WORKSHEET # 8 IRREDUCIBLE POLYNOMIALS

We recall several different ways we have to prove that a given polynomial is irreducible. As always, k is a field.

Theorem 0.1 (Gauss' Lemma). Suppose that $f \in \mathbb{Z}[x]$ is monic of degree > 0. Then f is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible when viewed as an element of $\mathbb{Q}[x]$.

Lemma 0.2. A degree one polynomial $f \in k[x]$ is always irreducible.

Proposition 0.3. Suppose that $f \in k[x]$ has degree 2 or 3. Then f is irreducible if and only if $f(a) \neq 0$ for all $a \in k$.

Proposition 0.4. Suppose that $a, b \in k$ with $a \neq 0$. Then $f(x) \in k[x]$ is irreducible if and only if $f(ax + b) \in k[x]$ is irreducible.

Theorem 0.5 (Reduction mod p). Suppose that $f \in \mathbb{Z}[x]$ is a monic¹ polynomial of degree > 0. Set $f_p \in \mathbb{Z}_{modp}[x]$ to be the reduction mod p of f (ie, take the coefficients mod p). If $f_p \in \mathbb{Z}_{modp}[x]$ is irreducible for some prime p, then f is irreducible in $\mathbb{Z}[x]$.

WARNING: The converse need not be true.

Theorem 0.6 (Eisenstein's Criterion). Suppose that $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x^1 + a_0 \in \mathbb{Z}[x]$ and also that there is a prime p such that $p|a_i$ for all i but that p^2 does NOT divide a_0 . Then f is irreducible.

1. Consider the polynomial $f(x) = x^3 + x^2 + x + 2$. In which of the following rings of polynomials is f irreducible? Justify your answer.

(a) $\mathbb{R}[x]$

- (b) $\mathbb{C}[x]$
- (c) $\mathbb{Z}_{\text{mod}2}[x]$
- (d) $\mathbb{Z}_{\text{mod3}}[x]$
- (e) $\mathbb{Z}_{\text{mod5}}[x]$
- (f) $\mathbb{Q}[x]$

Solution:

- (a) It is reducible (= not irreducible) because it is a cubic polynomial and therefore has a root α . Thus f can be factored as $f(x) = (x \alpha)g(x)$.
- (b) The root from (a) is also a complex number, and so f is reducible in $\mathbb{C}[x]$ as well.
- (c) Mod 2, $f_2 = x^3 + x^2 + x$, which has a root at x = 0 and so is reducible.
- (d) Mod 3, $f_3 = x^3 + x^2 + x + 2$. 0 is not a root, $f_2(1) = 5 = 2 \neq 0$, and finally $f_2(2) = 8 + 4 + 2 + 2 = 16 = 1 \neq 0$. In particular, f_3 is *irreducible*.
- (e) Mod 5, $f_5 = x^3 + x^2 + x + 2$. Note 1 is a root, and so f_5 is reducible.
- (f) f is irreducible since f_3 is irreducible by Theorem 0.5.

¹The same is true as long as the leading coefficient is not divisible by p.

2. Show that $x^4 + 1$ is irreducible in $\mathbb{Q}[x]$ but not irreducible in $\mathbb{R}[x]$.

Hint: For $\mathbb{Q}[x]$, use Proposition 0.4. For $\mathbb{R}[x]$, try a factorization into two linear terms

Solution: First consider $f(x) = x^4 + 1$ so that $f(x+1) = (x+1)^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x^2 + 2$. Eisenstein's criterion applies and so f(x+1) is irreducible in $\mathbb{Q}[x]$. But thus so is f(x) by Proposition 0.4.

For the second part, consider

 $(x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1) = x^{4} + \sqrt{2}x^{3} + x^{2} - \sqrt{2}x^{3} - 2x^{2} - \sqrt{2}x + x^{2} + \sqrt{2}x + 1 = x^{4} + 1$

which proves that f(x) is reducible.

3. Consider $3x^2 + 4x + 3 \in \mathbb{Z}_{\text{mod5}}[x]$. Show it factors both as (3x+2)(x+4) and as (4x+1)(2x+3). Explain why this *does NOT* contradict unique factorization of polynomials.

Solution: First note that

$$(3x+2)(x+4) = 3x^2 + 12x + 2x + 8 = 3x^2 + 4x + 3$$

and that

 $(4x+1)(2x+3) = 8x^2 + 12x + 2x + 3 = 3x^2 + 4x + 3$

On the other hand, $2 \cdot 3 = 1$ in \mathbb{Z}_{mod5} , and so

(4x+1)(2x+3) = (4x+1)(23)(2x+3) = ((4x+1)2)(3(2x+3)) = (8x+2)(6x+9) = (3x+2)(x+4).

This completes the proof.

4. Completely factor all the polynomials in question 1. into irreducible polynomials in each of the rings (c)-(f).

Solution:

- (c) $\mathbb{Z}_{\text{mod}2}[x], f = x(x^2 + x + 1)$
- (d) $\mathbb{Z}_{\text{mod}3}[x], f = (x^3 + x^2 + x + 2)$
- (e) $\mathbb{Z}_{\text{mod5}}[x], f = (x-1)(x^2+2x+3)$
- (f) $\mathbb{Q}[x], f = (x^3 + x^2 + x + 2)$