The characteristic polynomial of an algebra and representations

Rajesh Kulkarni †, Yusuf Mustopa ‡ and Ian Shipman †

July 13, 2015

Suppose that \(\mathbf{k} \) is a field and let \(A \) be a finite dimensional, associative, unital \(\mathbf{k} \)-algebra. Often one is interested in studying the finite-dimensional representations of \(A \). Of course, a finite dimensional representation of \(A \) is simply a finite dimensional \(\mathbf{k} \)-vector space \(M \) and a \(\mathbf{k} \)-algebra homomorphism \(A \to \text{End}_\mathbf{k}(M) \). In this article we will not consider representations of algebras, but rather how to determine if a \(\mathbf{k} \)-linear map \(\phi : A \to \text{End}_\mathbf{k}(M) \) is actually a homomorphism. We restrict our attention to the case where \(A \) is a product of field extensions of \(\mathbf{k} \). If \(\phi : A \to \text{End}_\mathbf{k}(M) \) is a representation then certainly, if \(a \in A \) satisfies \(a^n = 1 \) then \(\phi(a)^m = \text{id} \) as well. Our first Theorem is a remarkable converse to this elementary observation.

Theorem A. Suppose that \(A \) is a product of field extensions of \(\mathbf{k} \) and \(\phi : A \to \text{End}_\mathbf{k}(M) \) is a \(\mathbf{k} \)-linear map. Let \(n > 2 \) be a natural number and assume that \(\mathbf{k} \) has \(n \) primitive \(n \)-th roots of unity. If \(\phi(1_A) = \text{id}_M \) and for each \(a \in A \) such that \(a^n = 1 \), \(\phi(x)^n = \text{id} \) then \(\phi \) is an algebra homomorphism.

Consider the regular representation \(\mu_L : A \to \text{End}_\mathbf{k}(A) \) of \(A \) on itself by left multiplication. For \(a \in A \), let \(\chi_a(t) \) and \(\mu_a(t) \) be the characteristic and minimal polynomials of \(\mu_L(a) \), respectively. We note that \(\chi_a(a) = \mu_a(a) = 0 \) in \(A \). Therefore if \(M \) is a finite dimensional left \(A \)-module with structure map \(\phi : A \to \text{End}_\mathbf{k}(M) \) then \(\chi_a(\phi(a)) = \mu_a(\phi(a)) = 0 \) in \(\text{End}_\mathbf{k}(M) \). The notion of assigning a characteristic polynomial to each element of an algebra and considering representations which are compatible with this assignment has appeared in [Pro87]. This idea has been applied to some problems in noncommutative geometry as well [LB03]. However, as far as we know the following related notion is new.

Definition 1. Suppose that \(\phi : A \to \text{End}_\mathbf{k}(M) \) is a \(\mathbf{k} \)-linear map, where \(M \) is a finite dimensional \(\mathbf{k} \)-vector space. We say that \(\phi \) is a characteristic morphism if \(\chi_a(\phi(a)) = 0 \) for all \(a \in A \). We say that \(\phi \) is minimal-characteristic if, moreover, \(\mu_a(\phi(a)) = 0 \) for all \(a \in A \).

It is natural to ask whether or not the notions of characteristic morphism and minimal characteristic morphism are weaker than the notion of algebra morphism. Let us address minimal-characteristic morphisms first.

Corollary. Assume that \(A \) is a product of \(d > 2 \) field extensions of \(\mathbf{k} \) and that \(\mathbf{k} \) has a full set of \(d \)-th roots of unity. Then a minimal-characteristic morphism \(\phi : A \to \text{End}_\mathbf{k}(M) \) is an algebra morphism.

Proof. First note that \(\mu_1(t) = t - 1 \). Hence \(\phi(1) = \text{id} \). Furthermore if \(a \in A \) satisfies \(a^d = 1 \) then \(\mu_a(t) \) divides \(t^d - 1 \). Therefore, \(\phi(a)^d = \text{id} \). Hence, Theorem A implies that \(\phi \) is an algebra morphism.

†Michigan State University, East Lansing, Michigan. kulkarni@math.msu.edu
‡Tufts University, Medford, Massachusetts. Yusuf.Mustopa@tufts.edu
§University of Utah, Salt Lake City, Utah. ian.shipman@gmail.com
Example 2. Let \(a, b \in k \) be such that \(a + b \neq 0 \). Then the map \(\phi : k^{x2} \to \text{Mat}_2(k) \) given by

\[
\phi(e_1) = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix}, \quad \phi(e_2) = \begin{pmatrix} 0 & b \\ 0 & 1 \end{pmatrix}
\]

is a characteristic morphism that is not a representation.

Characteristic morphisms form a category in a natural way. Any linear map \(\phi : A \to \text{End}_k(M) \) endows \(M \) with the structure of a \(T(A) \) module, where \(T(A) \) denotes the tensor algebra on \(A \). We can view the characteristic polynomial of elements of \(A \) as a homogeneous form \(\chi(t) \in \text{Sym}^*(A^\vee)[t] \) of degree \(d \), monic in \(t \). Pappacena [Pap00] associates to such a form an algebra

\[
C(A) = \frac{T(A)}{(\chi_a(a) : a \in A)},
\]

where if \(\chi_a(t) = \sum_{i=0}^{d} c_i(a)t^i \) then

\[
\chi_a(a) := \sum_{i=0}^{d} c_i(a)a^\otimes_i \in T(A).
\]

Clearly, the action map \(\phi : A \to \text{End}_k(M) \) of a \(T(A) \)-module \(M \) is a characteristic morphism if and only if the action of \(T(A) \) factors through \(C(A) \). We declare the category of characteristic morphisms to be the category of finite-dimensional \(C(A) \)-modules. So we have a notion of irreducible characteristic morphism. The characteristic morphism constructed in Example 2 is not irreducible, being an extension of two irreducible characteristic morphisms. However, every irreducible characteristic morphism \(k^{x2} \to \text{End}_k(M) \) is actually an algebra morphism. On the other hand, this is not always the case.

Example 3. The linear map \(k^{x3} \to \text{Mat}_3(k) \) defined by

\[
e_1 \mapsto \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \quad e_2 \mapsto \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}, \quad e_3 \mapsto \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}
\]

is an irreducible characteristic morphism.

Given a linear map \(\phi : A \to \text{End}_k(M) \), let \(T_\phi \in A^\vee \otimes \text{End}_k(M) \) be the element that corresponds to \(\phi \) under the isomorphism \(\text{Hom}_k(A, \text{End}_k(M)) \cong A^\vee \otimes \text{End}_k(M) \). We view \(T_\phi \) as an element of \(\text{Sym}^*(A^\vee) \otimes \text{End}_k(M) \). The equation \(\chi(a)(\phi(a)) = 0 \) for all \(a \in A \) holds if and only if \(\chi_A(T_\phi) = 0 \) in \(\text{Sym}^*(A^\vee) \otimes \text{End}_k(M) \). We can just as easily view \(T_\phi \) as an element of \(T(A^\vee) \otimes \text{End}_k(M) \). Moreover, we can lift \(\chi \) from \(\text{Sym}^*(A^\vee)[t] \) to \(T(A^\vee) \otimes k[t] \) by the naïve symmetrization map \(\text{Sym}^*(A^\vee)[t] \to T(A^\vee) \otimes k[t] \).

Theorem B. Assume that \(\text{char}(k) = 0 \) or greater than \(d \). Let \(A = k^{x\cdot d} \) and \(\phi : A \to \text{End}_k(M) \) a \(k \)-linear map. The map \(\phi \) factors through a homomorphism \(A \to \text{End}_k(M) \) if and only if \(\chi(T) = 0 \) in \(T(A^\vee) \otimes_k B \).

Acknowledgments. I.S. would like to thank Ted Chinburg and Zongzhu Lin for interesting conversations. I.S. was partially supported during the preparation of this paper by NSF award DMS-1204733.
Proofs

We now turn to the proofs of the results in the introduction. The proof of the Theorem 4A depends on an arithmetic Lemma.

Lemma 4. Let \(\zeta \in k \) be a primitive \(n \)th root of unity. Suppose that \(a, b, c, d \in \mathbb{Z} \) satisfy \(b, d \neq 0 \mod n \) and
\[
\frac{\zeta^a - 1}{\zeta^b - 1} = \frac{\zeta^c - 1}{\zeta^d - 1}.
\]
Then either:

1. \(a \equiv b \mod n \) and \(c \equiv d \mod n \), or
2. \(a \equiv c \mod n \) and \(b \equiv d \mod n \).

Proof. After possibly passing to a finite extension we may assume that \(k \) admits an automorphism sending \(\zeta \) to \(\zeta^{-1} \). Thus we have
\[
\frac{\zeta^{-a} - 1}{\zeta^{-b} - 1} = \frac{\zeta^{-c} - 1}{\zeta^{-d} - 1},
\]
which we rewrite
\[
\frac{\zeta^{-a} - \zeta^{-c}}{\zeta^{-b} - \zeta^{-d}} = \frac{\zeta^{-e} - 1}{\zeta^{-d} - 1}.
\]
Using our assumption we find that \(\zeta^{-a} = \zeta^{-c} \). Thus \(b - a \equiv d - c \mod n \). Let \(e = b - a \equiv d - c \mod n \). Then we have
\[
\frac{\zeta^{b-e} - 1}{\zeta^b - 1} = \frac{\zeta^{d-e} - 1}{\zeta^d - 1},
\]
which implies that
\[
\zeta^{b-e} + \zeta^d = \zeta^{d-e} + \zeta^b.
\]
Finally we see that
\[
\zeta^d - \zeta^b = (\zeta^d - \zeta^b)\zeta^{-e}
\]
Therefore either \(e \equiv 0 \mod d \) so that (1) holds, or \(d \equiv b \mod d \) so that (2) holds. \(\square \)

Proof of Theorem 4A. Whether or not \(\phi \) is an algebra homomorphism is stable under passage to the algebraic closure of \(k \). So we may assume that \(k \) is algebraically closed, and identify \(A \cong k^d \) for \(d = \text{dim}_{k}(A) \). Let \(e_1, \ldots, e_d \in A \) be a complete set of orthogonal idempotents. Put \(\alpha_i = \phi(e_i) \) and note that by hypothesis \(\alpha_1 + \cdots + \alpha_d = \text{id} \). Fix a primitive \(n \)th root of unity \(\xi \). Then \(x = 1 + (\xi - 1)e_i \) satisfies \(x^n = 1 \). Therefore \(\phi(x)^d = \text{id} \). This implies that \(\phi(x) \) is diagonalizable and each eigenvalue is an \(n \)th root of unity. Now, since \(\phi \) is linear,
\[
\alpha_i = \frac{\phi(x) - \text{id}}{\xi - 1}
\]
and hence \(\alpha_i \) is diagonalizable as well. Let \(\lambda \) be an eigenvalue of \(\alpha_i \). Then for some \(a \) we have
\[
\lambda = \frac{\xi^a - 1}{\xi - 1}.
\]
Now for any \(b \), \(\phi(1 + (\xi^b - 1)e_i)^d = \text{id} \). So we see that
\[
1 + \lambda(\xi^b - 1)
\]
must be a root of unity for every b. However, if
\[1 + \lambda(\xi^b - 1) = \xi^c \]
then Lemma 4 implies that either $a \equiv 1 \mod n$, $\lambda = 0$, or $b \equiv 1 \mod n$. Now, b is under our control and since $n \geq 3$ we can choose $b \neq 0, 1 \mod n$, excluding the third case. If $a \equiv 1 \mod n$ then $\lambda = 1$ and otherwise $\lambda = 0$. Thus α_i is semisimple with eigenvalues equal to zero or one. So $\alpha_i^2 = \alpha_i$.

Let $i \neq j$ and consider
\[y_a = \text{id} + (\xi^a - 1)(\alpha_i + \alpha_j) \]
Clearly, $y_a^n = \text{id}$ and thus y_a is semisimple. We compute
\[(y_a - \text{id})^2 = (\xi^a - 1)^2(\alpha_i\alpha_j + \alpha_j\alpha_i) + (\xi^a - 1)(y_a - \text{id}) \]
and deduce that
\[(\xi^a - 1)^{-2}(y_a - \text{id})(y_a - \xi^c) = (\alpha_i\alpha_j + \alpha_j\alpha_i). \] (1)

Assume that $b \neq 0 \mod n$. Observe that $y_a - \text{id} = \xi^{a-1}(y_b - \text{id})$ and therefore, y_a and y_b are simultaneously diagonalizable. Suppose that ξ^c is an eigenvalue of y_b. Then
\[\frac{\xi^a-1}{\xi^b-1} = \xi^c \]
is an eigenvalue of y_a. Since $n \geq 3$ we can assume that $a \neq b, 0 \mod n$. Then Lemma 4 implies that $c \equiv a \mod n$ and $b \equiv c \mod n$. Since ξ^c was any eigenvalue of y_b we find that $y_b = \xi^b\text{id}$. This means that the right side of (1) vanishes. So $\alpha_i\alpha_j = -\alpha_j\alpha_i$ for all i, j. Suppose that $\alpha_i(m) = m$. Then $\alpha_j(\alpha_i(m)) = \alpha_j(m) = -\alpha_i(\alpha_j(m))$. Since 1 is not an eigenvalue of α_i we see that $\alpha_j(m) = 0$. Now let $m \in M$ and write $m = m_0 + m_1$ where $\alpha_i(m_0) = 0$ and $\alpha_i(m_1) = m_1$. Then
\[\alpha_i(\alpha_j(m)) = \alpha_i(\alpha_j(m_0)) = -\alpha_j(\alpha_i(m_0)) = 0. \]
Thus we see that in fact $\alpha_i\alpha_j = 0$. So $\alpha_1, \ldots, \alpha_d$ satisfy the defining relations of $k^{\times d}$ and ϕ is actually an algebra homomorphism.

We now turn to the proof of Theorem B. The key idea is to use the fact that the single equation $\chi(T_a) = 0$ over the tensor algebra encodes many relations for the matrices defining ϕ. It is convenient to consider $X_i = \phi(e_i)$, where e_i is the standard basis of idempotents in $k^{\times d}$. Furthermore we write χ_d for the characteristic polynomial of $k^{\times d}$ viewed as an element of $k(x_1, \ldots, x_d, t)$ (where x_1, \ldots, x_d is the dual basis to e_1, \ldots, e_d).

Lemma 5. Suppose that k is a field with char(k) $> d$. Let $X_1, \ldots, X_d \in M_n(k)$ and put $T = x_1X_1 + \ldots + x_dX_d$. If T satisfies χ_d then

1. for some $i = 1, \ldots, d$, X_i has a 1-eigenvector, and
2. if $m \in k^n$ satisfies $X_im = m$ then $X_jm = 0$ for all $j \neq i$.

Proof. (1.) Let $S = k[x_1, \ldots, x_d]$ as an $A = k(x_1, \ldots, x_d)$ module in the obvious way. Then the image of χ_d in $k[x_1, \ldots, x_d, t]$ is $p(t) = n!((t - x_1)\cdots(t - x_d)$, where now the order of the terms does not matter. Hence T satisfies $(T - x_1)\cdots(T - x_d) = 0$ in $M_n(S)$. So we can view S^n as an $R = k[x_1, \ldots, x_d, t]/(p(t))$-module M. For each i consider the quotient $S_i := R/(t - x_i)$, which is isomorphic to S under the natural map $S \to S_i$. Define $M_i = M \otimes_R S_i$. Since the map $S \to S_1 \times \cdots \times S_d$
S_d is an isomorphism after inverting $a = \prod_{i \neq j} (x_i - x_j)$ and a is a nonzerodivisor on M, the natural map $M \to M_1 \oplus \cdots \oplus M_d$ is injective. Hence there is some i such that M_i has positive rank. Consider $M := M/(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d)M$ and $M_i := M_i/(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_d)M_i$. Now since M_i (is finitely generated and) has positive rank $M_i \neq 0$. Observe that since $M = S^d$, the natural map $k^d \to M$ is an isomorphism. Moreover the action of t on M is identified with the action of X_t. Now, $M_t = M/(t-x_1)M = M/(X_1-1)M \neq 0$. Hence X_1-1 is not invertible, X_1-1 has nonzero kernel, and X_1 has a 1-eigenvector.

(2.) Let us compute $\chi(x_1, \ldots, x_d, T)$. We denote by δ_j^i the Kronecker function. We have

\[
\chi_d(x_1, \ldots, x_d, T) = \sum_{\sigma \in S_d} \left(\prod_{i=1}^{d} x_i X_i - x_{\sigma(1)} \right) \cdots \left(\sum_{i=1}^{d} x_i X_i - x_{\sigma(d)} \right)
\]

\[
= \sum_{\sigma \in S_d} \prod_{j=1}^{d} \left(\sum_{i=1}^{d} x_i (X_i - \delta_{\sigma(j)}^i) \right) = \sum_{1 \leq i_1, \ldots, i_d \leq d} x_{i_1} \cdots x_{i_d} \left(\sum_{\sigma \in S_d} (X_i - \delta_{\sigma(1)}^i) \cdots (X_{i_d} - \delta_{\sigma(d)}^i) \right).
\]

In the second line the term order matters so the product is taken in the natural order $1, 2, \ldots, d$. Now suppose that $\chi_d(x_1, \ldots, x_d, T) = 0$. Then for all $1 \leq i_1, \ldots, i_d \leq d$ we have

\[
\sum_{\sigma \in S_d} (X_{i_1} - \delta_{\sigma(1)}^i) \cdots (X_{i_d} - \delta_{\sigma(d)}^i) = 0. \tag{2}
\]

For each $j \neq i$, we consider the noncommutative monomial $x_i x_j x_i^{d-2}$ and its equation (2),

\[
\sum_{\sigma \in S_d} (X_i - \delta_{\sigma(1)}^i)(X_j - \delta_{\sigma(2)}^j)(X_1 - \delta_{\sigma(3)}^i) \cdots (X_{i_d} - \delta_{\sigma(d)}^i) = 0. \tag{3}
\]

Note that since $X_i(m) = m$, we calculate

\[
(X_i - \delta_{\sigma(3)}^i) \cdots (X_i - \delta_{\sigma(d)}^i)m = \begin{cases} m & i \notin \{\sigma(3), \ldots, \sigma(d)\}, \\
0 & i \in \{\sigma(3), \ldots, \sigma(d)\}.
\end{cases}
\]

Therefore applying (3) to m and simplifying we get

\[
\sum_{\sigma \in S_d, \sigma(1) = i} (X_i - 1)(X_j - \delta_{\sigma(2)}^i)m + \sum_{\sigma \in S_d, \sigma(2) = i} X_i X_j m = (d-1)!((X_i - 1)(X_j - \delta_{\sigma(2)}^i)m + X_i X_j m) = (d-1)!((X_i - 1)X_j m + X_i X_j m)
\]

\[
= (d-1)!((X_i - 1)X_j m)
\]

\[
= (d-1)!2X_i-1 X_j m
\]

\[
= 0,
\]

where passing from the first line to the second we use the fact that $(X_i - 1)\delta_{\sigma(2)}^i m = 0$.

Now, consider the special case of (2) corresponding to x_i^d:

\[
\sum_{\sigma \in S_d} (X_i - \delta_{\sigma(1)}^i) \cdots (X_i - \delta_{\sigma(d)}^i) = \sum_{j=1}^{d} \sum_{\sigma \in S_d, \sigma(j) = i} X_i^{j-1}(X_i - 1)X_i^{d-j-1} = d! X_i^{d-1}(X_i - 1) = 0.
\]

Since $X_i^{d-1}(X_i - 1) = 0$ it follows that $2X_i - 1$ is invertible. However, $(2X_i - 1)X_j m = 0$ so $X_j m = 0$.
Moreover, suppose \(n \in \mathbb{Q} \) to factor through subspace of \(k \). Let \(M_n(k, m) \subset M_n(k) \) be the algebra of operators that preserve \(k \). So if \(V \) then a codimension one subspace \(X \) algebraic multiplicity. So there is a 1-eigenvector \(k \) for \(k \) of \((X \otimes k)_d \). Since \(\mathfrak{m} \) vanishes in \(\text{End} k \langle x_1, \ldots, x_d \rangle \). Now given \(\mathfrak{m} \subset k \) such that \(\mathfrak{m} \) is stable under the action of \(X_1, \ldots, X_d \). Let \(M_n(k, m) \subset M_n(k) \) be the algebra of operators that preserve \(k \). Then there is a surjective algebra homomorphism \(M_n(k, m) \to M_{n-1}(k) \). Since \(X_1, \ldots, X_d \in M_n(k, m) \) we find that \(T \in M_n(k, m) \otimes_k k \langle x_1, \ldots, x_d \rangle \). So if \(X_1', \ldots, X_d' \in M_{n-1}(k) \) are the images of \(X_1, \ldots, X_d \) then \(T' = x_1X_1' + \ldots + x_dX_d' \) satisfies \(\chi_d \).

By induction we see that \((X_i')^2 = X_i' \) and \(X_i'X_j' = 0 \) for \(i \neq j \). In particular, there is a codimension 1 subspace preserved by \(X_1', \ldots, X_d' \). Its inverse image in \(k^n \) (we identify \(k^{n-1} \) with \(k^n/k \mathfrak{m} \)) is then a codimension one subspace \(V' \subset k^d \) which is invariant under \(X_1, \ldots, X_d \). Again by induction, \(X_i^2 - X_i \) and \(X_iX_j(i \neq j) \) annihilate \(V' \). There is some \(i \) such that \(X_i \) acts by the identity on \(k^n/V' \). Since \(X_i^d - 1 = 0 \), the geometric multiplicity of 1 as an eigenvalue of \(X_i \) is equal to its algebraic multiplicity. So there is a 1-eigenvector \(m \in k^n \) whose image in \(k^n/V' \) is nonzero. Again Lemma 5 implies that \(X_1m = 0 \) for \(j \neq i \). Hence the relations \(X_i^2 - X_i \) and \(X_iX_j \) annihilate a basis for \(k^n \) and hence annihilate \(k^n \).

\[\Rightarrow \] Suppose that \(\phi \) is an algebra map. Then we have \(X_i^2 = X_i \) for all \(i \) and \(X_1X_i = 0 \) if \(i \neq j \). Decompose \(k^n = V_1 \oplus \ldots \oplus V_d \) where \(V_i = X_i(k^n) \). Then \(T \) preserves \(V_i \otimes k \langle x_1, \ldots, x_d \rangle \) for each \(i \). So we can view \(T \) as an element of \(\prod_{i=1}^d \text{End}_k(V_i) \otimes k \langle x_1, \ldots, x_d \rangle \). Since \((T - x_i) \) vanishes identically on \(V_i \otimes k \langle x_1, \ldots, x_d \rangle \) we see that for each \(\sigma \in S_3 \) and each \(i \) the image of \((T - x_{\sigma(1)}) \cdots (T - x_{\sigma(d)}) \) vanishes in \(\text{End}_k(V_i) \otimes k \langle x_1, \ldots, x_d \rangle \) and hence in \(M_n(k \langle x_1, \ldots, x_d \rangle) \). Since all of the terms of \(\chi_d(T) \) vanish in \(M_n(k \langle x_1, \ldots, x_d \rangle) \), so does \(\chi_d(T) \).

Questions

There are many natural questions that surround the notion of characteristic morphism. We point out a few of them.

Question 1. What are the irreducible characteristic morphisms for \(A = k^x \)? Are there infinitely many for \(d \geq 3 \)?

Replacing a commutative semisimple algebra with a semisimple algebra, Theorem A fails to hold. Indeed, the map \(\phi : \text{Mat}_d(k) \to \text{Mat}_r(k) \) defined by \(\phi(M) = MT \) is not a homomorphism, but does satisfy the hypotheses of Theorem A. Moreover, \(\phi \) is a characteristic morphism.

Question 2. Is there a characterization of when a linear map \(\phi : \text{Mat}_d(k) \to \text{Mat}_r(k) \) is a homomorphism along the lines of Theorem A?

Let \(V \) is a finite dimensional vector space and \(F(t) \in \text{Sym}^d(V^\vee) \) be monic and homogeneous. Given \(v \in V \) we can consider the image \(F_v(t) \) of \(F(t) \) under the homomorphism \(\text{Sym}^d(V^\vee) \to k[t] \) induced by \(v : V^\vee \to k \). The main theorem of [CK15] implies that there always exists a linear map \(\phi : V \to \text{Mat}_r(k) \) for some \(r \) such that \(F_v(\phi(v)) = 0 \) for all \(v \in V \). There is a natural non-commutative generalization of this problem.

Question 3. For which monic, homogeneous elements \(F(t) \) of \(\text{T}(V^\vee) \otimes k[t] \), does there exist an element \(\phi^\vee \in V^\vee \otimes \text{Mat}_r(V) \) for some \(r \) such that \(F(\phi^\vee) = 0 \) in \(\text{T}(V^\vee) \otimes \text{Mat}_r(k) \)?

If \(F(t) \) is the symmetrization of the characteristic polynomial of an algebra structure on \(V \) then we have an affirmative answer. However, if \(F(t) = t^2 - u \otimes v \) where \(u, v \) are linearly independent, then there is no such element.
References

