WORKSHEET #1 - MATH 6140 SPRING 2019

DUE FRIDAY, JANUARY 18TH

You may work in groups of up to 3. Only one worksheet needs to be turned in per group.

1. Suppose that $\phi : \mathcal{F} \to \mathcal{G}$ is a map of sheaves (on X). Determine which of the following presheaves are actually sheaves. If they are, prove it. If they are not, give an example.

(a) the presheaf \mathcal{H} such that $\mathcal{H}(U) = \ker (\mathcal{F}(U) \to \mathcal{G}(U)).$

(b) the presheaf $\mathcal{H}(U) = \operatorname{im} \left(\mathcal{F}(U) \longrightarrow \mathcal{G}(U) \right).$

(c) the presheaf $\mathcal{H}(U) = \operatorname{coker} \left(\mathcal{F}(U) \to \mathcal{G}(U) \right) = \mathcal{G}(U) / \mathcal{F}(U).$

The sheafification of (a),(b),(c) (if sheafification is necessary) are denoted ker ϕ , im ϕ and coker ϕ respectively.

2. Suppose that $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ is a short exact sequence of sheaves on X (meaning it is short exact on the stalks). Prove carefully that for every open $U \subseteq X$, the sequence:

$$0 \to \mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U)$$

is exact.

3. A sheaf \mathcal{F} is *flasque* if for every $V \subseteq U$ (open sets in X), the restriction map $\mathcal{F}(U) \to \mathcal{F}(V)$ is surjective. With the notation as in **2.**, show that if \mathcal{F} is flasque, then

$$0 \to \mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U) \to 0$$

is exact.

4. Suppose that $f: X \to Y$ is a map of topological spaces and $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ is a short exact sequence of sheaves on X. Prove that

$$0 \longrightarrow f_* \mathcal{F} \longrightarrow f_* \mathcal{G} \longrightarrow f_* \mathcal{H}$$

is exact on Y. Further give an example to show that $f_*\mathcal{G} \to f_*\mathcal{H}$ is not necessarily surjective.

5. Suppose that $\phi: X \to Y$ is a regular map of affine varieties. Suppose that M is a k[X] modules and $\mathcal{F} = \widetilde{M}$. Note that M can also be viewed as a k[Y] module by the map $\phi^*: k[Y] \to k[X]$. We denote this module by $M_{k[Y]}$ and let $\mathcal{G} = \widetilde{M_{k[Y]}}$. Show that $\phi_* \mathcal{F} \cong \mathcal{G}$.

If $\phi: X \to Y$ is a continuous map of topological spaces and \mathcal{G} is a sheaf on Y, we define $\phi^{-1}(\mathcal{G})$ to be the sheafification of the presheaf \mathcal{H} where for any $U \subseteq X$, we form the direct limit:

$$\mathcal{H}(U) = \lim_{V \supseteq f(U)} \mathcal{G}(V).$$

6. Suppose that $Z \subseteq X$ is a subset of a topological space and that \mathcal{F} is a sheaf on X. Let $i : Z \to X$ be the inclusion and show that for each point $z \in Z$,

$$(i^{-1}\mathcal{F})_z = \mathcal{F}_z.$$

In the case that Z is a closed subvariety of a variety X, how do $i^{-1}\mathcal{O}_X$ and \mathcal{O}_Z compare?

7. Suppose that $\phi : X \to Y$ is a continuous map of topological spaces. Show that there is a natural¹ bijection of sets for any sheaves \mathcal{G} on Y and \mathcal{F} on X.

 $\operatorname{Hom}_{X}(\phi^{-1}\mathcal{G},\mathcal{F})\cong\operatorname{Hom}_{Y}(\mathcal{G},\phi_{*}\mathcal{F}).$

First note that if \mathcal{F} is a sheaf, we define the support of \mathcal{F} , denoted Supp \mathcal{F} , to be $\{x \in X \mid \mathcal{F}_x \neq 0\}$. If $s \in \mathcal{F}(U)$, we define Supp $(s) = \{x \in U \mid s_x \neq 0\}$. It is not difficult to show that Supp (s) is always closed but that Supp \mathcal{F} is not always closed.

8. Suppose that $Z \subseteq X$ is a closed subset and let \mathcal{F} be a sheaf on X. Consider the presheaf $\mathscr{H}^0_Z(\mathcal{F})$ defined as

 $\mathscr{H}^0_Z(\mathcal{F})(U) = \{ s \in \mathcal{F}(U) \mid \operatorname{Supp} s \subseteq Z \}.$

Show that $\mathscr{H}^0Z(\mathcal{F})$ is a sheaf and that if $i: (X \setminus Z) \to X$ is the inclusion, there exists an exact sequence:

$$0 \to \mathscr{H}^0_Z(\mathcal{F}) \to \mathcal{F} \to i_*(\mathcal{F}|_{X \setminus Z}).$$

¹Actually, please don't show the *natural* part, but if you don't know what *natural* means, ask.