
MATH 6320 – MIDTERM

Your Name

• You have 80 minutes to do this exam.
• No calculators!
• For justifications, please use complete sentences and make sure to explain any steps which are

questionable.
• Good luck!

Problem Total Points Score

1 20

2 20

3 20

4 20

5 20

Total 100
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1. Short answer questions (2.5 points each).

(a) What does it mean for a field extension F ⊆ K to be separable?

Solution: It means that every element of K is a root of a separable polynomial f(x) ∈ F [x]. Recall
that a separable polynomial is one without multiple roots.

(b) Give an example of a separable field extension that is not Galois.

Solution: Q ⊆ Q[21/3] works, as do many others.

(c) Let K = Q(
√

2, i) ⊆ C. What group is Gal(K/Q)?

Solution: Obviously [K : Q] = [Q(
√

2, i) : Q] = [Q(
√

2, i) : Q[
√

2] · [Q[
√

2] : Q] = 2 · 2 = 4. Since both
x2−2 and x2 +1 split completely in K, we see that K/Q is Galois and hence G = Gal(K/Q) has 4 elements.

Note G cannot be cyclic since it has two distinct elements of order 2 (notably the map that sends
√

2→ −
√

2

and fixes i coming from Gal(Q[
√

2]/Q) and then also complex conjugation). Hence G ∼= (Z/2Z)× (Z/2Z).

(d) If K ⊇ Q is a Galois extension of degree 6, at most how many proper subfields can K have that are not
equal to Q?

Solution: There are two groups of order 6, the cyclic one which has 2 proper non-maximal subgroups
and S3 which has 3 subgroups of order 2 and 1 one subgroup of order 3, or in other words 4 subgroups. Since
Gal(K/Q) is a group of order 6, and the subfields of K are in bijection with the subgroups of G, there can
be at most 4 proper non-trivial subgroups of K.

(e) Suppose W ⊆ R is a multiplicative set, M → N is a map of R-modules and the induced map W−1M →
W−1N is injective. Give an example to show that M → N need not be injective.

Solution: Let M = Z/4 and N = Z/2 with the map M → N the canonical surjection (it is not injective).
But if we set W = {12, 4, 8, . . .} the W−1M = W−1N = 0 and the map between them is certainly injective.

(f) Compute Homk[x](k[x]/〈x〉, k[x]).

Solution: Suppose φ ∈ Homk[x](k[x]/〈x〉, k[x]). We will show that φ = 0 is the zero homomorphism.

Then for any f ∈ k[x]/〈x〉, xφ(f) = φ(xf) = φ(0) = 0. Hence xφ(f) = 0 ∈ k[x]. But k[x] is an integral
domain hence φ(f) = 0. Thus φ is the zero homomorphism. In particular

Homk[x](k[x]/〈x〉, k[x]) = 0.

(g) State one form of Nakayama’s lemma.

Solution: Suppose (R,m) is a local ring and M is a finitely generated R-module. Suppose mM = 0
then M = 0.

(h) Suppose I, J ⊆ R are ideals. If I + J = R prove that (R/I)⊗R (R/J) = 0.

Solution: Write 1 = i+ j ∈ I + J . Then for any a⊗ b ∈ (R/I)⊗R (R/J) we see that

a⊗ b = (a1)⊗ b = (ai+ aj)⊗ b = (ai)⊗ b+ (aj)⊗ b = 0⊗ b+ a⊗ (jb) = 0⊗ b+ a⊗ 0 = 0.

The result follows.
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2. (a) Suppose that f : R → S is a map of rings. Show that the induced map f ] : SpecS → SpecR is
continuous in the Zariski topology. (12 points)

Solution: Choose V (I) ⊆ SpecR an arbitrary closed set. We will show that (f ])−1(V (I)) = V (IS)
showing that the inverse image of a closed set is closed.

Suppose Q ∈ (f ])−1(V (I)), then f ](Q) = f−1(Q) ∈ V (I). Hence f−1(Q) ⊇ I and so f(I) ⊆ Q and hence
IS ⊆ Q.

Conversely, suppose P ∈ V (IS) ⊆ SpecS so IS ⊆ P . Then f ](P ) = f−1(P ) ⊇ I and so f ](P ) ∈ V (I) as
desired.

(b) If S = R/I and f : R → S is the canonical surjection, show that f ] : SpecS → SpecR is injective and
show that the Zariski topology on SpecS is the same as the subspace topology induced by the injection f ].
(8 points)

Solution: The primes of S are in bijection with the primes of R that contain I. This bijection is the
map from (a) (ie, f ] is inverse image of a prime, which is how the bijection works as well). It follows that
f ] is injective.

More generally, the ideals of S are in bijection with the ideals of R that contain I. In particular, if
J/I = J ⊆ S is an ideal of S corresponding to the closed set V (J), then we claim that (f ])−1(V (J)) = V (J).
But the primes of V (J) are those elements of SpecR that contain J ⊇ I. These correspond to the primes of
SpecS that contain J/I. We have just shown that f ] is closed, injective and continuous. Hence (b) follows.
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Consider the following fact.

Fact: Suppose K is a field and K ⊆ L is an extension of fields (possibly infinite with tons of transcendental
elements). Say a1, . . . , an ∈ L. If K[a1, . . . , an] is a field, then each ai is algebraic over K. 1

3. Using the fact, show that if k = k, then every single maximal ideal of R = k[x1, . . . , xn] is equal to
〈x1 − α1, . . . , xn − αn〉 for some αi ∈ k. (20 points)

Solution: Obviously 〈x1 − α1, . . . , xn − αn〉 is maximal in R for any αi ∈ k.
Now conversely suppose that m ⊆ R is a maximal ideal. Consider the map φ : R → R/m. Obviously

k ⊆ R/m and by the fact, k = R/m. Set αi = φ(xi) ∈ k. Then certainly xi − αi ∈ kerφ = m for each i so
〈x1 − α1, . . . , xn − αn〉 ⊆ m. But both ideals are maximal, so this inclusion is equality. This completes the
proof.

1There are various ways to prove this fact. If you want to convince yourself its true without a real proof, consider what would
happen if a1 was transcendental, then you’d need 1

a1
, 1

a1+1
, and more generally 1

p(a1)
where p(a1) ∈ R is some irreducible

element. There’s no way we can add all these to K[a1, . . . , an] and keep it a finitely generated ring extension.
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4. Suppose K ⊆ L are fields. Suppose that L = K[a] with a 6= 0. Suppose that an ∈ K and that n is the
smallest integer > 0 with this property.

(a) If am ∈ K show that n|m. (4 points)

Solution: Write m = qn+ r with n > r ≥ 0. Then an, am ∈ K and so ar ∈ K. Since n is the minimal
integer with this property, r = 0 and (a) follows.

(b) Suppose that K ⊆ L is separable. Show that charK 6 | n. (6 points)

Solution: Suppose that p = charK does divide n, n = pm. Since an = (am)p ∈ L, and L/K is separable,
we see that am ∈ L. This contradicts the choice of n.

(c) Now suppose that every root of unity in L also is an element of K. Show that [L : K] = n. (10 points)

Hint: If p(x) is the minimal polynomial for a over K, then it divides xn−an. Consider the constant term
of p(x) and extract an nth root of unity from part of it.

Solution: Note p(x)|
∏n

i=0(x− ζina) where ζn is a primitive nth root of unity. Then p(x) is a product of

terms (x− ζina). It follows that p(0) = ad(
∏

j ζ
ij
n ) ∈ L where d is the degree of p(x). Since p(0), ad ∈ L, we

have (
∏

j ζ
ij
n ) ∈ L, but this is a root of unity so (

∏
j ζ

ij
n ) ∈ K. But p(0) ∈ K hence ad ∈ K. The only way

this can happen is if d = n by our choice of n. Thus p(x) = xn−an and in particular [L : K] = deg p(x) = n.
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5. Show that Gal(Fpn/Fp) is cyclic. (20 points)

Solution: Consider the Frobenius map F ∈ G = Gal(Fpn/Fp) defined by F (a) = ap obviously this fixes
Fp (since everything does). We will show that the order of F in G is equal to n. Indeed, every element of

Fpn is a root of xp
n − x and so clearly Fn, the automorphism which sends a 7→ ap

n

, is the identity. Hence

the order of F divides n. On the other hand if Fm = id, then the automorphism which sends a 7→ ap
m

is
the identity and so every element of Fpn is a root of xp

m − x. But the only way this can happen is if m = n.
Since ordF = n and [Fpn : Fp] = n = |G| = |Gal(Fpn/Fp)|, we see that G is cyclic as desired.
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