
SOME DERIVED CATEGORIES AND FUNCTORS

KARL SCHWEDE

1. A crash course in using derived categories

In a nutshell, taking Hom, Ext and Γ(X, ) is very useful, but dealing with indi-
vidual cohomology groups can be a hassle.

Solution: Deal with the complexes instead!

Definition 1.1. A complex of R-modules (or OX-modules if you prefer) is a collection
of {Cn}n∈Z of R-modules plus maps dn : Cn −→ Cn+1 such that di+1 ◦ di = 0.

. . .
d−2

−−→ C−1
d−1

−−→ C0 d0−→ C1 d1−→ C2 d2−→ . . .
dn−1

−−−→ Cn dn−→ Cn+1 dn+1

−−−→ . . .

A complex is bounded below if Ci = 0 for i � 0, it is bounded above if Ci = 0 for
i� 0, and it is bounded if Ci = 0 for |i| � 0.

Remark 1.2. In a chain complex, the differentials take Ci to Ci−1, we will deal exclu-
sively with complexes however.

There are some problems. The category of complexes isn’t quite right, so we fix
it. We only consider morphisms of complexes up to homotopy equivalence (two maps
of complexes are homotopic if their difference is null homotopic), and we declare
two complexes to be isomorphic if there is a map between them which gives us an
isomorphism on cohomology (formally add an inverse map to our category, this is
just like how we formally add inverses to rings when localizing, and so this procedure
is called localization of categories).

Examples 1.3. Here are some examples you hopefully all are familiar with.

(a) Given a module M , we view it as a complex by considering it in degree zero
(all the differentials of the complex are zero) and all the other terms in the
complex.

(b) Given any complex C
q
, (like a modules viewed as a complex as above), we

can form another complex by shifting the first complex C[n]
q
. This is the

complex where (C[n])i = Ci+n and where the differentials are shifted likewise
and multiplied by (−1)n. Note this shifts the complex n spots to the left.

(c) Given a module M , and a projective resolution

. . . −→ P−n −→ . . . −→ P−2 −→ P−1 −→ P 0 −→M −→ 0
1
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it is easy to see that there is a map P
q −→M and this is a map of complexes

in the sense that M is a complex via (a).

. . . // P−n //

��

. . . // P−2

��

// P−1

��

// P 0

��

// 0 //

��

. . .

. . . // 0 // . . . // 0 // 0 // M // 0 // . . .

This map is a quasi-isomorphism (an isomorphism in the derived category).
(d) Given a module M and an injective resolution

0 −→M −→ I0 −→ I1 −→ I2 −→ . . .

we get a map of complexes M −→ I
q

. . . // 0 // M

��

// 0

��

// 0

��

// . . .

. . . // 0 // I0 // I1 // I2 // . . .

which is also a quasi-isomorphism (again viewing M as a complex via (a)).
(e) Given two modules M and N , we form R HomR(M,N). This is the complex

whose cohomologies are the Exti(M,N). It is computed by either taking a
projective resolution of M or an injective resolution of N . Note that while
you get different complexes in either of those cases, it turns out the resulting
objects in the derived category are isomorphic (in the derived category).

(f) Given two modules M and N , we form M ⊗LR N , the cohomologies of this
complex are the ToriR(M,N). It is obtained by taking a projective resolution
of M or N .

(g) Note that not every quasi-isomorphism between complexes is invertible. In-
deed, consider

. . . // 0

��

// Z

��

×2
// Z

��

// 0

��

// . . .

. . . // 0 // 0 // Z/2Z // 0 // . . .

This obviously induces a quasi-isomorphism since the top row is a projective
resolution of the bottom, but the map of complexes is not invertible. In the
derived category, we formally adjoin an inverse morphism.

(h) Not every pair of complexes with isomorphic cohomologies are quasi-isomorphic,
indeed consider the complexes

. . . −→ 0 −→ C[x, y]
0−→ C −→ 0 −→ . . .

and

. . . −→ 0 −→ C[x, y]⊕2
[x,y]−−→ C[x, y] −→ 0 −→ . . . .
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It is easy to see that they have isomorphic cohomologies. Some discussion of
the fact that these complexes are not quasi-isomorphic can be found in the
responses to this question on math.stackexchange, [hf].

Remark 1.4. There are different ways to enumerate things, but complexes have maps
that go left to right. Thus a projective resolution of a module M has entries only in
negative degrees. Thus when I write ToriR(M,N) above, the i that can have interesting
cohomology are the i ≤ 0.

Definition 1.5. The derived category of R-modules denoted D(R) is the category of
complexes with morphisms defined up to homotopy and with quasi-isomorphisms for-
mally inverted. Likewise D(X) is the category of complexes with morphisms defined
up to homotopy and with quasi-isomorphisms formally inverted.

If we look at the full subcategory of complexes bounded above, and then construct
the derived category as above, the result is denoted by D−(R). From bounded below
complexes, we construct D+(R). Finally, if the complexes are bounded on both sides
the result is denoted by Db(R). If we restrict to complexes of OX-modules whose
cohomology is coherent, we might denote that by Dcoh(X). Likewise for complexes
with quasi-coherent cohomology, we might use Dqcoh(X).

2. Triangulated categories

Derived categories are not an Abelian category, short exact sequences don’t exist,
but we have something almost as good, exact triangles. In particular, the derived
category is a triangulated category.

Remark 2.1. The notation from the following axioms is taken from [Wei94] (you can
find different notation on for instance Wikipedia).

Definition 2.2 (Triangulated categories). A triangulated category is an additive1

category with a fixed automorphism T equipped with a distinguished set of triangles
and satisfying a set of axioms (below). A triangle is an ordered triple of objects
(A,B,C) and morphism α : A −→ B, β : B −→ C, γ : C −→ T (A),

A
α−→ B

β−→ C
γ−→ T (A).

A morphism of triangles (A,B,C, α, β, γ) −→ (A′, B′, C ′, α′, β′, γ′) is a commutative
diagram

A

f

��

α
// B

g

��

β
// C

h
��

γ
// T (A)

T (f)
��

A′
α′
// B′

β′
// C ′

γ′
// T (A′)

We now list the required axioms to make a triangulated category.

(a) The triangle A −→ A
0−→ 0

0−→ T (A) is one of the distinguished triangles.

1Hom sets are Abelian groups and composition is bilinear.
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(b) A triangle isomorphic to one of the distinguished triangles is distinguished.
(c) Any morphism A −→ B can be embedded into one of the distinguished triangles

A −→ B −→ C −→ T (A). In our case, the object C is normally the cone.

(d) Given any distinguished triangle A
α−→ B

β−→ C
γ−→ T (A), then both

B
β−→ C

γ−→ T (A)
−T (α)−−−→ T (B)

and

T−1C
−T−1(γ)−−−−−→ A

α−→ B
β−→ C

are also distinguished.
(e) Given distinguished triangles with maps between them as pictured below, so

that the left square commutes,

A

f

��

α
// B

g

��

β
// C

∃h
��

γ
// T (A)

T (f)
��

A′
α′
// B′

β′
// C ′

γ′
// T (A′)

then the dotted arrow also exists and we obtain a morphism of triangles.
(f) We finally come to the feared octahedral axiom. Given objectsA,B,C,A′, B′, C ′

and three distinguished triangles:

A
u
// B

j
// C ′

∂
// T (A)

B
v
// C

x
// A′

i
// T (B)

A
v◦u
// C

y
// B′

δ
// T (A)

then there exists a fourth triangle

C ′
f
// B′

g
// A′

(T (j))◦i
// T (C ′)

so that we have

∂ = δ ◦ f, x = g ◦ y, y ◦ v = f ◦ j, u ◦ δ = i ◦ g.

These can be turned into a nice octagon (with these equalities being commut-
ing faces) that I am too lazy to LaTeX.
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Remark 2.3. It is much easier to remember the octahedral axiom (without the com-
patibilities at least) with the following diagram.

C ′

∃f

��

B
v

  

j
>>

A
v◦u

//

u
??

C
y
//

x

""

B′

∃g

��

A′

Any of the derived categories we have discussed are triangulated categories with
T (•) = •[1]. The main point is if we have a morphism of complexes, A

q α−→ B
q
, then

we can always take the cone C(α)
q

= A[1]
q ⊕B q

with differential

Ci = Ai+1 ⊕Bi −d
i+1
A ,αi+diB−−−−−−−→ Ai+2 ⊕Bi+1

Exercise 2.1. Verify that this really is a complex.

Exercise 2.2. Suppose that 0 −→ A
q α−→ B

q β−→ D
q −→ 0 is an exact sequence of

complexes. Show that D
q

is quasi-isomorphic to C(α)
q
.

Then we have A
q α−→ B

q β−→ C(α)
q
γA[1]

q
a distinguished triangle where β and

γ are given by maps to and projecting from the direct summands that make up
C(α)

q
. Note that morphisms in the derived category are more complicated than maps

between complexes (since we might have formally inverted some quasi-isomorphisms)
but this still is enough for our purposes since the cone of a quasi-isomorphism is exact.

Fact 2.4. Given a triangle A
q −→ B

q −→ C
q −→ A[1]

q
in the derived category of

R-modules, taking cohomology yields a long exact sequence

. . . −→ hi−1(C
q
) −→ hi(A

q
) −→ hi(B

q
) −→ hi(C

q
) −→ hi+1(A

q
) −→ . . .

Exercise 2.3. Verify that fact.

Exercise 2.4. Suppose that

A
q α−→ B

q β−→ C
q 0−→ T (A

q
)

is a distinguished triangle in D(R). Show that B
q 'qis A

q ⊕B q
compatibly so that

α and β are identified with the canonical inclusion and projections.
In particular, show that there exist maps p : B

q −→ A
q

and s : C
q −→ B

q
so that

p ◦ α is the identity on A
q

and that β ◦ s is the identity on C
q
.
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3. Common functors on our derived categories

Suppose we are forming the derived category D(R) of the category of R-modules
for some ring R. We have lots of functors we like to apply to R-modules, notably
Hom and ⊗ but also things like ΓI (the submodule of things killed by a power of I).
Associated to any of these functors we get derived functors, as follows.

Derived functors are functors between triangulated categories which preserve the
triangulation structure (ie, send triangles to triangles and commute with the T (•)/[•]
operation) and which satisfy a certain universal property which we won’t need too
much (see for example [Wei94, Section 10.5] for details). The point for us is that
derived functors exist for the functors we care about.

Lemma 3.1. [Wei94, Corollary 10.5.7] Suppose F : M od(R) −→ M od(S) is an
additive functor which takes R-modules to S-modules. Then the right derived functors
RF : D+(R) −→ D(S) are morphisms between triangulated categories and can be
computed by RF (C

q
) = F (I

q
) where I

q
is a complex of injectives quasi-isomorphic

to C
q
. In particular, hiRF (C

q
) = RiF (C

q
).

Likewise, the left derived functors LF : D−(R) −→ D(S) can be computed by
RF (C

q
) = F (P

q
) where P

q
is a complex of projectives quasi-isomorphic to C

q
.

If you are really Hom’ing or tensoring two complexes together, you typically need
to actually compute this by forming the associated double complex and then taking
the total complex, see for example page 8 of [Wei94]. For example if M

q
and N

q
are

complexes made up of projectives (or at least one of them is), then the total complex
of the double complex represents the object M

q ⊗L
R N

q
.

Notably, we have

◦ R HomR(A
q
, B

q
) can be computed by taking a complex of projectives quasi-

isomorphic to A
q ∈ D−(R) or a complex of injectives quasi-isomorphic to

B
q ∈ D+(R). Note if A,B are modules, then hiR Hom(A,B) = Exti(A,B)

◦ A q⊗L
RB

q
can be computed by taking a complex of projectives quasi-isomorphic

to either A
q

or B
q

in D−(R). Note if A,B are modules, then h−i(A⊗L
R B) =

TorRi (A,B).
◦ For any ideal I ⊆ R, recall that ΓI(M) = {m ∈ M | Inm = 0 for some n �

0}. Then RΓI(A
q
) is computed by finding a complex of injectives quasi-

isomorphic to A
q ∈ D+(R). Note that if A is a module, then hiRΓI(A) =

H i
I(A) is just local cohomology.

◦ For any sheaf of OX-module F , we form RΓ(X,F ) by computing Γ(X,I
q
)

where I
q

is an injective resolution of F . Likewise if F ∈ D+(X) is a complex.
◦ If f : X −→ Y is a morphism of schemes, and G

q ∈ D+(X), we compute
Rf∗G

q
by finding f∗I

q
where I

q
is a complex of injectives quasi-isomorphic

to G
q
.

◦ If f : X −→ Y is a morphism of schemes, and G
q ∈ D−(X), then we define

the left derived functor Lf ∗G
q

by taking a flat resolution of G
q
.

The rest of the chapter is devoted to how these functors play with each other.
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Theorem 3.2 (Composition of derived functors, left-exact case). Given left exact
functors G : M od(R) −→M od(S) and F : M od(S) −→M od(T ) (or suitable Abelian
categories with enough injectives), and suppose that G sends injective objects to F -
acyclic objects, then RF ◦RG ∼= R(F ◦G) as functors from D+(R) −→ D+(T ).

For a more general statement, see [Wei94, Theorem 10.8.2]. Things that imply the
above, make a lot of the formulas we already know relating Hom and ⊗ and other
functors hold in the derived category as well.

We list some of them here without proof, see for example [Wei94, Section 10.8] or
[Har66, II, Section 5].

Proposition 3.3. The following hold:

(a) Let f : R −→ S be a map of rings with functors f ∗ : M od(R) −→M od(S) de-
fined by f ∗(M) = M ⊗R S and f∗ : M od(S) −→M od(R) defined by f∗N is N
viewed as an R-module via restriction of scalars. Then for A

q ∈ D−(R), B
q ∈

D−(S) we have

Lf ∗(A
q
)⊗L

S B
q ∼= A

q ⊗L
R f∗B

q
.

This is a special case (the affine case) of the derived projection formula you
might have seen in your algebraic geometry class.

(b) For A
q
, B

q ∈ D−(R) and C
q ∈ D+(R), we have

R HomR(A
q
,R HomR(B

q
, C

q
)) ∼= R HomR(A

q ⊗L
R B

q
, C

q
)

in D+(R). This is just derived Hom,⊗ adjointness.
(c) For A

q ∈ D−(R) and B
q ∈ D+(R) and C

q ∈ Db(R) of bounded Tor-
dimension (for example, bounded projective dimension), ie the projective res-
olution of anything in a regular ring, then

R HomR(A
q
, B

q
)⊗L

R C
q ∼= R HomR(A

q
, B

q ⊗L
R C

q
).

(d) Consider two ideals I, J ⊆ R in a Noetherian ring. Then ΓI ◦ ΓJ = ΓI+J =
Γ√I+J as is easily checked. Next suppose that M is an injective module, we
want to show that ΓJ(M) is ΓI-acyclic. This is normally done by showing that
ΓJ(M) is flasque and I won’t reproduce it here. Thus we have that

RΓI ◦RΓJ = RΓI+J

In the case case that I ⊇ J we see that

RΓI ◦RΓJ = RΓI .

(e) If f : X −→ Y is a morphism of schemes, then there is a natural isomorphism

RΓ(X,F
q
)
∼−→ RΓ(Y,Rf∗F

q
) for F

q ∈ D+(X). This is the analog of the
fact that Γ(Y, f∗F ) = Γ(X,F ).

(f) If X is a scheme, there is a natural isomorphism of functors R Hom
q
X(F

q
, G

q
)
∼−→

RΓ(X,R H om
q
OX

(F
q
, G

q
)) for F

q ∈ D−(X) and G
q ∈ D+(X). This is the

derived analog of the fact that the global sections of H om are Hom.
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(g) If f : X −→ Y is a morphism of Noetherian schemes of finite dimension such
that the inverse image of an open set is quasi-compact (this is very mild).
Then there is a natural functorial isomorphism

(Rf∗F
q
)⊗L

OY
G

q ∼−→ Rf∗(F
q ⊗OX

Lf ∗G
q
)

for F
q ∈ D−(X) and G

q ∈ D−qcoh(Y ). This is the derived version of the
projection formula.

(h) Suppose f : X −→ Y is a morphism of schemes and F
q ∈ D−coh(Y ). Then there

is a natural functorial morphism F
q −→ Rf∗Lf

∗F
q

which gives a natural func-
torial isomorphism Rf∗H om

q
OX

(Lf ∗F
q
,G

q
)
∼−→ R H om

q
OY

(F
q
,Rf∗G

q
).

This is the derived version of the adjointness between f∗ and f ∗.
(i) Suppose X is a Noetherian scheme and that every coherent sheaf is a quotient

of a locally free finite rank sheaf (for instance, if X is quasi-projective). Then
there is a natural functorial isomorphism

R H om
q
(F

q
,R H om

q
(G

q
,H

q
))
∼−→ R H om

q
(F

q ⊗L H
q
)

for F
q
,G

q ∈ D−coh(X) and H
q ∈ D+(X). This is the analog of sheafy

Hom-tensor adjointness.
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