WORKSHEET # 8 IRREDUCIBLE POLYNOMIALS

We recall several different ways we have to prove that a given polynomial is irreducible. As always, k is a field.

Theorem 0.1 (Gauss' Lemma). Suppose that $f \in \mathbb{Z}[x]$ is monic of degree > 0. Then f is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible when viewed as an element of $\mathbb{Q}[x]$.

Lemma 0.2. A degree one polynomial $f \in k[x]$ is always irreducible.

Proposition 0.3. Suppose that $f \in k[x]$ has degree 2 or 3. Then f is irreducible if and only if $f(a) \neq 0$ for all $a \in k$.

Proposition 0.4. Suppose that $a, b \in k$ with $a \neq 0$. Then $f(x) \in k[x]$ is irreducible if and only if $f(ax + b) \in k[x]$ is irreducible.

Theorem 0.5 (Reduction mod p). Suppose that $f \in \mathbb{Z}[x]$ is a monic¹ polynomial of degree > 0. Set $f_p \in \mathbb{Z}_{modp}[x]$ to be the reduction mod p of f (ie, take the coefficients mod p). If $f_p \in \mathbb{Z}_{modp}[x]$ is irreducible for some prime p, then f is irreducible in $\mathbb{Z}[x]$.

WARNING: The converse need not be true.

Theorem 0.6 (Eisenstein's Criterion). Suppose that $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x^1 + a_0 \in \mathbb{Z}[x]$ and also that there is a prime p such that $p|a_i$ for all i but that p^2 does NOT divide a_0 . Then f is irreducible.

1. Consider the polynomial $f(x) = x^3 + x^2 + x + 2$. In which of the following rings of polynomials is f irreducible? Justify your answer.

- (a) $\mathbb{R}[x]$
- (b) $\mathbb{C}[x]$
- (c) $\mathbb{Z}_{\text{mod}2}[x]$
- (d) $\mathbb{Z}_{\text{mod3}}[x]$
- (e) $\mathbb{Z}_{mod5}[x]$
- (f) $\mathbb{Q}[x]$

¹The same is true as long as the leading coefficient is not divisible by p.

WORKSHEET #8

2. Show that x⁴ + 1 is irreducible in Q[x] but not irreducible in ℝ[x]. *Hint:* For Q[x], use Proposition 0.4. For ℝ[x], try a factorization into two quadratic terms

3. Consider $3x^2 + 4x + 3 \in \mathbb{Z}_{\text{mod5}}[x]$. Show it factors both as (3x+2)(x+4) and as (4x+1)(2x+3). Explain why this *does NOT* contradict unique factorization of polynomials.

4. Completely factor all the polynomials in question 1. into irreducible polynomials in each of the rings (c)–(f).