Like treasure maps, we view these images with only a suspicion of the treasure they might lead one to. The selection of works draws from a wide range of images that present visual thinking from outside the field of fine art. Spawned from necessity, the unique qualities of each image are the direct result of the specificity of the problem each addresses and the question with which each is concerned.

Chitra Ganesh watched her grandmother make kolams, which Ganesh describes as "line drawings made of rice flour, traditionally created on the floor at the beginning of each morning." She draws on this traditional practice to inspire her art. In this exhibition, she created kolams in the manner passed down to her. "Their creation is a daily practice specific to South Indian culture, and are most often the work of women and girls. A kolam invites Mahalakshmi (wealth and fortune) into the home, or protects a space from the evil eye. The crows are our ancestors, and they are invited to feed on the rice flour in a kolam's lines. These drawings are set at the thresholds of homes and spiritual spaces to mark a boundary between inside and outside, private and public, secular and sacred. I am drawn to how the form is culturally specific and abstract at the same time, and to its ephemeral and site-specific nature. As the day unfolds, the image comes undone, and its traces vanish when the ground is moistened and prepared for the next day's creation."

Ganesh will make her kolams on the pavement in front of apexart periodically during the run of the exhibition.

Vinzenz Unger is a Molecular Biophysicist and Biochemist at Yale University. Here he exhibits a video that pictures the intricate architecture of molecules that allow cells to communicate directly. Unger created his video through a delicate process of making crystals, along with collecting and analyzing data. Unger explains, "Even within the tiniest of organisms, thousands of molecules need to interact in a highly coordinated fashion to assure proper cell function. Therefore it is not surprising that for over half a century, structural biologists have been drawn to the marvels of the miniature universe within living organisms. The three traditional pillars of structural biology are electron microscopy, nuclear magnetic resonance spectroscopy and x-ray crystallography. While different in their physical foundations, their capabilities, and applications, all three methods culminate in a visualization of structures so tiny that they need to be magnified 10,000,000-fold to unravel their beauty. The images in this exhibition show the structure of a molecule known as gap junction, determined by electron microscopy. The main purpose of gap junctions is to directly connect neighboring cells in our body, allowing the cells to directly communicate with one another. In our example, the gap junction channels connect cells in the heart, and play an important role in maintaining coordinated current flow through the heart muscle. Discovered by anatomists almost half a century ago, the detailed structure of these channels remained a mystery."
until very recently. The pictures shown here were the first to visualize architectural details within the indi-
vidual protein molecules that compose this compi-
mated molecular tunnel. While not yet at a resolution
where we can see every atom within the structure, inter-
pretations of pictures like those shown in Treasure Maps allow us to build models of the chan-
nel that help us to understand how these channels work at the molecular level, and why certain genetic mutations in gap junction channels cause severe dis-
ease in humans."

Tim R. Riley is a professor in the Mathematics
Department at Yale University. In describing his dia-
grams he says, "This collection was drawn in the
course of mathematical research in Geometric Group
Theory (in some cases working in collaboration with S. M. Gersten of the University of Utah). They illustrate
arguments in research articles or serve as visual aids
and examples in the course of attacks on problems. Geometric Group Theory lies at the crossroads of
algebra, geometry and topology. The object of study,
Groups, are algebraic structures concerning
symmetries. Many of the images are of van Kampen
diagrams, named after the mathematician who intro-
duced them in an article in 1933. Discrete groups can
be regarded as geometric spaces in which van Kampen
diagrams are combinatorial surfaces spanning loops, in
a similar manner to how a soap film can be made to
span a wire loop. At the same time a van Kampen
diagram displays algebraic (or, in a sense grammatical)
information concerning interaction between group
elements. The subject of the images in this collection
include: van Kampen diagrams in use as windows onto
the underlying group; studies of combinatorial and
geometric features of such diagrams; illustrations of
underlying groups in simple cases; and a transition from the discrete to continuous geometry."

Earle Brown’s graphic scores entitled Folio from 1952-3
are shown alongside a contemporary musical interpre-
tation of his most radical of these scores, December 1952. Brown is credited for the invention of the "open
form," a compositional technique and philosophy that
brings the performer into a creative collaboration with
the composer. Brown’s most radical scores from this
period feature no visual references to traditional musi-
cal notation. They describe visually what he wanted to
hear, how he wanted the performers to relate to the
score, how he wanted the musicians to relate to each
other, and the kind of experience he wanted to offer
the listener. As Brown worked on December 1952, he
wrote the following note "... to have elements exist in
space... space as an infinitude of directions from an
infinitude of points in space... to work (compositionally
and in performance) to right, left, back, forward, up
down and/or transitory... a performer must set this all
in motion (time), which is to say, realize that it is
motion and step into it... either sit and let it move or
move through it at all speeds [coefficient of] intensity
and duration [is] space forward and back."

One of the most compelling qualities of Brown’s contri-
bution to music is a balance between freedom of inter-
pretation and defined structure. This is beautifully
explained when he says, "There must be a fixed (even flexible) sound context, to establish the character of
the work, in order to be called "open" or "available
form"... We recognize people regardless of what they
are doing or saying or how they are dressed if their
basic identity has been established as a constant but

Elizabeth Streb Fly 1997 Dance notation on paper

Earle Brown December 1952 Music Composition on paper

flexible function of being alive." For Treasure Maps, Michael J. Schumacher has linked Brown’s score to the procedures used to generate
the structure of his Room Piece installation. As he
explains, "Thirty-one sounds were chosen, one for
each figure in the score. As the sounds turn on and off
the corresponding line is made visible or invisible.
An attempt has also been made to "place" the
sounds in space using the score as a guide."

In every case, the works exhibited in Treasure Maps
are a radical translation of one form into another.
The inevitable loss implicit in translation preserves the
mystery of that which is being represented. Despite the
fact that the specific references of each image
may be unknown to the viewer, there is still an inter-
thonal logic to intuit and contemplate. In the end, these
images situate us in a place of wonder - somewhere
between the maker’s personal visualization and their
inking of a treasure contained within it.