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Theorem 0.1. Suppose R is a PID and M = R®™. Suppose that N C M is an R-submodule.
Then N = R®™ for some n < m.

Proof. We follow the book to start. Set ¥ = {¢(IN) C R | ¢ € Homgr(M,R)} and let I, C R be a
maximal element of ¥ with I = ¢(N) for some fixed ¢. We know I, = (ay) where ay = ¢(y) for
some y € N C M. Obviously if N # 0 then ¢(IN) # 0 for some ¢ € Homp(M, R) (consider the
projections) and so since I is maximal we may assume that I # 0.

Claim 0.2. ¢(y) € Iy for every 1p € Homg(M, R).

Proof of claim. Consider the ideal (¢ (y),d(y)) = (W(y)) + Iy = Jy = (by). Obviously by =
r(y) + s¢(y) for some r,s € R and so Jy = ((r¢ + s¢)(y)) C (r¢ + s1)(N). But Jy, contains I,
and so Jy, = I, by maximality. Hence ¥(y) € I, as claimed. O

We return to the main proof. Our next goal is to construct an element 3y’ € M such that y is a
multiple of ¢ and such that ¢(y') =1 € R. Note that ¢’ will not be in N.

We let m; : M = R®™ — R to be the projection onto the ith component. Then m;(y) € Iy = (ay)
for each i. Hence we can write m;(y) = bjas for each i. Write Yy = bie; + ...+ bpe,, where the e;
are the canonical basis elements in M = R®™. Now notice that

agy’ = agbier + ...+ agbmem = m(y)er + ... + T (y)em = y.

Also ag = ¢(y) = P(apy’) = app(y’) and so since R is an integral domain we see that ¢(y') =1 as
claimed.

Lemma 0.3. If we have a map ¢ : M — R and an element y' € M such that ¢(y') = 1 then
M = y'R& K where K = ker ¢.

Proof of lemma. Consider the map p : ¥R & K — M which sends (y'r, k) — ¢/'r + k. If (y'r,k) €

ker p then y'r + k = 0 and so y'r € K. But then ¢(y'r) = r = 0. Hence (y'r,k) = (0,0) and
p injects. On the other hand given any z € M note that ¢(¢p(2)y") = ¢(2)d(y’) = ¢(z). Thus
z—¢(2)y € ker ¢. But now write z = ¢(2)y’ + (2 — #(2)y’) € Image(p). This shows that p surjects
as claimed. O

Using the lemma and noting that (as) = agR = R as R-modules. We also see that ¢|y shows

us that
N = (y) @ ker(¢|n) = (y) © (KN N).

From here on now we can proceed by induction on the rank of N. The base case when N is rank
0 is trivial since then N = 0 (since N is torsion free).

We construct ¢ as above and write M = (y') @ K and N = (asy’) & (K N N). Obviously K N N
has rank lower than N (since (agy’) has rank 1). Thus by induction K N N is free. But then N is
a direct sum of free modules and so it is also free. n

Remark 0.4. As the book points out, by carefully stepping through the induction, one actually
observes that one can choose a basis ], ...,y,, for M such that a1y}, asy},...,any,, is a basis for
N (for some a; € R).



