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Abstract Let R be a commutative Noetherian ring that is a smooth Z-
algebra. For each ideal a of R and integer k, we prove that the local cohomol-
ogy module Hk

a (R) has finitely many associated prime ideals. This settles a
crucial outstanding case of a conjecture of Lyubeznik asserting this finiteness
for local cohomology modules of all regular rings.

Keywords Primary 13D45 · Secondary 13F20 · 14B15 · 13N10 · 13A35

1 Introduction

A question of Huneke [5, Problem 4] asks whether local cohomology modules
of Noetherian rings have finitely many associated prime ideals. The answer is
negative in general: the first counterexample was given by Singh [13, Sect. 4],
and further counterexamples were obtained by Katzman [7] and Singh and
Swanson [14].

However, there are several affirmative answers: by work of Huneke and
Sharp [6], for regular rings R of prime characteristic; by work of Lyubeznik,
for regular local and affine rings of characteristic zero [8], and for unrami-
fied regular local rings of mixed characteristic [10]; for a partial result in the
case of ramified regular local rings, see Núñez-Betancourt [12]. These results
support Lyubeznik’s conjecture, [8, Remark 3.7]:

Conjecture 1.1 If R is a regular ring, then each local cohomology module
Hk

a (R) has finitely many associated prime ideals.

While the counterexamples from [7] and [14] are for rings containing a
field, the local cohomology module with infinitely many associated primes
from [13] has the form Hk

a (R) where R is a hypersurface over the integers; in
this example, Hk

I (R) has nonzero p-torsion for each prime integer p. A major
stumbling block in making progress with Lyubeznik’s conjecture for rings not
containing a field was the possibility of p-torsion for infinitely many prime in-
tegers p. The key point in this paper is to show that for a smooth Z-algebra R,
the p-torsion of each local cohomology module Hk

a (R) can be controlled; this
allows us to settle an important case of Lyubeznik’s conjecture:

Theorem 1.2 Let R be a smooth Z-algebra, a an ideal of R, and k a non-
negative integer. Then the set of associated primes of the local cohomology
module Hk

a (R) is finite.

Our proof uses D -modules over Z, Fp , and Q, along with the theory of F -
modules developed in [9]. The relevant results are reviewed in Sect. 2. A cru-
cial step in the proof is to relate the integer torsion in a local cohomology
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module to the integer torsion in a Koszul cohomology module; since the lat-
ter is finitely generated, it has p-torsion for at most finitely many p. The proof
of the main theorem occupies Sect. 3.

Our techniques work somewhat more generally: in Sect. 4 we indicate the
changes that need to be made to tackle the case where R is a smooth algebra
over a Dedekind domain, all of whose residue fields at nonzero prime ideals
are of characteristic p. Our techniques are also sufficient to give a new and
much simpler proof of the case of an unramified regular local ring of mixed
characteristic, originally obtained by Lyubeznik in [10].

2 D -modules and F -modules

2.1 D -modules

Let R be a commutative ring. Differential operators on R are defined induc-
tively as follows: for each r ∈ R, the multiplication by r map r̃ : R −→ R is
a differential operator of order 0; for each positive integer n, the differential
operators of order less than or equal to n are those additive maps δ : R −→ R

for which the commutator

[̃r, δ] = r̃ ◦ δ − δ ◦ r̃

is a differential operator of order less than or equal to n − 1. If δ and δ′ are
differential operators of order at most m and n respectively, then δ ◦ δ′ is a
differential operator of order at most m + n. Thus, the differential operators
on R form a subring D(R) of EndZ(R).

When R is an algebra over a commutative ring A, we define D(R,A) to
be the subring of D(R) consisting of differential operators that are A-linear.
Note that D(R,Z) = D(R); if R is an algebra over a perfect field F of prime
characteristic, then D(R,F) = D(R), see, for example, [9, Example 5.1 (c)].

By a D(R,A)-module, we mean a left D(R,A)-module. Since D(R,A) ⊆
EndA(R), the ring R has a natural D(R,A)-module structure. Using the quo-
tient rule, localizations of R also carry a natural D(R,A)-structure. Let a be
an ideal of R. The Čech complex on a generating set for a is a complex of
D(R,A)-modules; it then follows that each local cohomology module Hk

a (R)

is a D(R,A)-module.
More generally, if M is a D(R,A)-module, then each local cohomology

module Hk
a (M) is also a D(R,A)-module, see [8, Examples 2.1 (iv)] or [9,

Example 5.1 (b)].
If R is a polynomial or formal power series ring in variables x1, . . . , xd

over a commutative ring A, then 1
ti !

∂ti

∂x
ti
i

can be viewed as a differential op-

erator on R even if the integer ti ! is not invertible. In each of these cases,
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D(R,A) is the free R-module with basis

1

t1!
∂t1

∂x
t1
1

· · · 1

td !
∂td

∂x
td
d

for (t1, . . . , td) ∈ N
d,

see [3, Théorème 16.11.2]. If B is an A-algebra, it follows that

D(R,A) ⊗A B ∼= D(R ⊗A B,B).

Specifically, for each element a ∈ A, one has

D(R,A)/aD(R,A) ∼= D(R/aR,A/aA). (2.1)

To obtain analogous results for any smooth A-algebra, we use an alterna-
tive description of D(R,A) from [3, 16.8]: consider the left R ⊗A R-module
structure on EndA(R) under which r ⊗ s acts on δ to give the endomorphism
r̃ ◦ δ ◦ s̃ where, as before, r̃ denotes the multiplication by r map. Set �R/A to
be the kernel of the ring homomorphism R ⊗A R −→ R with r ⊗ s 	−→ rs.
The ideal �R/A is generated by elements of the form r ⊗1 − 1 ⊗ r . Since

(r ⊗1 − 1 ⊗ r)(δ) = [̃r, δ],
it follows that an element δ of EndA(R) is a differential operator of order at
most n precisely if it is annihilated by �n+1

R/A. By [3, Proposition 16.8], the
A-linear differential operators on R of order at most n correspond to

HomR⊗AR

(

(R ⊗A R)/�n+1
R ,EndA(R)

) ∼= HomR

(

P n
R/A,R

)

,

where

P n
R/A = (R ⊗A R)/�n+1

R ,

viewed as a left R-module via r 	−→ r ⊗1.
A ring R is said to be smooth over A if R is a finitely presented and flat

A-algebra, such that for each prime ideal p of A, the fiber Rp/pRp is geomet-
rically regular over Ap/pAp. In this situation, we have:

Lemma 2.1 If R is a smooth A-algebra, then for each A-algebra B one has

D(R,A) ⊗A B ∼= D(R ⊗A B,B).

Proof Since R is A-smooth, the R-module P n
R/A is locally free of finite rank

by [3, Proposition 16.10.2]. It follows that

HomR

(

P n
R/A,R

) ⊗A B ∼= HomRB

(

P n
R/A ⊗A B,RB

)

, (2.2)
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where RB = R ⊗A B . Since R is flat over A, one also has �R/A ⊗A B ∼=
�RB/B . Tensoring the exact sequence

0 −−−→ �n+1
R/A −−−→ R ⊗A R −−−→ P n

R/A −−−→ 0

with B , one obtains the first row of the commutative diagram

�n+1
R/A ⊗A B −−−→ RB ⊗B RB −−−→ P n

R/A ⊗A B −−−→ 0
⏐

⏐

�

∥

∥

∥

⏐

⏐

�

0 −−−→ �n+1
RB/B −−−→ RB ⊗B RB −−−→ P n

RB/B −−−→ 0.

The vertical map on the left is surjective, which gives P n
R/A ⊗A B ∼= P n

RB/B .
Combining this with (2.2), we get the desired isomorphism

HomR

(

P n
R/A,R

) ⊗A B ∼= HomRB

(

P n
RB/B,RB

)

. �

2.2 F -modules

We next review some aspects of the theory of F -modules, developed by
Lyubeznik in [9]. Let R be an F -finite regular ring of prime characteristic
p. For each positive integer e, define R(e) to be the R-bimodule that agrees
with R as a left R-module, and that has the right R-action

r ′r = rpe

r ′ for r ∈ R and r ′ ∈ R(e).

For an R-module M , define F(M) = R(1) ⊗R M ; we view this as an R-
module via the left R-module structure on R(1).

An F -module is an R-module M with an R-module isomorphism
θ : M −→ F(M ). The ring R has a natural F -module structure, and so does
each local cohomology module Hk

a (R), see [9, Example 1.2]. An F -module
carries a natural D(R)-module structure by [9, pages 115–116]. When the F -
module M is the ring R, a localization of R, or a local cohomology module
Hk

a (R), the usual D(R)-module structure on M agrees with the one induced
via the F -module structure; see [9, Example 5.2 (c)].

A generating morphism for an F -module M is an R-module map
β : M −→ F(M) such that M is the direct limit of the top row of the com-
mutative diagram

M
β−−−→ F(M)

F(β)−−−→ F 2(M)
F 2(β)−−−→ · · ·

β

⏐

⏐

�
F(β)

⏐

⏐

� F 2(β)

⏐

⏐

�

F(M)
F(β)−−−→ F 2(M)

F 2(β)−−−→ F 3(M)
F 3(β)−−−→ · · · .
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Note that the direct limit of the bottom row is F(M ), and that the vertical
maps induce the isomorphism θ : M −→ F(M ). If β : M −→ F(M) is a
generating morphism for M , then the image of M in M generates M as a
D(R)-module by [1, Corollary 4.4]; this is a key ingredient in the proof of
our main result.

2.3 Koszul and local cohomology

Given f ∈ R, there is a map of complexes

K•(f ;R) = 0 −−−→ R
f−−−→ R −−−→ 0

⏐

⏐

�

∥

∥

∥

⏐

⏐

�f p−1

K•(f p;R) = 0 −−−→ R
f p

−−−→ R −−−→ 0
⏐

⏐

�

∥

∥

∥

⏐

⏐

�

1
f p

C•(f ;R) = 0 −−−→ R −−−→ Rf −−−→ 0 ,

where K• denotes the Koszul complex, and C• the Čech complex. Let
f = f1, . . . , ft be a sequence of elements of R. Regarding K•(f ;R) and
C•(f ;R) as the tensor products

K•(f1;R) ⊗ · · · ⊗ K•(ft ;R) and C•(f1;R) ⊗ · · · ⊗ C•(ft ;R)

respectively, one obtains a map of complexes

K•(f ;R) −−−→ K•(f p;R) −−−→ C•(f ;R),

and induced maps on cohomology modules

Hk(f ;R)
β−−−→ Hk

(

f p;R) −−−→ Hk
a (R),

where a is the ideal generated by f . By [9, Proposition 1.11 (b)], the map β is
a generating homomorphism for the local cohomology module Hk

a (R); hence
the image of Hk(f ;R) in Hk

a (R) generates Hk
a (R) as a D(R)-module, as

mentioned at the end of Sect. 2.2.

3 The main theorem

We prove the following result that subsumes Theorem 1.2.

Theorem 3.1 Let R be a smooth Z-algebra, and a an ideal of R generated
by elements f = f1, . . . , ft . Let k be a nonnegative integer.
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(1) If a prime integer is a nonzerodivisor on the Koszul cohomology module
Hk(f ;R), then it is a nonzerodivisor on the local cohomology module
Hk

a (R).
(2) All but finitely many prime integers are nonzerodivisors on Hk

a (R).
(3) The set of associated primes of the R-module Hk

a (R) is finite.

Proof Let p be a prime integer. The exact sequence

0 −−−→ R
p−−−→ R −−−→ R/pR −−−→ 0

induces an exact sequence of Koszul cohomology modules and an exact se-
quence of local cohomology modules; these fit into a commutative diagram:

Hk−1(f ;R)
π−−−−→ Hk−1(f ;R/pR) −−−−→ Hk(f ;R)

p−−−−→ Hk(f ;R)

α′
⏐

⏐

�

⏐

⏐

�
α

⏐

⏐

�

⏐

⏐

�

Hk−1
a (R)

ϕ−−−−→ Hk−1
a (R/pR)

d−−−−→ Hk
a (R)

p−−−−→ Hk
a (R)

The bottom row is a complex of D(R)-modules; in particular, ϕ(Hk−1
a (R))

is a D(R)-submodule of Hk−1
a (R/pR). As ϕ(Hk−1

a (R)) is annihilated by
p, it has a natural structure as a module over the ring D(R)/pD(R), which
equals D(R/pR) by Lemma 2.1. Similarly,

Hk−1
a (R/pR)

d−−−→ image(d) (3.1)

is a map of D(R/pR)-modules.
(1) Suppose p is a nonzerodivisor on Hk(f ;R). Then the map π is sur-

jective; we need to prove that p is a nonzerodivisor on Hk
a (R), equivalently,

that ϕ is surjective.
By Sect. 2.3, the image M of α generates Hk−1

a (R/pR) as a D(R/pR)-
module. As π is surjective, M is also the image of α ◦ π = ϕ ◦ α′. It follows
that

M ⊆ ϕ
(

Hk−1
a (R)

)

.

But ϕ(Hk−1
a (R)) is a D(R/pR)-submodule of Hk−1

a (R/pR) that contains
M . Hence

ϕ
(

Hk−1
a (R)

) = Hk−1
a (R/pR),

i.e., ϕ is surjective, as desired.
(2) Since Hk(f ;R) is a finitely generated R-module, it has finitely many

associated prime ideals. These finitely many prime ideals contain at most
finitely many prime integers; all other prime integers are nonzerodivisors on
Hk(f ;R), and hence on Hk

a (R) by (1).
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(3) We have proved that the set AssZ Hk
a (R) is finite; let p be an element

of this set. It suffices to show that there are at most finitely many elements
of AssR Hk

a (R) that lie over p.
If p is the zero ideal, then each associated prime of Hk

a (R) lying over p is
the contraction of an associated prime of

Hk
a (R) ⊗Z Q = Hk

a (R ⊗Z Q)

as an R⊗ZQ-module. Since R⊗ZQ is a regular finitely generated Q-algebra,
these associated primes are finite in number by [8, Remark 3.7 (i)].

If p is generated by a prime integer p, the exactness of

Hk−1
a (R/pR)

d−−−→ Hk
a (R)

p−−−→ Hk
a (R)

shows that an associated prime of Hk
a (R) that contains p is an associated

prime of

ker(p) = image(d).

It thus suffices to show that image(d) has finitely many associated primes as
an R-module, or, equivalently, as an R/pR-module.

Recall that (3.1) is a surjection of D(R/pR)-modules. By [9, Corol-
lary 5.10], the module Hk−1

a (R/pR) has finite length as a D(R/pR)-module,
and hence so does image(d). The associated primes of image(d) are among
the minimal primes of its simple D(R/pR)-module subquotients; it thus suf-
fices to show that each simple D(R/pR)-module has a unique associated
prime. Indeed, let M be a simple D(R/pR)-module, and p a maximal el-
ement of AssR/pR M . Then H 0

p (M) is a D(R/pR)-submodule of M , and
hence it must equal M . But p is maximal in AssR/pR M , so it is the unique
associated prime of M . �

We conclude the section with two examples:

Example 3.2 Given a finite set of prime integers S, there exists a polynomial
ring R over Z, a monomial ideal a in R, and an integer k, such that Hk

a (R)

has p-torsion if and only if p ∈ S; see [16, Example 5.11].

Example 3.3 Let E be an elliptic curve in P
2
Q

. Consider the Segre embedding

of E ×P
1
Q

in P
5
Q

, and let a be a lift of the defining ideal to R = Z[x0, . . . , x5],
i.e.,

Proj(R/a⊗Z Q) = E × P
1
Q
.

By [4, page 75] or [11, page 219], the module H 4
a (R/pR) is zero for infinitely

many prime integers p (corresponding to E mod p being supersingular) and
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nonzero for infinitely many p (corresponding to E mod p being ordinary);
see also [15, Corollary 2.2]. Thus,

H 4
I (R)

p−−−→ H 4
I (R)

is surjective for infinitely many primes p, and also not surjective for infinitely
many p. Theorem 1.2 implies that the map is injective for all but finitely many
primes p.

4 Smooth algebras over a Dedekind domain

We indicate how Theorem 1.2 extends to algebras that are smooth over the
ring of integers of a number field; first, the local version:

Theorem 4.1 Let (V ,uV ) be a discrete valuation ring of mixed character-
istic. Let R be a V -algebra that is either smooth over V , or a formal power
series ring over V .

Let a be an ideal of R generated by elements f .

(1) If u is a nonzerodivisor on Hk(f ;R), then it is a nonzerodivisor on
Hk

a (R).
(2) The R-module Hk

a (R) has finitely many associated prime ideals.

Proof We first reduce to the case where V has a perfect residue field: There
exists a discrete valuation ring (V ′, uV ′) such that V ′/uV ′ is a perfect field,
and V −→ V ′ is faithfully flat, see, for example, [2, Chapter IX, Appen-
dice 2]. Take R′ to be either R ⊗V V ′ or a formal power series ring over V ′,
in the respective cases; note that if R is smooth over V , then R′ is smooth
over V ′. In either case, R′ is faithfully flat over R, and it suffices to prove the
assertions of the theorem for the ring R′.

We may thus assume that V/uV is a perfect field; it follows that R/uR is
an F -finite regular ring. As before, the exact sequence

0 −−−→ R
u−−−→ R −−−→ R/uR −−−→ 0

induces the commutative diagram with exact rows:

Hk−1(f ;R)
π−−−−→ Hk−1(f ;R/uR) −−−−→ Hk(f ;R)

u−−−−→ Hk(f ;R)

α′
⏐

⏐

�

⏐

⏐

�
α

⏐

⏐

�

⏐

⏐

�

Hk−1
a (R)

ϕ−−−−→ Hk−1
a (R/uR)

d−−−−→ Hk
a (R)

u−−−−→ Hk
a (R)

The bottom row is a complex of D(R,V )-modules; specifically, image(ϕ)

and image(d) are D(R,V )-modules. Since they are annihilated by u, they
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are also modules over the ring D(R,V )/uD(R,V ). If R is smooth over V ,
then Lemma 2.1 gives

D(R,V )/uD(R,V ) = D(R/uR,V/uV );
the same holds when R is a ring of formal power series over V by (2.1).
Moreover, since V/uV is a perfect field, one has

D(R/uR,V/uV ) = D(R/uR).

The remainder of the proof now proceeds analogous to that of Theo-
rem 3.1.1 �

As a consequence, we recover the following result of Lyubeznik, [10, The-
orem 1]:

Corollary 4.2 Let R be an unramified regular local ring of mixed character-
istic, or, more generally, assume that the completion of R is a formal power
series ring over a discrete valuation ring of mixed characteristic.

Then each local cohomology module Hk
a (R) has finitely many associated

prime ideals.

Proof One reduces to the case where R is a formal power series ring over a
discrete valuation ring of mixed characteristic; the result then follows from
Theorem 4.1. �

Theorem 4.3 Let A be the ring of integers of a number field, or, more gener-
ally, a Dedekind domain such that for each height one prime ideal p of A, the
local ring Ap has mixed characteristic. Let R be a smooth A-algebra. Then
each local cohomology module Hk

a (R) has finitely many associated prime
ideals.

Proof Fix a generating set f for a. The R-module Hk(f ;R) has finitely
many associated prime ideals; let p1, . . . ,pm be the contractions of these to
the ring A. Let p be a height one prime of A that differs from the pi . We claim
that p is not an associated prime of Hk

a (R), viewed as an A-module.
Indeed, if it is, then pAp is an associated prime of Hk

a (Rp) as an
Ap-module; but then, by Theorem 4.1 (1), pAp is an associated prime

1Added in proof : In the formal power series case one cannot use [8, Theorem 2.4] for a proof
of the finiteness of the prime ideals not containing u because the ring is not finitely generated
over a field. A proof of this remains the same as in [10, pp. 5880 (from line −5)–5882]; but
our proof in the formal power series case of the finiteness of the primes containing u is much
simpler than in [10].



Local cohomology of a smooth Z-algebra 519

of Hk(f ;Rp) as an Ap-module, implying that p is an associated prime
of Hk(f ;R) as an A-module, which is false. This proves the claim.

Hence Hk
a (R) has finitely many associated primes as an A-module. By

Theorem 4.1 (2), there are finitely many elements of AssR Hk
a (R) lying over

each element of AssA Hk
a (R). �
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