Db
coh(OX ,x[F ]) is a nilpotent Frobenius complex, then each pH i(N) is nilpotent. To

see this, note that the assumption on N implies that each H i
{x}(N) is a nilpotent cofinite Frobenius module.

Corollary 4.13 applied to the ring OX ,x as well as Construction 4.9 show that the local cohomology functor

RΓ{x}(−) carries the perverse t-structure on Db
coh(OX ,x) faithfully to the standard t-structure on Db

cof (OX ,x),

up to a shift of d(x). Consequently, it follows that each pH i(N) is also nilpotent, as wanted. �

Lemma 4.28. Fix a finite type A-scheme X. The nilpotent coherent perverse complexes

Pervcoh,nil(X [F]) := Db
coh,nil(X [F])∩Pervcoh(X [F])

form an additive subcategory of Pervcoh(X [F]) closed under subobjects, quotient objects, and extensions; in

particular, Pervcoh,nil(X [F])⊂ Pervcoh(X [F]) is a Serre subcategory.

Proof. Say 0 −→ K −→ L −→M −→ 0 is an exact sequence in Pervcoh(X [F]). It is enough to show that L

is nilpotent exactly when K and M are nilpotent. If K and M are nilpotent, then it is clear that L is nilpotent,

as nilpotence of objects in Db
coh(X [F]) can be characterized as the vanishing of the perfection. Conversely,

assume L is nilpotent. We must show that K and M are nilpotent. It is enough to check this for the stalks,

so fix some x ∈ X . By functoriality, the nilpotence of L implies that each H i
x(Lx) is a nilpotent cofinite

Frobenius module over OX ,x. By Corollary 4.13 and Construction 4.9, we also know that for any perverse

coherent OX ,x-module N, we have H i
x(N) = 0 unless i =−d(x). Consequently, the perversity of K, L, and M

implies that the sequence

0−→ H
−d(x)
x (Kx)−→ H

−d(x)
x (Lx)−→ H

−d(x)
x (Mx)−→ 0

is exact, and that the local cohomology modules for Kx, Lx, and Mx vanish in all other degrees. Now

the nilpotence of H i
x(Lx) implies that both H i

x(Kx) and H i
x(Mx) have trivial perfection (as passage to the

perfection is exact) for all i. Corollary 4.24 implies that Kx and Mx also have trivial perfection, so they are

indeed nilpotent. �

Construction 4.29 (Perverse holonomic Frobenius modules and perverse Fp-sheaves). Denote by

Pervhol(X [F])⊂ Db
hol(X [F])

the essential image of Pervcoh(X [F]) under the perfection functor Db
coh(X [F]) −→ Db

hol(X [F]); we refer to

its objects as perverse holonomic Frobenius modules on X . Write Pervc(X ;Fp)⊂Db
c(X ;Fp) for the essential

image of Pervhol(X [F]) under the Riemann-Hilbert equivalence Db
hol(X [F])≃Db

c(X ;Fp); we refer to this as

the category of perverse (constructible) sheaves on X .

We shall soon see that Pervc(X ;Fp) is the heart of a t-structure on Db
c(Xét ;Fp).

Example 4.30. Say X is a Cohen-Macaulay A-scheme of dimension d. Then OX [d] is a perverse coherent

sheaf on X (see Example 4.6), and consequently Fp,X [d] is a perverse Fp-sheaf on X . Note that this is

in contrast to what happens in characteristic 0: the (shifted) constant sheaf is typically not perverse on a

Cohen-Macaulay complex variety.

To identify the category of perverse holonomic Frobenius modules explicitly as a quotient, we shall need

the following abstract lemma.
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Lemma 4.31. Let C be a triangulated category equipped with a bounded t-structure (C60,C>0). Say D⊂ C
is a full triangulated subcategory satisfying the following:

(1) For X ∈ D, we have H i(X) ∈D for all i. Consequently, (C60∩D,C>0∩D) gives a t-structure on D.

(2) The category D♥ := C♥∩D is closed under passage to subobjects and quotient objects in C♥.

Then the triangulated category E := C/D admits a unique t-structure (E60,E>0) for which the quo-

tient functor q : C −→ E is t-exact; explicitly, the category E60 (resp. E>0) is the essential image of C60

(resp. C>0). Moreover, we have E♥ := C♥/D♥.

Proof. To obtain the t-structure on E , consider the pair (E60,E>0) as defined in the lemma. We shall

check that this gives a t-structure on E ; the uniqueness and t-exactness of q then trivially follow. Stability

under appropriate shifts and existence of triangles is clear. It is thus enough to show that for x ∈ E60 and

y ∈ E>1 := E>0[−1], we have HomE(x,y) = 0. Fix a map f : x−→ y. Choose lifts X ∈ C60 and Y ∈ C>1 of

x and y. By definition of the Verdier quotient, we can represent the map f by a diagram (X
s←− Z

g−→ Y ),
where s : Z −→ X is a map in C whose cone lies in D. Using the long exact sequence on cohomology and

properties (1) and (2) above, it is easy to see that τ>1Z ∈D, and hence the map τ60Z −→ Z also has a cone

in D. Composing this map with the diagram (X
s←− Z

g−→ Y ), we learn that our map f can then also be

represented by the diagram (X
s′←− τ60Z

g′−−→ Y ). But Y ∈ C>1, so the map g′ must be 0 by the t-structure

axioms for C. It follows that f = 0, as wanted.

We leave the identification of E♥ as an exercise. �

We obtain a perverse t-structure on holonomic Frobenius complexes:

Corollary 4.32. Let X be a finite type A-scheme. Then there is a unique t-structure on Db
hol(X [F]) compati-

ble with the perverse t-structure on Db
coh(X [F]), i.e., such that the perfection functor

Db
coh(X [F])−→ Db

hol(X [F])

is t-exact. Under this t-structure, the heart Db
hol(X [F])♥ equals Pervhol(X [F]) and can be identified with the

quotient Pervcoh(X [F])/Pervcoh,nil(X [F]).

Proof. Apply Lemma 4.31 to the equivalence Db
coh(X [F])/Db

coh,nil(X [F])≃ Db
hol(X [F]) using Lemmas 4.27

and 4.28 to ensure that the hypotheses apply. �

Definition 4.33 (The perverse t-structure). Let X be a finite type A-scheme. The (middle) perverse t-

structure on Db
c(Xét ;Fp) is the t-structure obtained by transporting the t-structure on Db

hol(X [F]) provided

by Corollary 4.32 across the Riemann-Hilbert sequence Db
c(Xét ;Fp) ≃ Db

hol(X [F]). Its heart is the category

Pervc(X ;Fp) of perverse sheaves defined in Construction 4.29.

The following proposition is a key tool in extracting algebraic consequences of topological results:

Proposition 4.34. Let X be a finite type A-scheme. For any x ∈ X, the composition

Db
c(Xét ,Fp)

RH−−→ Db
hol(X [F])

RΓx((−)x)[−d(x)]−−−−−−−−−−→ Db(OX ,x)

is t-exact for the perverse t-structure on the source and the standard t-structure on the target.

Proof. The Riemann-Hilbert functor RH is t-exact for the perverse t-structures on the source and target

essentially by definition (Definition 4.33). Corollary 4.10 ensures that RΓx((−)x)[−d(x)] is t-exact for the

perverse t-structure on the source and the standard t-structure on the target, so the claim follows. �

Example 4.35 (Cohen-Macaulayness for Riemann-Hilbert partners of perverse sheaves). Let X be a finite

type A-scheme. If F ∈ Pervc(Xét ,Fp) and d = d(X), then RH(F)[−d] is Cohen-Macaulay on X in the

following sense: RΓx(RH(F)x[−d]) is concentrated in degree d− d(x). Note that if X = SpecA and A is

equidimensional, then d−d(x) = dim(OX ,x): indeed, d(x)+dim(OX ,x) is the length of a maximal chain of
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specializations in SpecA, and equidimensionality and locality of A ensures that any such chain has length

d = dimA. This result was also observed by Cass [Ca, Theorem 1.6].

Before specializing the above discussion to the setting of local rings, we recall two further notions of

modules with an action of the Frobenius which fit into this framework:

Cartier modules [BBG]: Let A be an F-finite ring. A Cartier module is an A-module M, together with an

A-linear map κ : F∗M −→M. Equivalently, analogous to the case of Frobenius modules, we might think of

a Cartier module simple as a right R[F]-module. From this point of view, nilpotence and locally nilpotence

are defined analogously to the case of Frobenius modules. A Cartier module is coherent if its underlying

A-module is coherent. We denote this category by CohCart(A[F ]).
Finitely generated unit Frobenius modules [BL1, EK]: Let R be a regular ring. A Frobenius module

M −→ F∗M is a unit Frobenius module if the adjoint structural map F∗M −→ M is an isomorphism. It is

finitely generated unit (fgu) if M is unit and finitely generated as a left R[F]-module.

Corollary 4.36. Let A be a complete noetherian local F-finite ring. Write Modcof (A[F])⊂Mod(A[F]) for

the full subcategory spanned by A-cofinite A[F]-modules. The following categories are equivalent:

(1) The quotient by nilpotents of Modcof (A[F]).
(2) The essential image of Modcof (A[F]) in Modperf (A[F]) under the perfection functor.

(3) The category Pervhol(A[F]) of perverse holonomic Frobenius modules on SpecA.

(4) The category Pervc(SpecA;Fp) of perverse sheaves on SpecA.

(5) The (opposite of) the quotient by nilpotents of the category of Cartier modules CohCart(A[F]).

If we write A = R/I as the quotient of an F-finite complete noetherian regular local ring R, then the above

categories are also equivalent to the following:

(6) The (opposite of) the full subcategory Mod f gu,A(R)⊂Mod f gu(R) spanned by images of pairs

(
N ∈Mod f g(A), ψN : N −→ F∗R N

)

under the unitalization functor colimψ Fe∗
R N.

Proof. The equivalence of (3) and (4) is the Riemann-Hilbert correspondence; the equivalence of (1)
and (2) comes from Corollary 4.24. The equivalence of (1) and (3) comes from Corollary 4.13 and Corol-

lary 4.32. The equivalence of (4) and (6) is the contravariant Riemann-Hilbert correspondence of [BL1].

The equivalence between (5) and (3) was first obtained by Schedlmeier in [Sc] building on the smooth

case treated in [EK]. We sketch a fairly direct argument for the equivalence of (3) and (5) closer to the spirit

of this paper. We claim that Grothendieck duality induces an equivalence

CohCart(A[F])
∼=−−→ Pervcoh(A[F])

which is easily observed to preserve nilpotence on both sides, and hence induces the claimed equivalence

of (3) and (4) using Corollary 4.32. Since A is the quotient of a regular ring with a p-basis [Ga], A has a

normalized dualizing complex which is equipped with a quasi-isomorphism η : ωA

∼=−−→ F !ωA.

Given a Cartier Module κ : F∗M −→ M, we apply Grothendieck duality DA(·) = RHomA(·,ωA) to the

structure map κ to obtain

DA(M)
DAκ−−−→ DA(F∗M) = RHomA(F∗M,ωA)∼= F∗RHomA(M,F !ωA)

η−1

−−−→ F∗DA(M),

a map in the derived category of A-modules. By definition DA(M) and hence F∗DA(M) both lie in Pervcoh(A).
Conversely, given such datum of ϕ : N −→ F∗N, where N ∈ Pervcoh(A) and ϕ is a map in Db

coh(A) the same

calculation yields, after applying Grothendieck duality, the map

F∗DA(N)≃ DA(F∗N)
DAϕ−−−→ DA(N)
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in the derived category of A-modules. Since by definition D(N) and F∗D(N) are actual A-modules, this is

indeed a map of A-modules, hence the structure of a Cartier module on DA(N). This shows an equivalence

between the categories

CohCart(A[F])≃
{
(N,ϕ) | N ∈ Pervcoh(A), ϕ : N −→ F∗N ∈Db

coh(A)
}
=: Pervnaive

coh (A[F]),

where the morphisms on the right are the obvious commutative diagrams in Db
coh(A). To finish our claim we

have to show that the right hand side is equivalent to Pervcoh(A[F ]).
For this, observe that by viewing the structural maps of the Frobenius modules constituting an object in

Db
coh(A[F]) as map in the derived category Db

coh(A), we obtain a functor

Pervcoh(A[F ])−→ Pervnaive
coh (A[F ]).

To see that this is essentially surjective, observe that for any map N −→ F∗N in Db
coh(A) we may replace N

by a quasi-isomorphic complex of projective A-modules. In this case, the map ϕ in the derived category is

in fact represented by a (homotopy class of) map of the complexes N −→ F∗N. But this precisely means that

each module in the complex N is equipped with the structure of a Frobenius module, and that the differentials

respect this structure; i.e., N is a complex of Frobenius modules.

For the fully faithfulness let M,N ∈ Pervcoh(A[F]). We may replace M by a quasi-isomorphic complex

consisting of free A[F]-modules; then the underlying A-modules are also free. Then we obtain a triangle in

the derived category of abelian groups

RHomA[F](M,N)−→ RHomA(M,N)
δ−→ RHomA(M,F∗N)

+1−−→
where the first map is induced by forgetting the Frobenius action and the second is given by f 7−→ F∗ f ◦
ϕM −ϕN ◦ f on the level of Hom-complexes if M is A-projective, where ϕM : M −→ F∗M (resp. ϕN ) are

the maps induced by the Frobenius structure on M (resp. N). The cohomology sequence in degree zero then

yields the exact sequence

Ext−1
D(A)(M,F∗N)−→ HomD(A[F])(M,N)−→ HomD(A)(M,N)

δ−→ HomD(A)(M,F∗N).

By definition the kernel of the map induced by δ are the morphisms in Pervnaive
coh (A[F]). To see that this is

equal to the morphisms in Pervcoh(A[F]) — which is the term HomD(A[F])(M,N) in the sequence — it is

enough to show the vanishing of the term Ext−1
D(A)(M,F∗N). But by Grothendieck duality this is equal to

Ext−1
D(A)(F∗DA(N),DA(M)) which, since DA(N) and DA(M) are both A-modules (since M,N are assumed to

be perverse), is equal to Ext−1
A (F∗DA(N),DA(M)) and hence equal to zero. �

The following example is fundamental to our later applications.

Example 4.37 (Local cohomology under Riemann-Hilbert). Let R −→ A be a surjection of complete noe-

therian local rings with kernel I ⊂ R and R regular of dimension d. Fix an integer i. Under the equivalence

in Corollary 4.36, the following objects match up:

(1) The image of the local cohomology module H i
m(A) in Modcof (A[F])/nilpotents.

(2) The local cohomology module H i
m(Aperf ) ∈Modperf (A[F]).

(3) The image of the derived m-adic completion Ĥ i
m(A) in Pervhol(A[F]).

(4) The perverse cohomology sheaf pH i(Fp,A) ∈ Pervc(Spec(A);Fp).

(5) The Cartier module (H−i(ω•A),H
−i(trF)), where trF : F∗ω•A −→ω•A is the trace map for the Frobenius.

(6) The local cohomology module Hd−i
I (R) ∈Mod f gu,A(R).

In (1), (2), (3), and (6), the Frobenius actions are the natural ones.

In particular, using the equivalence of (1) and (6) in Corollary 4.36, we recover [Ly4, Theorem 1.1]:

Corollary 4.38. (Lyubeznik) Hd−i
I (R) = 0 if and only if the natural Frobenius action on H i

m(A) is nilpotent.
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More generally, one has

λ j,d−i := ℓ(H j
mHd−i

I (R)) = ℓ(TorA
j (H

i
m(A),k)perf ) = dimFp

(H− j ◦ i∗ ◦ pH i(Fp,A)),

where i∗ indicates the pullback to the residue field k of A.

Remark 4.39 (Cohen-Macaulayness of A and the perversity of Fp[dimA]). If A is Cohen-Macaulay, then

Fp[dimA] is perverse: this follows as A = DA(ω
•
A) is perverse coherent. In fact, one has a stronger statement:

Fp,A[dimA] is perverse if and only if A is “Cohen-Macaulay up to Frobenius nilpotents”, i.e., if and only if

H<dimA
m (A) is Frobenius nilpotent. Indeed, this follows from the equivalence of (1) and (4) in Corollary 4.36

applied using Example 4.37.

It will be convenient to have a variant of Corollary 4.36 and Example 4.37 in the “affine” setting:

Remark 4.40. Say k is an algebraically closed field of characteristic p. Let X = SpecA be a finite type affine

k-scheme, and let X −֒→Y = SpecR be a closed immersion into a smooth k-scheme Y of dimension d. One

can then show by mimicking Corollary 4.36 that the following categories are equivalent:

(3’) The category Pervhol(X [F]) of perverse holonomic Frobenius modules on X .

(4’) The category Pervc(X ;Fp) of perverse sheaves on X .

(5’) The (opposite of) the quotient by nilpotents of the category of Cartier modules on X .

(6’) The (opposite of) the full subcategory Mod f gu,A(R)⊂Mod f gu(R) spanned by images of pairs
(
N ∈Mod f g(A),ψN : N −→ F∗R N

)

under the unitalization functor.

Under these equivalences, the object pH i(Fp,X)∈ Pervc(X ;Fp) corresponds to Hd−i
I (R)∈Mod f gu,A(R). Con-

sequently, if m⊂ R is a maximal ideal corresponding to a point on X (so I ⊂m), then we get

λ j,d−i := ℓ(H j
mHd−i

I (R)) = ℓ(TorA
j (H

i
m(A),k)perf ) = dimFp

(H− j ◦ i∗ ◦ pH i(Fp,A)),

where i∗ indicates the pullback to the residue field of A.

4.5. Relation to Gabber’s perverse t-structure. We compare the perverse t-structure on constructible Fp-

complexes constructed in Corollary 4.32 (using the perverse t-structure on coherent sheaves) with the more

classical one (in terms of support conditions on stalks and costalks) studied by Gabber [Ga].

Notation 4.41. We work with schemes of finite type over a noetherian local F-finite ring A. Any such

scheme X comes endowed with a perverse t-structure on Db
coh(X) as in §4.1.

We shall need the following standard fact:

Lemma 4.42. Let X be a finite type A-scheme. For N ∈D
b,>0
coh (X) and x ∈ X, we have DX(N)x ∈ D6−d(x).

Proof. It suffices to check the statement after completion at the closed point of OX ,x. We then have

D̂X(N)x = RHom
ÔX ,x

(N̂x, ω̂•X ,x)≃ RHom
ÔX ,x

(RΓx(Nx),RΓx(ω
•
X ,x))≃ RHom

ÔX ,x
(RΓx(Nx),Ex[d(x)]),

where ̂ denotes completion at the closed point x, and Ex ≃ RΓx(ωX ,x)[−d(x)] is an injective hull of the

residue field at x. As Ex is injective, Hom
ÔX ,x

(−,Ex) is exact. Moreover, as N ∈ D
b,>0
coh (X), we also have

RΓx(Nx) ∈ D>0. The above formula then shows that D̂X(N)x ∈D6−d(x), as wanted. �

Let us now prove the promised equivalence:

Theorem 4.43. Let X be a finite type A-scheme. The following two t-structures on Db
c(Xét ,Fp) coincide:

(1) The perverse t-structure from Definition 4.33.

(2) The t-structure on Db
c(Xét ,Fp) constructed in [Ga, Theorem 10.3] using the perversity function p(x) =

−d(x), with d(x) as in Remark 4.4.
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Proof. It suffices to show that the D60 parts of the t-structures coincide. Unwinding definitions, this amounts

to checking that the following full subcategories of Db
c(Xét ,Fp) are identical:

(1) The full subcategory C1 spanned by G ∈ Db
c(Xét ,Fp) such that G can be written as Sol(M), where

(M,ϕM) ∈ Db
coh(X [F]) with M ∈DX(D

>0
coh(X)).

(2) The full subcategory C2 spanned by G′ ∈ Db
c(Xét ,Fp) such that for any x ∈ X and chosen geometric

point x−→ X based at x, we have G′x ∈D6p(x).

Verifying C1 ⊂ C2: Pick G and M as in the definition of C1; we shall check the condition defining C2.

Using the exact triangle

G−→M
ϕM−1−−−−→M

in D(Xét ,Fp), it suffices to show the following: for x ∈ X and chosen geometric point x−→ X based at x,

(i) The stalk Mx := DX(N)x lies in D6p(x), and

(ii) The map Mx −→Mx obtained by taking stalks at x of ϕM−1 is surjective on applying H p(x)(−).
The first condition is verified by Lemma 4.42, and the second is in fact true for all cohomology groups: for

a finitely generated module M′ over a strictly henselian local Fp-algebra R, and a p-linear map ϕ : M′−→M′,
the map ϕ−1 is surjective; see [Ga, Proposition 10.1 (3)].

Verifying C2 ⊂ C1: The category C2 is generated under direct summands, extensions and cones by objects

of the form j!L[i], where j : U −→ X is a locally closed immersion with U regular and equidimensional, L

is a locally constant sheaf of constant rank on U , and i is an integer > d(U). As C1 is closed under direct

summands, extensions and cones, it suffices to show that each generating object j!L[i] as before lies in C1.

By the finite pushforward compatibility of both Grothendieck duality and the p(−) function, we may

replace X with SuppL to assume that U is a dense open subset of X , which we may assume reduced;

by shrinking U using a Mayer-Vietoris argument, we may also assume that the reduced closed comple-

ment i : Z −→ X of U is a Cartier divisor. As L is a local system, we can write L = Sol(M) for a vector

bundle M on U equipped with a Frobenius map ϕ : M −→ F∗M. By regularity of U , we also know that

M = DU(N)[−d(U)] for some vector bundle N on U . This gives

L[i] = Sol(DU(N)[i−d(U)]).

As i> d(U) and C1 is closed under positive shifts, we reduce to checking that j!Sol(DU(N)) ∈ C1. Choose

an extension Ñ ∈Db
coh(X [F]) of the Frobenius module DU(N). Replacing Ñ by its pH0, we may assume Ñ is

perverse. We then have j!Sol(DU(N)) = Sol(IZ⊗OX
Ñ). As Ñ is perverse and IZ is invertible, the Frobenius

module IZ⊗OX
Ñ is also perverse, so we conclude that j!Sol(DU(N)) ∈ C1, as wanted. �

Remark 4.44. Fix a finite type A-scheme X . One consequence of Theorem 4.43 and Gabber’s work in

[Ga] is that the perverse t-structure on Db
c(Xét ;Fp) from Definition 4.33 admits a natural extension to a

perverse t-structure on D(Xét ;Fp), characterized by the support and cosupport conditions as in [Ga, §2] with

p(x) = −d(x). We also refer to this t-structure on D(Xét ;Fp) as the perverse t-structure, and its heart is

denoted by Perv(X ;Fp). Thus, we have

Perv(X ;Fp)∩Db
c(Xét ;Fp) = Pervc(X ;Fp) and Ind(Pervc(X ;Fp))≃ Perv(X ;Fp);

see [Ga, Remark 7.2] for the last isomorphism.

Corollary 4.45. Let X be a finite type A-scheme. The category Pervc(X ;Fp) is both noetherian and artinian.

Proof. This follows from Gabber’s [Ga, Corollary 12.4]. �

4.6. Reminders on compactly supported cohomology. For any finite type separated maps of noetherian

schemes, there is a well-developed notion of compactly supported pushforwards for torsion étale sheaves.

In this subsection, we recall the definition and basic properties of this notion next.

Notation 4.46. In this subsection, all schemes are noetherian, and all morphisms are assumed to be separated

and finite type. Fix a finite coefficient ring Λ.
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Definition 4.47 (Compactly supported cohomology). Given f : X −→Y , define

R f! : Db
c(X ;Λ)−→ Db

c(Y ;Λ)

as R f ∗ ◦ j!, where X
j−֒→ X

f−→ Y is any factorization of f as an open immersion j followed by a proper

morphism f . This functor is independent of the choice of j and f by the proper base change theorem [SP,

Tag 0F7I]. When Y = Speck for an algebraically closed field k, we also write RΓc(X ;−) instead of R f!.

Lemma 4.48 (Excision). Fix a map f : X −→ Y , and an open U ⊂ X with complement Z. Then for any

F ∈ Db
c(X ;Λ), we have a canonical exact triangle

Rg!(F|U)−→ R f!F −→ Rh!(F |Z)
in Db

c(Y ;Λ), where g : U −→Y and h : Z −→Y are the maps induced by f . (We call this triangle the excision

triangle associated to f and the open immersion U ⊂ X.)

Proof. See [SP, Tag 0GKP]. �

Proposition 4.49 (Proper base change). Consider a cartesian diagram

X ′
g′

//

f ′
��

X

f

��

Y ′
g

// Y.

Then there is a canonical isomorphism

g∗R f!(−)≃ R f ′! g′∗(−)
of functors Db

c(X ;Λ)−→ Db
c(Y
′;Λ).

Proof. See [SP, Tag 0F7L]. �

Lemma 4.50 (Projection formula). For a map f : X −→ Y and F ∈ Db
c(X ;Λ), G ∈ Db

c(Y ;Λ), there is a

canonical isomorphism

G⊗R f!F ≃ R f!( f ∗G⊗F)

in Db
c(Y ;Λ).

Proof. See [SP, Tag 0GL5]. �

Let us discuss two calculations of compactly supported cohomology in the case of interest, i.e., with

Fp-coefficients in characteristic p.

Example 4.51 (Affine space fibrations). Say f : X −→ Y is a map of Fp-schemes whose fibers are affine

spaces of positive dimension, and assume Λ = Fp. Then R f!Fp ≃ 0. To see this, by proper base change,

it is enough to show that RΓc(A
n
k;Fp) = 0 for n > 0 over any field k. Using the excision triangle for the

compactification An
k ⊂ Pn

k with boundary a hyperplane Pn−1
k , it suffices to show that

RΓ(Pn;Fp)≃ RΓ(Pn−1;Fp) for n > 0.

This follows from the Artin-Schreier exact sequence and the calculation that k ≃ RΓc(P
m
k ;OPm

k
) for m> 0.

Example 4.52 (Gm-torsors). Say f : X −→ Y be a Gm-torsor of Fp-schemes, and assume that Λ = Fp.

Then R f!Fp ≃ Fp[−1]. To see this, let X
i−֒→ X

f−→ X be the standard partial compactification of f , so f

is the total space of a line bundle over Y , and Z := (X −X)red maps isomorphically to Y via f . Using

Example 4.51 and excision, we learn that

R f!Fp,X ≃ R f !Fp,Z[−1]≃ Fp,Y [−1].
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5. APPLICATIONS OF THE RIEMANN-HILBERT FUNCTOR IN CHARACTERISTIC p

In the bulk of this section, we use the Riemann-Hilbert correspondence in characteristic p as well as the

theory of perverse sheaves as developed in §4 to obtain the applications mentioned in §1.

All functors are derived, unless otherwise specified.

5.1. The perverse Artin vanishing theorem. The goal of this subsection is to prove a surprisingly strong

version of the Artin vanishing theorem (Theorem 5.3) of f! for an affine map.

Notation 5.1. Fix a noetherian local F-finite Fp-algebra A. We work with finite type A-schemes, so there is

a well-defined perverse t-structure on Db
c(X ;Fp) for any scheme X under consideration.

Our first basic observation is that the perverse t-structure behaves well under smooth pullback, much like

the classical setting, i.e., in the case of Z/ℓ-coefficients, where ℓ is invertible.

Lemma 5.2 (Smooth pullbacks are perverse t-exact, up to a shift). Let f : X −→ Y be a smooth morphism

of relative dimension d. Then F 7−→ f ∗F[d] is t-exact for the perverse t-structure.

Proof. Unwinding definitions, it suffices to show that M 7−→ f ∗M[d] is exact for the perverse t-structure

on Db
coh(Y ). In other words, for N ∈ Coh(Y ), we need to check that DX ( f ∗DY (N)[d]) lies in Coh(X). But

duality theory and the smoothness of f show that DX(−)◦ f ∗ and f ∗[d]◦DY (−) differ by twisting by a line

bundle, so the claim follows from flatness of f . �

Our key new observation is that the classical perverse Artin vanishing theorem acquires a stronger form

in the case of Fp-coefficients: we actually get t-exactness rather than merely half t-exactness.

Theorem 5.3 (Perverse acyclicity for affine morphisms). Let f : X −→ Y be an affine morphism between

finite type A-schemes. Then f! : Db
c(X ;Fp)−→ Db

c(Y ;Fp) is t-exact for the perverse t-structure.

Proof. We may assume that both X and Y are affine. Fix F ∈ Pervc(X ;Fp). Under Riemann-Hilbert, such

an F has the form Sol(M) for an M ∈Db
hol(X [F]) that arises as the perfection of Frobenius module (M0,ϕM0

)
for some M0 ∈ Pervcoh(X). Choose a diagram

X
j−→ X

f−→Y

where f is a proper morphism, and j is a dense affine open immersion with complement H := (X −X)red

being a Cartier divisor that is relatively ample over Y . Extend the pair (M0,ϕM0
) to a pair (N0,ϕN0

) with

N0 ∈ Pervcoh(X): one can simply pick any extension (M,ϕM) with M ∈Db
coh(X) and then set N0 := pH0(M)

(using Lemma 4.7 to ensure compatibility of formation of perverse cohomology sheaves with F∗).
If I =OX (−H) denotes the ideal sheaf of the boundary, the pair (I⊗N0,ϕ⊗ϕM0

) is a Frobenius module

on X whose perfection corresponds to j!F under Riemann-Hilbert. Thus, our task is to show f∗(I⊗N0)perf

is a perverse holonomic Frobenius module on Y . Since we are allowed to replace I with a power without

affecting the perfection, it is enough to show that f∗(In⊗N0)perf is a perverse holonomic Frobenius module

for n≫ 0; we shall check the stronger statement that for n≫ 0, we have

pH i( f∗(I
n⊗N0)) = 0 for i 6= 0.

By duality, this is equivalent to showing that

H i( f∗(DX(N0)⊗ I−n)) = 0 for i 6= 0

and n≫ 0. But the perversity of N0 ensures that DX(N0) is a coherent sheaf on X ; since I−1 = OX (1) is

ample, the claim now follows from Serre vanishing. �

Corollary 5.4 (Strong Artin vanishing). Let X be an affine variety over a field k of characteristic p. For

any F ∈ Pervc(X ;Fp), we have H i
c(X ;F) = 0 for i 6= 0.
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Corollary 5.5 (Semiperversity of pushforwards). For a separated morphism f : X −→ Y of finite type

schemes over a noetherian F-finite ring A, the functor f! is right t-exact, i.e., it takes pD60(X) to pD60(Y ).

Proof. If X is affine, then the claim follows from Theorem 5.3. In general, one picks a dense affine open

set U ⊂ X , and uses the associated excision triangle to prove the result by noetherian induction. �

Remark 5.6. Theorem 5.3 as well as Corollary 5.5 are specific to our setting, i.e., to Fp-sheaves in charac-

teristic p, and fail completely in the classical setting. For example, if X is a smooth affine complex variety

of dimension d, then H2d
c (X ;C)≃ C 6= 0.

Remark 5.7. A similar vanishing has been observed for compactly supported Witt vector cohomology of

smooth affine varieties with Qp-coefficients by Berthelot-Bloch-Esnault [BBE]. Neither result implies the

other: ours is integral but only refers to cohomology spaces where Frobenius acts as the identity (so the

slope is 0), while theirs is rational but refers to cohomology spaces where Frobenius is allowed to act with

slopes in [0,1). It would be interesting to find a common generalization.

5.2. Intersection cohomology and F-rationality. The goal of this subsection is to explain what the in-

tersection cohomology complex is, and why the property of being an intersection cohomology manifold is

closely related to F-rationality.

Notation 5.8. Fix a noetherian local F-finite Fp-algebra A. We work with finite type A-schemes, so there is

a well-defined perverse t-structure on Db
c(X ;Fp), for any scheme X under consideration.

Let us begin with the following variant of the Artin vanishing for ∗-pushforwards for open affine immer-

sions, complementing Theorem 5.3.

Proposition 5.9. Let j : U −→ X be an affine open immersion of finite type A-schemes. Then

j∗ : Db(Uét ,Fp)−→ Db(Xét ,Fp)

is perverse t-exact.

We warn the reader that j∗ does not preserve constructibility.

Proof. As i!xR j∗ = 0 for all points x ∈ X −U , it is clear that R j∗ is left t-exact. For right t-exactness, we

may filter to reduce to showing the following: given a constructible Fp-sheaf G on U and an integer i such

that i > d(u) for all u ∈ SuppG (whence G[i] ∈ pD60), the pushforward R j∗G[i] lies in pD60. As j is an

affine morphism, general results on the p-cohomological dimension of affine schemes show that Ri j∗G = 0

for i 6= 0,1. Moreover, by construction, R0 j∗G is supported on SuppG (with the closure computed in X )

while R1 j∗G is supported on SuppG−U ⊂X . We must check that (R0 j∗G)[i] and (R1 j∗G)[i−1] lie in pD60.

The claim for (R0 j∗G)[i] is immediate from the fact that

max{d(x) | x ∈ SuppG}= max{d(u) | u ∈ SuppG}6 i.

For (R1 j∗G)[i−1], it suffices to show that for any x ∈ SuppG−U , we have i−1 > d(x). But this is clear:

there is a non-trivial specialization u x for u ∈ SuppG as SuppG is dense SuppG, and the d(−) function

drops by at least 1 as one moves up along a non-trivial specialization (see Remark 4.4). �

Next, we aim to discuss intermediate extensions. For this purpose, we shall need the following lemmas:

Lemma 5.10. Fix a finite type A-scheme X. For any open immersion j : U −→ X and M ∈ Pervc(U ;Fp), the

object pH0( j!M) (resp. pH0( j∗M)) admits no non-trivial quotients (resp. subobjects) supported on X −U.

Proof. This is immediate from adjunction as i∗ j! = 0 and i! j∗ = 0. �

Lemma 5.11. Let (Y,y) be a strictly henselian local scheme of dimension d. If Y is Cohen-Macaulay,

then H i
y(Y,Fp) = 0 for i < d. If Y is regular and d > 0, then we also have Hd

y (Y,Fp) = 0. More generally,

the same holds true if Y is F-rational.
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Proof. The first claim is immediate from the Artin-Schreier sequence. For the second, by the same argument,

it suffices to show the following: if (R,m) is a strictly henselian regular local ring of dimension d > 0, then

the map ϕ−1: Hd
m(R)−→ Hd

m(R) is injective. This can be checked after completion, where it is easy from

a grading argument. Finally, the last part follows similarly as Hd
m(R) contains no nonzero Frobenius fixed

elements if R is F-rational. �

We can now define the intersection cohomology complex:

Proposition 5.12. Let X be a separated finite type A-scheme. Let j : U −→ X be a dense affine open im-

mersion with Ured regular; write d for the (locally constant) function on U given by sending each connected

component V ⊂U to d(V ). Consider the object

j!∗(Fp,U [d]) := image ( j!(Fp,U [d])−→ j∗(Fp,U [d])) ∈ Pervc(X ;Fp).

(1) j!∗(Fp,U [d]) is canonically independent of the choice of U.

(2) If U is connected, then j!∗(Fp,U [d]) is simple in Pervc(X ;Fp).

The object ICX ,Fp
:= j!∗(Fp,U [d]) ∈ Pervc(X ;Fp), defined by (1) above, is the intersection cohomology

sheaf on X .

Proof. Let us first show the claims when X is itself regular and connected of constant normalized dimen-

sion d. In this case, we must show the following:

(1) Given a dense affine open immersion j : U −→ X , we have j!∗Fp,U [d]≃ Fp,X [d].
(2) Fp,X [d] is simple on X .

For (1), it suffices to show that the natural maps of perverse sheaves on X ,

α : j!Fp,U [d]−→ Fp,X [d] and β : Fp,X [d]−→ j∗Fp,U [d],

are respectively surjective and injective. Note that

fib(α) = i∗Fp,Z[d−1]

where i : Z −→ X is the closed complement of U ; as the normalized dimension of Z is 6 d− 1, we have

i∗Fp,Z[d−1] ∈ pD60, showing that α is indeed a surjection of perverse sheaves. Similarly,

cone(β ) = i∗i
!Fp,X [d +1],

so it suffices to show that for any x ∈ X −Z, we have

i!x(i∗i
!Fp,X [d +1]) ∈ D>−d(x).

Simplifying, we must show that i!xFp,X ∈D>d−d(x)+1, i.e., for a strict henselisation X sh
x of X at x, we have

RΓx(X
sh
x ,Fp) ∈ D>d−d(x)+1.

As d−d(x) = dim(OX ,x), the claim follows from Lemma 5.11.

For (2), pick a nonzero subobject N ⊂ Fp[d] in Pervc(X ;Fp). It follows from (1) and Lemma 5.10 that

N|U 6= 0 for any non-empty open subset of U ⊂ X . In particular, taking j : U ⊂ X to be the dense open

lisse locus of N, we learn that N|U is a non-trivial lisse subsheaf of Fp[d], so N|U = Fp[d]. But then the

composition j!(N|U)−→ N ⊂ Fp[d] is surjective by (1), so N = Fp[d], as wanted.

We now handle the general case. Given j : U −→ X as in the statement of the lemma, (1) follows from

the analysis of the regular case above applied to a dense open immersion V ⊂U , while (2) follows by the

same analysis used in the regular case above. �

Remark 5.13 (The canonical map from the constant sheaf to the IC-sheaf). Fix notation as in Proposi-

tion 5.12. We claim that the natural map Fp,X [d]−→ j∗Fp,U [d] factors uniquely over

ICX ,Fp
= j!∗Fp,U [d]⊂ j∗Fp,U [d],
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thus giving a natural map Fp,X [d] −→ ICX ,Fp
(uniquely determined by the requirement that it is the identity

over U ). To see this factorization and its uniqueness, observe that as Fp,X [d] ∈ pD60 and

j!∗Fp,U [d], j∗Fp,U [d] ∈ Pervc(X ;Fp),

the uniqueness will be automatic from the injectivity of j!∗Fp,U [d]⊂ j∗Fp,U [d] once we have existence. For

existence, observe that the quotient j∗Fp,U [d]/ j!∗Fp,U [d] is supported on i : Z ⊂ X , so has the form i∗Q for

some perverse sheaf Q on Z. Now any map Fp,X [d] −→ i∗Q on X corresponds by adjunction to a map

Fp,Z[d] −→ Q on Z. As Q is perverse, this map factors uniquely over pH0(Fp,Z[d]). But the normalized

dimension of Z is 6 d−1, so Fp,Z[d] ∈ pD6−1, and thus pH0(Fp,Z [d]) = 0.

Remark 5.14 (The IC-sheaf cannot be a summand of the constant sheaf except when they agree). The

canonical surjective map η : pH0(Fp,X [d]) −→ ICX ,Fp
coming from Remark 5.13 is split surjective if and

only if it is an isomorphism. In particular, IC-sheaf ICX ,Fp
cannot be a summand of Fp,X [d] except when

the two are equal. To see this, assume that the map η : pH0(Fp,X [d]) −→ ICX ,Fp
has a section. Then kerη

is also a quotient of pH0(Fp,X [d]), say via a map τ : pH0(Fp,X [d]) −→ kerη . By adjunction, τ is uniquely

determined by the composition

µ : Fp,X [d]−→ pH0(Fp,X [d])−→ kerη .

But kerη has the form i∗K for a closed immersion i : Y −֒→ X with d(Y ) < d(X). By adjunction, µ is

determined by the adjoint map Fp,Y [d] −→ K, which must vanish as in Remark 5.13: we have Fp,Y [d] ∈
pD6−1(Y ) as d(Y )< d. This implies that τ also vanishes, and thus kerη = 0 as τ is surjective.

With notation as in Proposition 5.12, if X has F-rational singularities, then ICX ,Fp
≃ Fp,X [d]; this follows

from the proof of Proposition 5.12, and was also observed by Cass [Ca, Theorem 1.7]. A precursor of this

result in terms of the intersection homology D-module can be found in [Bl, §4]. More generally, we have:

Corollary 5.15 (IC-manifolds and F-rationality up to nilpotents). Let d = dimA. The following statements

are equivalent:

(1) The natural map Fp,A[d]−→ ICA,Fp
(Remark 5.13) is an isomorphism.

(2) Fp,A[d] is perverse and simple.

(3) A is “F-rational up to nilpotents,” i.e., H<d
m (A) is Frobenius nilpotent, and any proper Frobenius

stable A-submodule of Hd
m(A) is also Frobenius nilpotent.

Proof. The equivalence of (1) and (2) is clear from the simplicity of ICA,Fp
and the surjectivity of Fp,A[d]−→

ICA,Fp
[d]. Moreover, Remark 4.39 shows that Fp,A[d] is perverse exactly when H<d

m (A) is Frobenius nilpo-

tent. The rest of the equivalence of (2) and (3) then follows from the equivalence of (1) and (4) in Corol-

lary 4.36, applied using Example 4.37 (1) and (4). �

5.3. Embedding independence of Lyubeznik complexes. The goal of this subsection is to prove a char-

acteristic p analog of the results in §3.5, recovering results of Zhang [ZhW]. Surprisingly, the results here

are much better than in characteristic 0: we do not need smoothness assumptions.

Notation 5.16. Let Z ⊂ Pn be a projective scheme over a perfect field k of characteristic p. Let Y be the

affine cone over Z ⊂ Pn, let k : Speck −֒→Y be the origin with complement j : U −֒→Y , let π : Ỹ −→Y be

the blowup at the origin. Then there is a map f : Ỹ −→ Z exhibiting Z as the total space of the ample line

bundle OZ(−1).

Proposition 5.17. The functor Db
c(Z;Fp)−→Db

c(Y ;Fp) given by M 7−→ π∗ f ∗M[1] is t-exact for the perverse

t-structure. Moreover, for any M ∈ Db
c(Z;Fp), we have RΓc(Y,π∗ f ∗M) = 0.

Proof. The second assertion follows from the string of equalities

RΓc(Y,π∗ f ∗M[1])≃ RΓc(Ỹ , f ∗M[1])≃ RΓ(Z,M[1]⊗ f!Fp) = 0,
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where the second equality uses the projection formula, while last equality follows as f!Fp = 0 by Exam-

ple 4.51. For the first assertion, say M is perverse on Z. Then f ∗M[1] is a perverse sheaf on Ỹ as f is smooth

of relative dimension 1. Since π : Ỹ −→ Y is an isomorphism over the open U , the complex (π∗ f ∗M[1])|U
is a perverse sheaf on U . Thus, pH i(π∗ f ∗M[1]) is supported at the origin for i 6= 0. Our task is to show that

these sheaves are actually 0. Since these sheaves are supported at a point, it is enough to show that

RΓc(Y,
pH i(π∗ f ∗M[1])) = 0

for i 6= 0. But RΓc(Y,−) is perverse t-exact as Y is affine, so

RΓc(Y,
pH i(π∗ f ∗M[1])≃ H i

c(Y,π∗ f ∗M[1]),

whence we are reduced to the vanishing RΓc(Y,π∗ f ∗M) = 0 that was already proven. �

As a corollary to the above observation we obtain the following statement.

Proposition 5.18. Let π : Ỹ −→Y be the blow-up of the vertex of the affine cone Y over a projective Z ⊆ Pn

of dimension d. If Fp,Z[d] is perverse, then so is π∗Fp,Ỹ [d +1]. In particular this holds when Z is smooth.

Proof. We apply the preceding proposition in the case of M = Fp,Z[d], which is perverse by assumption.

Since f is smooth of relative dimension 1, we get that f ∗(Fp,Z [d])[1] = F
p,Ỹ [d + 1] is also perverse by

Lemma 5.2. And hence so is π∗Fp,Ỹ [d +1] = π∗ f ∗(Fp,Z[d])[1] due to Proposition 5.17. �

This statement can be viewed as the constructible Fp-sheaf version of a Frobenius stable Grauert-Riemen-

schneider vanishing, stating that if Z is smooth, and ω•
Ỹ

is a normalized dualizing complex of the smooth Ỹ

viewed as a Cartier module placed in degree −dimỸ , then the complex Rπ∗ω•
Ỹ

of Cartier modules is, up

to nilpotent Frobenius actions, concentrated in the single degree −dimY . In other words, on the higher

derived Functors Riπ∗ωỸ
for i 6= 0 of the dualizing module ω

Ỹ
= h−dimỸ ω•

Ỹ
, the induced right action of the

Frobenius is nilpotent.

Before preceding to the main result of this section we record the following:

Corollary 5.19. We have

RΓc(Y ;Fp)≃ (τ>0RΓ(Z;Fp))[−1]

and

RΓc(Y ; pH j(Fp,Y ))≃ H j−1(τ>0RΓ(Z;Fp)).

Proof. The second statement follows from the first as RΓc(Y ;−) is perverse t-exact. For the first, we use

the triangle

Fp,Y −→ π∗Fp,Ỹ −→ k∗τ
>0RΓ(Z;Fp),

where the identification of the third term comes from proper base change as well as the fact that π is an

isomorphism outside the origin. Applying RΓc(Y ;−) and using that RΓc(Y ;π∗Fp,Ỹ ) = 0 by Proposition 5.17,

we get the result. �

Theorem 5.20. For each j, the complex k∗pH j(Fp,Y ) depends functorially on Z and not on the projective

embedding.

Remark 5.21. The immediate observable from Theorem 5.20 is that each of the individual cohomology

groups H ik∗pH j(Fp,Y ) depends only on Z and not on the projective embedding; this consequence was con-

jectured by Lyubeznik [Ly3], proven earlier by Zhang [ZhW], and was the primary motivation for our

result. Theorem 5.20 is a bit stronger as we prove a statement at the level of complexes. For example,

say Z is equipped with an action of a group G that extends to Pn. Then each H ik∗pH j(Fp,Y ) is naturally

an Fp-representation of G that depends only on Z by the version of Theorem 5.20 at the level of coho-

mology groups. However, Theorem 5.20 itself yields a finer statement: the entire complex k∗pH j(Fp,Y ),
viewed as an object of D(RepFp

(G)) of the derived category Fp-representations of G, depends only on Z.
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Such an object has “secondary” invariants beyond its individual cohomology groups; for example, if M

is an Fp-representation of G, then our theorem implies that the hypercohomology spectral sequence for

RHomG(k
∗Fp,Y ,M)≃M

E
a,b
2 : ExtaG(k

∗pH−b(Fp,Y ),M)⇒M

depends only on Z, and not on the embedding.

Remark 5.22. The characteristic 0 analogue of Theorem 5.20 does not hold without further hypotheses

on Z; see [RSW1]. In contrast, in characteristic p, the statement holds true without any restrictions on

the singularities of Z. Tracing through the proof, the source of this difference is essentially Theorem 5.3,

especially the special case explained in in Example 4.51.

Proof. Fix an integer j. The excision triangle for U ⊂ Y with respect to the sheaf pH j(Fp,Y ) gives

(5.22.1) RΓc(U ; pH j(Fp,U))
α−−→ RΓc(Y ; pH j(Fp,Y ))−→ k∗pH j(Fp,Y ).

It is enough to show that the first two terms of this triangle, as well as the map α , are independent of

the embedding. For the left term of (5.22.1), use the excision triangle for U ⊂ Ỹ and the sheaf pH j(F
p,Ỹ )

to obtain

RΓc(U ; pH j(Fp,U))−→ RΓc(Ỹ ; pH j(F
p,Ỹ ))−→ RΓc(Z,(

pH j(F
p,Ỹ ))|Z).

Now the middle term is zero by Proposition 5.17, while

(pH j(F
p,Ỹ ))|Z ≃

pH j−1(Fp,Z)[1]

by Lemma 5.2 applied to the map f . It follows that

RΓc(U ; pH j(Fp,U))≃ RΓ(Z, pH j−1(Fp,Z)[1])[−1]

is independent of the embedding.

Corollary 5.19 identifies the middle term of (5.22.1) as

RΓc(Y ; pH j(Fp,Y ))≃H j−1(τ>0RΓ(Z;Fp,Z)),

which is evidently independent of the embedding as well.

Finally, we check that the map α in (5.22.1) is independent of the embedding. Note that the target of α
lives in degree 0 as explained above, while the source of α lives in D60 by Corollary 5.5. So it remains to

show that the map

H0(α) : H0
c (U, pH j(Fp,U))−→ H0

c (Y,
pH j(Fp,Y ))

is independent of the embedding with respect to the identifications above. We do this by unwinding all the

identifications involved.

Using the naturality of the excision triangle for the inclusion U ⊂ Ỹ with respect to the natural map
pτ6 jF

p,Ỹ −→ F
p,Ỹ gives a map of exact triangles

RΓc(U, pτ6 jFp,U) //

��

RΓc(Ỹ , pτ6 jF
p,Ỹ )≃ 0 //

��

RΓc(Z,(
pτ6 jF

p,Ỹ )|Z)≃ RΓc(Z,
pτ6 j−1Fp,Z)

��

RΓc(U,Fp,U ) // RΓc(Ỹ ,F
p,Ỹ )≃ 0 // RΓc(Z,Fp,Z),

where the middle terms in both rows are zero by Proposition 5.17. Passing to boundary maps gives a

commutative square

(5.22.2) RΓc(Z,
pτ6 j−1Fp,Z)[−1]

≃
//

��

RΓc(U, pτ6 jFp,U)

��

RΓc(Z,Fp,Z)[−1]
≃

// RΓc(U,Fp,U)
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where the left vertical map is obvious one (and thus independent of the embedding).

Next, comparing the excision triangles for the constant sheaf for U ⊂ Ỹ and U ⊂Y , we get a map of exact

triangles

RΓc(U,Fp,U ) // RΓc(Y,Fp,Y ) //

��

RΓ(Speck,Fp)≃ Fp

��

RΓc(U,Fp,U ) // RΓc(Ỹ ,Fp,Ỹ )≃ 0 // RΓc(Z,Fp,Z),

where the second middle term is zero by Proposition 5.17. Taking cones in the vertical direction and using

the octahedral axiom gives a commutative square

(5.22.3) RΓc(Z,Fp,Z)[−1]
≃

//

��

RΓc(U,Fp,U)

��

(τ>0RΓc(Z,Fp,Z))[−1]
≃

// RΓc(Y,Fp,Y ),

where the left vertical map is the natural map (and thus independent of the embedding).

Combining squares (5.22.2) and (5.22.3) gives a commutative diagram

RΓc(Z,
pτ6 j−1Fp,Z)[−1]

≃
//

��

RΓc(U, pτ6 jFp,U)

��

(τ>0RΓc(Z,Fp,Z))[−1]
≃

// RΓc(Y,Fp,Y ),

where the left vertical map depends only on Z. But the map on H j induced by the right vertical map

identifies with

H0(α) : H0
c (U, pH j(Fp,U))−→ H0

c (Y,
pH j

c (Fp,Y ))

appearing above: this follows from Theorem 5.3 for the target, and Corollary 5.5 for the source. This

completes the proof. �

5.4. Bass numbers. The goal of this subsection is to describe Bass numbers topologically, giving charac-

teristic p analogs of the results in §3.3.

Remark 5.23. Let (R,m,κ) be a regular local ring of positive characteristic p and M be a cofinite unit

Frobenius module. To understand the Bass numbers µ j(M) := dimκ Ext
j
R(κ ,M) of M, which are not affected

by field extensions, we may assume that κ is algebraically closed. Then, since M is supported only in {m},
it can be identified with a perverse sheaf on {m}, i.e., with Fp-vectors spaces. Consequently M ∼= Eµ

with E = Hd
m(R). Since M is cofinite, it follows that

µ j(M) =

{
µ < ∞ if j = 0,

0 if j 6= 0.

Put differently, M is an injective R-module with finite Bass numbers. This recovers [HuS, Corollary 3.6].

When M is a local cohomology module, we can describe the Bass numbers topologically in term of

compactly supported cohomology. To this end, we fix some notation.

Notation 5.24. Let X be a smooth affine variety of dimension d over an algebraically closed field k of

characteristic p. Fix a closed subscheme i : Z −֒→ X with open complement j : U −→ X as well as a closed

point x ∈ Z. Assume Z 6= X , so dimZ < d.

The compactly supported cohomology of perverse truncations of the constant sheaf on Z can be effec-

tively computed in terms of U and X :
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Lemma 5.25. One has the following:

(1) Each RΓc(Z,
pH j(Fp,Z[d])) lives in degree 0 and vanishes for j > 0.

(2) For k <−1, we have a natural isomorphism

RΓc(Z,
pHk(Fp,Z[d])) ≃ Hk+1

c (U,Fp,U [d]).

(3) There is an exact sequence

0−→ RΓc(Z,
pH−1(Fp,Z [d]))−→ H0

c (U,Fp,U [d])−→ H0
c (X ,Fp,X [d])−→ 0.

(4) If Hd
c (X ,Fp,X) = 0, e.g., if X is an affine space, then (2) extends to all k.

Proof. The first part of (1) follows immediately from Theorem 5.3. For the second, it is enough to show

that pHk(Fp,Z[d]) = 0 for k > 0. For this, it is enough to show that Fp,Z[d− 1] ∈ pD60(Z), but this follows

as d−1> dimZ by our assumptions.

For (2), consider the excision triangle for U ⊂ X given by

j!(Fp,U [d]) −→ Fp,X [d]−→ i∗Fp,Z[d].

All terms lie in pD60: the middle term is perverse as X is smooth of dimension d, the left term lies in pD60

by Corollary 5.5, and the rest follows by the long exact sequence for perverse cohomology. Since the middle

term is perverse, the long exact sequence gives isomorphisms

i∗
pHk(Fp,Z [d])≃ pHk+1( j!Fp,U [d])

for k <−1, where we use that i∗ is t-exact. Applying the t-exact functor RΓc(X ,−) now gives the claim.

For (3), we take the long exact sequence associated to the triangle used in (2) as well as the vanishing of
pH0(Fp,Z[d]) proven in (1) to get a short exact sequence

0−→ i∗
pH−1(Fp,Z [d])−→ pH0( j!Fp,U [d])−→ pH0(Fp,X [d])≃ Fp,X [d]−→ 0

of perverse sheaves on X . Applying the t-exact functor RΓc(X ,−) now gives the desired exact sequence.

Part (4) follows immediately from (3) as well as the vanishing proven in (1). �

This calculation has the following consequence for local cohomology, parallel to the results in §3.3.

Corollary 5.26. Let (R,m) be a regular local ring of characteristic p whose residue field is algebraically

closed and I be an ideal of R. Let x denote the close point. Assume that Hk
I (R) 6= 0 is supported at x.

(1) If k > 1, then Hk
I (R)≃ E⊗Fp

Hd−k+1
c (U ;Fp)

∨.

(2) If Hd
c (X ,Fp,X) = 0, e.g., if X is an affine space, then (1) extends to all k.

Proof. We shall use the calculations in Lemma 5.25.

The dual Riemann-Hilbert correspondence carries Hk
I (R) to i∗pH−k(Fp,Z [d]), so, to prove part (1), it

suffices to identify the latter with a skyscraper sheaf at x with fiber Hd−k+1
c (U ;Fp)

∨ as long as k > 1. The

assumption that Hk
I (R) is supported at x immediately implies that i∗pH−k(Fp,Z [d]) is a skyscraper sheaf. As

applying RΓc(X ;−) carries a skyscraper sheaf to its fiber, it suffices to show that

RΓc(X ; i∗
pH−k(Fp,Z[d])) ≃Hd−k+1

c (U ;Fp)

as long as k > 1. As i∗ is t-exact, this follows from Lemma 5.25.2.

The hypothesis in (2) when k = 0 is vacuous. It remains to prove the case when k = 1 (e.g., dimX = 1),

but this follows in the exact same way as above using Lemma 5.25.3 and 5.25.4. �
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5.5. Gradings. In this subsection, we record the characteristic p analog of the result in §3.2, recovering

the main result of [ZhY] (for a generalization to Eulerian graded D-modules in characteristic p we refer the

interested reader to [MZ]); as in §3.2, the key is again the connectedness of Gm.

Proposition 5.27. Fix an algebraically closed field k of characteristic p. Let X = SpecR be a smooth affine

k-scheme of dimension d. Let M be a fgu R[F]-module that vanishes away from a closed point x ∈ X,

corresponding to a maximal ideal m. Then M ≃ E⊕µ as fgu R[F]-modules, where E = Hd
m(R).

Assume moreover that X admits a Gm-action that fixes x and such that M is Gm-equivariant. Then any

isomorphism M ≃ E⊕µ of fgu R[F]-modules is automatically Gm-equivariant.

Proof. Translating via the dual Riemann-Hilbert correspondence, the first statement follows as the category

of perverse sheaves on X supported at {x} identifies with the category of perverse sheaves on {x}, i.e.,

with the Fp-vector spaces. For the second statement, it is enough to prove that forgetting the Gm-action

identifies the category of Gm-equivariant Fp-sheaves on {x} with the category of Fp-sheaves on X ; this

follows because Gm is connected. �

5.6. Cohen-Macaulayness and F-rationality up to finite covers. The goal of this subsection is to re-

cover fundamental results of Hochster-Huneke [HH] and Smith [Sm1] on the Cohen-Macaulayness and

F-rationality properties of the absolute integral closure of (non-graded) rings; the graded analogs will be

established in §5.7.

Remark 5.28. The arguments in this section and §5.7 are analogs of those in [Bh3, BL2] (which concerns

the mixed characteristic case); [Bh3], in turn, was partially inspired by previous arguments in this paper.

Notation 5.29. Let R be an excellent noetherian normal local domain of characteristic p and dimension d.

Assume R is F-finite; thus, R admits a normalized dualizing complex, and we have a theory of perverse

Fp-sheaves on R-schemes. Fix an absolute integral closure R−→ R+ of R. Let P be the poset of all R-finite

R-subalgebras S⊂ R+, so lim−→S∈P S≃ R+. Any étale sheaf on SpecS for S ∈P or Spec(R+) will be regarded

as an étale sheaf on SpecR via pushforward.

Our basic vanishing result is the following, borrowed from [Bh3, BL2].

Lemma 5.30. Say Y is an integral normal scheme with algebraically closed function field. Then RΓ(Y,Fp)≃
Fp. Moreover, the constant sheaf Fp,Y is ∗-extended from any open subset of Y .

Proof. It is easy to see that the étale and Zariski topologies of Y coincide. This implies that RΓ(Y,Fp)≃ Fp

by Grothendieck’s theorem on the vanishing of the cohomology of constant sheaves on irreducible topologi-

cal spaces. The last part is a formal consequence of the first part as well as the fact that any non-empty open

subset of Y is also an integral normal scheme with algebraically closed function field. �

Theorem 5.31 (Spec(R+) is an IC-manifold). The natural map

{Fp,S[d]}S∈P −→ {ICS,Fp
}S∈P

is an isomorphism of ind-objects. In particular, taking the colimit gives an isomorphism

Fp,R+[d]≃ lim−→
S∈P

Fp,S[d]≃ lim−→
S∈P

ICS,Fp
.

Thus, Fp,R+ [d] is perverse.

Proof. Consider the natural maps

{Fp,S[d]}S∈P
α−−→ {pH0(Fp,S[d])}S∈P

β−−→ {ICS,Fp
}S∈P

of ind-objects. We shall show that α and β are both isomorphisms of ind-objects, which implies the theorem.
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Isomorphy of α : By general nonsense with compactness properties of constructible sheaves, it suffices to

show that α induces an isomorphism on taking colimits; equivalently, it suffices to show that

lim−→
S∈S

Fp,S[d]≃ Fp,R+[d]

is perverse. The containment Fp,R+[d] ∈ pD60 is clear, so it suffices to show i!xFp,R+ [d] ∈ D>−d(x) for all

x ∈ SpecR. When x is the generic point, this is clear as d(x) = d. For non-generic x, we claim the stronger

statement that i!xFp,R+ = 0. To show this, it suffices to check that Fp,R+ is ∗-extended from any non-empty

affine open U ⊂ SpecR, which follows from Lemma 5.30.

Isomorphy of β : as each component map of β is a surjection of perverse sheaves, the colimit is also

surjective, so it suffices to prove that for any S ∈ P, there exists a larger S−→ T in P such that the kernel of

βS : pH0(Fp,S[d])−→ ICS,Fp

is annihilated by the map pH0(Fp,S[d]) −→ pH0(Fp,T [d]). By constructibility of pH0(Fp,S[d]), this can be

checked after taking the colimit over all possible T , so it suffices to show that ker βS is annihilated by

pH0(Fp,S[d])−→ pH0(Fp,R+[d]).

But the previous paragraph shows that pH0(Fp,R+[d]) agrees with Fp,R+ [d] and is ∗-extended from any non-

empty open subset of SpecR. Now any perverse sheaf ∗-extended from an open subset cannot contain per-

verse subsheaves supported on the closed complement. In particular, any perverse subsheaf of pH0(Fp,R+[d])
cannot be supported on a proper closed subset of SpecR. But ker βS is supported on a proper closed subset

of SpecR: it vanishes after restriction to any dense open U ⊂ SpecR such that the preimage of U in S is

Cohen-Macaulay (Example 4.30). Then kerβS must indeed die in pH0(Fp,R+ [d]), as wanted. �

Corollary 5.32. One has the following:

(1) (Hochster-Huneke) R+ is Cohen-Macaulay.

(2) (Smith) For any maximal ideal m ⊂ R, any Frobenius stable R-submodule N ⊂ Hd
m(R) is either all

of Hd
m(R), or is annihilated by the map Hd

m(R)−→ Hd
m(S) for sufficiently large S ∈ P.

(3) For any maximal ideal m⊂ R, and nonzero g ∈ m, the R+-module Hd
m(R

+) has no nonzero g-almost

zero elements.

Proof. (1) For any S ∈ P , the Riemann-Hilbert functor RH: D(Spec(R)ét ,Fp) −→ D(R[F]) carries Fp,S to

Sperf . Passing to inductive limits and noting that R+ is already perfect, we learn that RH(Fp,R+) = R+.

Applying Theorem 5.31, we then learn that R+ can also be written as

R+ ≃ lim−→
S∈P

RH(ICS,Fp
)[−d].

The desired claim now follows from Theorem 5.31, the perversity of ICS,Fp
, and Example 4.35.

(2) We may assume R is m-adically complete. Assume N 6= Hd
m(R) as there is nothing to show otherwise.

Recall from Proposition 4.12 that the composition

Db
coh(R)

DR(−)−−−−→ Db
coh(R)

RΓm(−)−−−−−→ Db
cof (R)

is an equivalence and t-exact for the standard t-structures on the source and target. This composition carries

the dualizing sheaf H−d(ω•R) to Hd
m(R). Consequently, the R-module N ⊂Hd

m(R) arises from a quotient Q of

H−d(ω•R). As N 6= Hd
m(R) and the dualizing sheaf is torsionfree, we must have gQ = 0 for some 0 6= g ∈ R,

whence gN = 0 as well.

Write Nperf ⊂ Hd
m(Rperf ) for the Rperf -span of the image of N. Recall that the exactness result in Propo-

sition 4.34 lets us write

Hd
m(Rperf ) = RΓm(RH(pH0(Fp,R[d]))).
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Using the equivalence of (2) and (4) in Corollary 4.36, we can find a perverse subsheaf F ⊂ pH0(Fp,R[d])
such that the map

RΓm(RH(F))−→ RΓm(RH(pH0(Fp,R[d])))

equals the map

Nperf −→ Hd
m(Rperf ).

In fact, explicitly, the perverse holonomic Frobenius R-module RH(F) is the perfection of the derived m-

completion of N. In particular, as gN = 0, we learn that F|Spec(R[1/g]) = 0, so F is supported on the closed

set Spec(R/g) ⊂ SpecR. But then the composition

F −→ pH0(Fp,R[d])−→ ICR,Fp

must be 0: if not, then the map must be surjective by simplicity of the target, but this is not possible as

the target is supported everywhere, while the source vanishes on a non-empty open subset. Corollary 5.32

then implies that there exists some S ∈ P such that the map pH0(Fp,R[d]) −→ pH0(Fp,S[d]) factors over
pH0(Fp,R[d])−→ ICR,Fp

, which then implies that image of N in

Hd
m(Sperf ) = RΓm(RH(pH0(Fp,S[d])))

vanishes. By Corollary 4.24, we conclude that the image of N in Hd
m(S) generates a Frobenius nilpotent

S-module; passing from S to S −→ S1/pn

for n≫ 0 then solves the problem.

(3) Pick a class α ∈ Hd
m(R

+) that is g-almost zero; we shall show that α = 0. At the expense of enlarg-

ing R, we may assume that α comes from a class in Hd
m(R) and hence from a class (abusively called α)

in Hd
m(Rperf ). If we write K := ker(Hd

m(R) −→ Hd
m(R

+)), then the assumption that α is g-almost zero

in Hd
m(R

+) implies that

g1/pn

α ∈ Kperf := ker(Hd
m(Rperf )−→ Hd

m(R
+)

for all n. Also, we know that the map Hd
m(R)−→Hd

m(R
+) is not zero (e.g., by the direct summand conjecture

applied to a Noether normalization of R̂), so K 6= Hd
m(R). Part (2) then allows us to find a finite extension

R −→ S in P such that K maps to 0 in Hd
m(S), and thus Kperf maps to 0 in Hd

m(Sperf ). Thus, after replacing

R with S, we may assume that g1/pn

α = 0 in Hd
m(Rperf ) for all n.

Consider the Rperf -submodule N ⊂ Hd
m(Rperf ) spanned by all g-almost zero elements; this is a Frobenius

submodule. It suffices to show N maps to 0 in Hd
m(R

+). We can write N = lim−→n
Nn, where Nn ⊂ Hd

m(R
1/pn

)

is the preimage of N (and thus a Frobenius submodule of Hd
m(R

1/pn

)) for all n. We shall show that Nn maps

to 0 in Hd
m(R

+) for each n separately. Using (2), it suffices to show Nn 6= Hd
m(R

1/pn

) for each n. But if

we had Nn = Hd
m(R

1/pn

) for some n, then we would learn that N = Hd
m(Rperf ) by passing to the perfection,

so Hd
m(Rperf ) would itself be g-almost zero and in particular killed by g. Now if Hd

m(Rperf ) is killed by g,

then it is in fact 0 as it is also g-divisible by virtue of being a top local cohomology module. But then

Corollary 4.36 shows that pH0(Fp,R[d]) = 0, whence the constant sheaf vanishes on the dense open subset

of Spec(R)reg ⊂ SpecR, which is absurd. �

Remark 5.33. [SS] have improved Corollary 5.32 (1) by showing that R+ can be replaced with R+,sep,

which is the integral closure of R in a separable closure of Frac(R). As R+,sep is not perfect, this gener-

alization is inaccessible to our topological techniques: our primary tool is the covariant Riemann-Hilbert

correspondence, which naturally takes values in perfect Frobenius modules.

5.7. Kodaira vanishing up to finite covers. In this subsection, we prove the graded main theorem of [HH]

as well the analog for top local cohomology in [Sm2].

Notation 5.34. Let X be a projective variety of dimension d over a perfect field k of characteristic p equipped

with an ample line bundle L. Fix an absolute integral closure π : X+ −→ X , and let P denote the poset of
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finite covers of X dominated by X+, i.e., the poset of all factorizations X+ −→Y
fY−−→ X of π with fY finite

surjective and Y integral. For any Y ∈ P, define the following objects:

The total space of L−1 := T (Y,L) = Spec
Y
(
⊕

n>0

f ∗Y Ln),

The Gm-torsor attached to L−1 :=U(Y,L) = Spec
Y
(
⊕

n∈Z

f ∗Y Ln),

The homogeneous coordinate ring of (Y,L) := R(Y,L) = H0(T (Y,L),OT (Y,L)) =
⊕

n>0

H0(Y, f ∗Y Ln),

The affine cone over (Y,L) :=C(Y,L) = Spec(R(Y,L)).

Thus, we have natural maps

Y
gY←−− T (Y,L)

hY−−→C(Y,L) and jY : U(Y,L) −֒→ T (Y,L)

where gY is a line bundle, hY is the affinization map and is proper and birational, and jY is an affine open

immersion with reduced complement the 0-section Y −֒→ T (Y,L). Moreover, the 0-section Y ⊂ T (Y,L) is

contracted to the origin in C(Y,L) by hY and is in fact the exceptional locus of hY , so hY identifies U(Y,L)
with the complement of the origin in C(Y,L). As Y ∈P varies, one has compatible maps for all the varieties

defined above. Passing to the limit, we set

T+ = lim←−
Y∈P

T (Y,L), U+ = lim←−
Y∈P

U(Y,L), C+ = lim←−
Y∈P

C(Y,L), and R+,gr = lim−→
Y∈P

R(Y,L)≃H0(C+,OC+).

Finally, any étale sheaf (or complex) on any scheme over C(X ,L) is regarded as a sheaf on C(X ,L) via

derived pushforward unless otherwise specified.

The main result of this section is the following, giving a graded analog of Theorem 5.31. The proof in

fact relies crucially on Theorem 5.31 to solve the problem away from the cone point; the solution at the cone

point is obtained using Proposition 5.17.

Theorem 5.35 (C+ is an IC-manifold). The maps

{Fp,C(Y,L)[d +1]}Y∈P α
//

β

��

{ICC(Y,L),Fp
}Y∈P

γ

��

{Fp,T (Y,L)[d +1]}Y∈P δ
// {ICT (Y,L),Fp

}Y∈P

are all isomorphisms of ind-objects. In particular,

Fp,R+,gr [d +1]≃ lim−→
Y∈P

ICC(Y,L),Fp

is perverse.

Proof. Note that since T (Y,L)−→C(Y,L) is proper, all objects involved above are constructible. By general

nonsense, it suffices to show that all maps induce isomorphisms after taking colimits.

Applying Theorem 5.31 to affine opens in X and pulling back along the smooth maps T (Y,L)−→Y , we

learn that lim−→δ is an isomorphism.

The map lim−→β identifies with the map Fp,C+ −→ Fp,T+ . It is thus clearly an isomorphism away from the

cone point. To show the claim at the cone point, by proper base change, as the fiber of T+ −→C+ at the

cone point is X+, it suffices to show that Fp ≃ RΓ(X+,Fp), which follows by Lemma 5.30.

For future use, we note that the first half of Proposition 5.17 implies that each Fp,T (Y,L)[d +1] is perverse

on C(X ,L), so the isomorphy of β implies that Fp,C+ [d +1] is also perverse.
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It remains to prove that

lim−→α : Fp,C+ [d +1]−→ lim−→
Y∈P

ICC(Y,L),Fp

is an isomorphism. By the isomorphy of β and δ and simplicity of IC-sheaves, we already know that lim−→α

is a surjection of perverse sheaves on C(X ,L), giving a short exact sequence

0−→ K −→ Fp,C+

lim−→α

−−−−→ lim−→
Y∈P

ICC(Y,L),Fp
−→ 0

of perverse sheaves on C(X ,L). The map lim−→α is an isomorphism away from the cone point: indeed, this

holds true for γ as T (Y,L) −→C(Y,L) is an isomorphism outside the cone point, so the claim follows from

the known statements for β and δ . Thus, the kernel K is supported at the cone point, so it is enough to show

that RΓc(C(X ,L),K) = 0. Applying RΓc(C(X ,L),−) to the above short exact sequence gives a triangle

RΓc(C(X ,L),K)−→ RΓc(C(X ,L),Fp,C+)−→ RΓc(C(X ,L), lim−→
Y∈P

ICC(Y,L),Fp
).

In fact, as C(X ,L) is affine, the perverse Artin vanishing theorem (Theorem 5.3) shows that the preceding

triangle is a short exact sequence of complexes in degree 0. Thus, it suffices to show the middle term

vanishes. But we can rewrite the middle term as

RΓc(C(X ,L),Fp,C+)≃ lim−→
Y∈P

RΓc(C(Y,L),Fp,C(Y,L)).

Now each RΓc(C(Y,L),Fp,C(Y,L)) vanishes by the second part of Proposition 5.17, so the direct limit above

also vanishes, as wanted. �

Corollary 5.36. One has:

(1) (Hochster-Huneke) R
+,gr
perf is Cohen-Macaulay.

(2) (Smith) Let m ⊂ R(X ,L) be the homogenous maximal ideal corresponding to the origin in C(Y,L).
Then any Frobenius stable R-submodule N ⊂ Hd

m(R(X ,L)) is either all of Hd
m(R(X ,L)) or is annihi-

lated by the map Hd
m(R(X ,L))−→ Hd

m(R(Y,L)
1/pn

) for sufficiently large Y ∈ P and n≫ 0.

Proof. This follows as in Corollary 5.32 using Theorem 5.35 instead of Theorem 5.31. �

Remark 5.37. Some variants of Corollary 5.36 that have been established in the literature can also be

deduced by our topological methods. We discuss two instances:

(1) The papers [HH, Sm2] prove analogs of Corollary 5.36 for a larger ring R+,GR in lieu of R+,gr obtained

by allowing Q-gradings. Geometrically, this corresponds to choosing a compatible system {L1/n} of n-th

roots of the pullback of L to X+, and working with the Q-graded object C+
∞ = Spec(

⊕
n∈Q>0

H0(X+,Ln))

instead of the corresponding N-graded object C+ as in Corollary 5.36. To deduce this generalization, one

first proves the analog for C+
m = Spec(

⊕
n∈Z[1/m]>0

H0(X+,Ln)) by deducing it from Corollary 5.36 applied

to a finite cover of X where L has a chosen m-th root; taking a limit over m then yields the result for C+
∞ .

(2) The paper [Bh1] proves an analog of Corollary 5.36 (formulated geometrically) when L is only as-

sumed to be semiample and big, rather than ample. This version can be proved similarly to Corollary 5.36

by replacing the category P of all finite covers of X dominated by X+ with the category Palt of all alter-

ations of X dominated by a generic point of X+. The key input in carrying out this argument is the following

result, whose proof critically relies on the proper pushforward compatibility of the Riemann-Hilbert functor

as well as Lemma 5.30:

Proposition 5.38 (Annihilating cohomology of proper maps). Let f : X −→ S be a proper map of noetherian

schemes, with S affine. Then there exists a finite surjective map Y −→ X such that H i(X ,OX)−→H i(Y,OY )
is the 0 map for i > 0.
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Proof. By standard reductions, we may assume X and S are integral. Choose an absolute integral closure

X+ −→ X . As X+ is a cofiltered limit of finite covers of X , a limit argument reduces us to showing that

H i(X+,OX+) = 0 for i > 0. Let S+ denote the integral closure of S in the composition X+ −→ X −→ S.

Then S+ is an absolutely integrally closed domain and we have an induced map h : X+ −→ S+ which is

pro-proper. The proper pushforward compatibility of the Riemann-Hilbert functor shows that

RΓ(X+,OX+)≃ RΓ(S+,Rh∗Fp).

Using Lemma 5.30, it suffices to show that Fp ≃ Rh∗Fp. As the étale and Zariski topologies of S+ coincide

(by Lemma 5.30 again), this can be checked after taking sections over a non-empty affine open U ⊂ S+, i.e.,

we must show that RΓ(U,Fp)≃ RΓ(U×S+ X+,Fp). But both U and U ×S+ X+ are integral normal schemes

with algebraically closed function fields, so Lemma 5.30 implies both complexes are identified with Fp[0],
and are thus isomorphic. �

The paper [Bh3] contains similar arguments in the more involved mixed characteristic setting; we refer

the reader there for more details.
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[BBG] M. Blickle and G. Böckle, Cartier modules: finiteness results, J. Reine Angew. Math. 661 (2011), 85–123. 22

[BBR] M. Blickle and R. Bondu, Local cohomology multiplicities in terms of étale cohomology, Ann. Inst. Fourier (Grenoble) 55

(2005), 2239–2256. 10
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