WORKSHEET #4 - MATH 6130 FALL 2018

DUE FRIDAY, SEPTEMBER 28TH

You may work in groups of up to 3. Only one worksheet needs to be turned in per group.

1. Suppose $q = (a_0 : \ldots : a_n) \in \mathbb{P}_k^n$ is a point and $k[x_0, \ldots, x_n] = S(\mathbb{P}_k^n) =: T$. Write down a set of generators for the ideal $I(q) \subseteq T$. Is it a maximal or prime ideal? Is it maximal with respect to some condition? If so, what?

2. Let $I = (F_1 = y_1y_2 - y_3, F_2 = y_1^2 - y_2) \subseteq k[y_1, y_2, y_3]$. Show that *I* is a prime ideal and show that (F_1^h, F_2^h) is not equal to I^h .

Hint: Recall the ideal of the twisted cubic $J = (x_1x_2 - x_0x_3, x_1^2 - x_0x_2, x_2^2 - x_1x_3).$

Let's do a commutative algebra problem or two.

3. Suppose that $A = \bigoplus_{i \ge 0} A_i$ is a graded ring where $A_0 = K$ is a field. If A is a finitely generated $A_0 = K$ -algebra, show that there exists an integer n such that $A^{(n)} = \bigoplus_{j \ge 0} A_{nj}$ is a standard graded K-algebra (in other words, generated in degree 1).

4. Suppose that $A = \bigoplus_{i \ge 0} A_i$ is a graded ring. Consider the subring $A^{(n)} \subseteq A$ as in the previous problem. Suppose that $x \in A$ is a homogeneous element. Show that

$$A_{(x^n)}^{(n)} \cong A_{(x)}.$$

Rcall the following.

Definition. A regular map $\phi: Y \to X$ between quasi-projective varieties is a continuous map such that for every open set $U \subseteq Y$ the map $\phi^* : \operatorname{Map}(U,k) \to \operatorname{Map}(\phi^{-1}(U),k)$ induces a k-algebra homomorphism $\mathcal{O}_Y(U) \to \mathcal{O}_X(\phi^{-1}(U))$.

The following proposition from the book (3.39) is also helpful as it lets us check locally that a map is regular.

Proposition. Suppose that X and Y are quasi-projective varieties and $\phi : X \to Y$ is a map. Let $\{V_i\}$ be a collection of open affine subsets covering Y and $\{U_{ij}\}$ a collection of open subset q covering X, such that

- (1) $\phi(U_{ij}) \subseteq V_i$ for all i, j and
- (2) the map ϕ^* : Map $(V_i, k) \to Map(U_{ij}, k)$ induces a k-algebra homomorphism $\mathcal{O}_Y(V_i) \to \mathcal{O}_X(U_{ij})$ for all i, j.

Then ϕ is a regular map.

Recall that a rational map between quasi-affine varieties X and Y is a map only defined on an open subset of X. We make the same definition with projective varieties.

5. Suppose that $h_0, \ldots, h_m \subseteq k[x_0, \ldots, x_n]$ are homogeneous elements of the same degree d > 0. Show that

$$\mathbb{P}^n \xrightarrow{} \mathbb{P}^m$$

 $(a_0:\ldots:a_n)\longmapsto (h_0(a_0,\ldots,a_n):\ldots:h_m(a_0,\ldots,a_n))$

is a rational map. You will need to local an open set on which is is (well) defined and verify it really is regular on that set.

Hint: If you want to use the proposition, you can start by looking at some open sets $U_j = D(x_j)$. But they might not map into $D(y_j)$. But you can intersect them with the pre-images of $D(y_j)$.

You might need an extra page to write down the details.

6. With the notation of the previous problem, suppose that $\sqrt{(h_0, \ldots, h_m)} = (x_0, \ldots, x_m)$ (equality here is as ideals). Show that the induced map is defined everywhere.

7. Consider the rational map $\mathbb{P}^2 \longrightarrow \mathbb{P}^2$ defined by $(x : y : z) \mapsto (yz : xz : xy)$. Find where this map is not defined.