WORKSHEET \# 4 SOLUTIONS

MATH 435 SPRING 2011

We first recall some facts and definitions about cosets. For the following facts, G is a group and H is a subgroup.
(i) For all $g \in G$, there exists a coset $a H$ of H such that $g \in a H$. (One may take $a=g$).
(ii) Cosets are equal or are disjoint. In other words, if $a H \cap b H \neq \emptyset$, then $a H=b H$.
(iii) Properties (i) and (ii) may be summarized by saying: "The (left) cosets of a subgroup partition the group."
(iv) If H is finite, then $|H|=|a H|$ for every coset $a H$ of H (this holds for infinite cosets too).
(v) Cosets of H are generally NOT subgroups themselves.
(vi) Two cosets $a H$ and $b H$ are equal if and only if $b^{-1} a \in H$.
(vii) The subgroup H is called normal if $a H=H a$ (in other words, if the left and right cosets of H coincide, this does not mean $a h=h a$ for all $h \in H$, but it does mean that for all $h \in H$, there exists another $h^{\prime} \in H$ such that $\left.a h=h^{\prime} a\right)$.

1. Consider the group $G=\mathbb{Z}$ under addition with subgroup $H=4 \mathbb{Z}$. Write down the four cosets of H.

Solution: The cosets are

$$
\begin{array}{r}
0+H=\{\cdots-8,-4,0,4,8,12, \ldots\} \\
1+H=\{\cdots-7,-3,1,5,9,13, \ldots\} \\
2+H=\{\cdots-6,-2,2,6,10,14, \ldots\} \\
3+H=\{\cdots-5,-1,3,7,11,15, \ldots\}
\end{array}
$$

2. With the same setup as the first problem, consider the cosets $1+H$ and $2+H$. If you add these two cosets together, what do you get? Write down a general formula for the sum of $n+H$ and $m+H$.

Solution: Adding the first two cosets I get:

$$
(1+H)+(2+H)=\{\cdots-7,-3,1,5,9,13, \ldots\}+\{\cdots-6,-2,2,6,10,14, \ldots\}
$$

All possible sums from those two sets equals $\{\cdots-5,-1,3,7,11,15, \ldots\}=3+H$. In general, we have $(n+H)+(m+H)=(n+m)+H$, which can also be written as $(n+m \bmod 4)+H$.
3. Prove that for any integer n, the cosets of $n \mathbb{Z} \subseteq \mathbb{Z}$ form a cyclic group under addition.

Solution: The cosets of $H:=n \mathbb{Z}$ in \mathbb{Z} are just $0+H, 1+H, \ldots,(n-1)+H$. Based on the type of computation done above, the summation $(a+H)+(b+H)=(a+b \bmod n)+H$ is a binary operation, the associativity follows from the associativity of arithmetic mod n. Certainly $0+H$ is the identity, $a+H$ has inverse $-a+H$ and it's easy to see that $1+H$ is a generator, and thus the group is cyclic.

At some level what I've written above is not a complete solution. However, you should carefully verify (and read in the book) about the details not mentioned here.
4. Suppose that G is a group and H is a normal subgroup (but do not assume that G is Abelian). We will show that the set of cosets of H form a group under the following operation.

$$
(a H)(b H)=(a b) H
$$

First however, we need to prove that this is well defined. Suppose that $a^{\prime} H=a H$ and $b^{\prime} H=b H$. Prove that

$$
(a b) H=\left(a^{\prime} b^{\prime}\right) H
$$

Solution: Proving that the last displayed equation holds will prove that the operation is well defined. We will show $(a b) H \subseteq\left(a^{\prime} b^{\prime}\right) H$, the other inclusion will follow by symmetry.

Choose an element $a b h \in(a b) H$ (where $h \in H)$. Choose an element $h_{1} \in H$ such that $a b h=a h_{1} b$. We know that $a H=a^{\prime} H$ so there exists $h_{2} \in H$ such that $a h_{1}=a^{\prime} h_{2}$. Thus $a b h=a h_{1} b=a^{\prime} h_{2} b$. Again, because H is normal, this equals $a^{\prime} b h_{3}$ and finally because $b H=b^{\prime} H$, there exists $h^{\prime} \in H$ such that $a^{\prime} b h_{3}=a^{\prime} b^{\prime} h^{\prime} \in\left(a^{\prime} b^{\prime}\right) H$ as desired.

Notice I didn't worry about the parentheses / associativity, but we are working in a group and so this is harmless.
5. Prove that the operation above indeed forms a group. The set of cosets of H with the group operation below is denoted G / H. It is called the quotient group of G modulu H or simply $G \bmod H$.

Solution: Now that we know the operation is well defined, we prove it forms a group.
(1) For associativity, notice that

$$
((a H)(b H))(c H)=((a b) H)(c H)=((a b) c) H=(a(b c) H=(a H)((b c) H)=(a H)((b H)(c H)) .
$$

(2) For identity, notice that $(e H)(a H)=a H=(a H)(e H)$.
(3) For inverses, notice that $\left(a^{-1} H\right)(a H)=\left(a^{-1} a\right) H=e H=\left(a a^{-1} H\right)=(a H)\left(a^{-1} H\right)$ as desired.
6. Show that there is a surjective group homomorphism $G \rightarrow G / H$ whose kernel is exactly H.

Solution: Consider the function $\phi: G \rightarrow G / H$ defined by the rule $\phi(g)=g H$. This function is certainly well defined (ask yourself why). $\phi(a b)=(a b) H=(a H)(b H)=\phi(a) \phi(b)$ and indeed is thus a group homomorphism. It is certainly surjective because for any coset $a H, \phi(a)=a H$.

To analyze the kernel, suppose that $\phi(a)$ is the identity of G / H, in other words, suppose that $a H=e H$. But that is equivalent to $a=e^{-1} a \in H$ by property (vi) on the first page. In other words, $\phi(a)=e_{G / H}$ if and only if $a \in H$.
7. Find an example of a group G and a normal subgroup H such that both G and H are nonAbelian but G / H is Abelian.

Solution: Consider $G=S_{4}$ and $H=A_{4}$. Both G and H are not Abelian. However, G / H has 2 elements in it. Because 2 is prime, G / H is cyclic and so G / H is Abelian.

By the way, the easiest answer is to choose G to be any non-Abelian group and then set $H=G$.

