## WORKSHEET \#1 (IDENTIFYING GROUPS) - MATH 435

Below are sets with potential binary operations (ie, a way to combine elements). Determine if each set is (or is not) a group and prove your answer. If it is a group, is it Abelian?

1. For a fixed integer $n$, the numbers $\{0,1,2, \ldots, n-1\}$. The binary operation is multiplication modulo $n$.

Solution: This is not a group. While 1 is indeed a multiplicative identity, the number 0 does not have a multiplicative inverse since the equation $x \cdot 0=1$ doesn't have a solution.
2. The set of real-valued $n \times n$ matrices with positive determinant. The binary operation is matrix multiplication.

Solution: From the (un)assigned homework, the determinant of a product of matrices is the product of the determinants. Thus $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$. In particular, if $\operatorname{det}(A), \operatorname{det}(B)>0$, then so is $\operatorname{det}(A \cdot B)$ and so matrix multiplication is a binary operation on this set (in other words, the closure property is satisfied). Matrix multiplication is always associative. The identity matrix has determinant 1 and so it is in the set and so the set has identity. Finally, we notice that if $\operatorname{det}(A)>0$, then $\operatorname{det}(A) \neq 0$ and so $A$ is invertible and also that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}>0$ which implies that inverses are in our set. Thus this set is a group under matrix multiplication.
3. The set of real-valued $2 \times 2$ matrices with integer determinant. The binary operation is matrix multiplication.

Solution: This is not a group although it does have identity $\mathrm{Id}_{2 \times 2}$. It however does not have inverses. If $\operatorname{det}(A)=4$ (for example, if $A=2 \cdot \operatorname{Id}_{2 \times 2}$ ), then the only possible inverse is the ordinary inverse $A^{-1}$ (in our example, $1 / 2 \cdot \mathrm{Id}_{2 \times 2}$ ) since inverses in matrix multiplication are unique. But $\operatorname{det}\left(A^{-1}\right)=\frac{1}{4} \notin \mathbb{Z}$ and so $A^{-1}$ is not in our set.
4. Fix a group $G$ and consider the set $H=\{g \in G \mid g a=a g \forall a \in G\}$. The binary operation on $H$ is the binary operation from the group $G$.

Solution: We will show that $H$ is indeed a group. First we show that the operation on $H$ is really a binary operation (ie, that it is closed under this operation). Take $h, h^{\prime} \in H$ and fix any $a \in G$. Then $\left(h h^{\prime}\right) a=h\left(h^{\prime} a\right)=h\left(a h^{\prime}\right)=(h a) h^{\prime}=(a h) h^{\prime}=a\left(h h^{\prime}\right)$ by using (respectively) the associativity of $G$, the defining property of $H$, the associativity of $G$ again, the defining property of $H$ again, and finally the associativity of $G$ one last time.

We note that multiplication in $H$ itself is associative because the multiplication in $G$ is. We notice that for any $a \in G, e a=a=a e$ and so the identity element of $G$ is in $H$ and thus $H$ itself has an identity. Before proving inverses, we need a Lemma Lemma. If $a, b \in A$ are elements of a group $A$, then $(a b)^{-1}=b^{-1} a^{-1}$.

Proof. Note simply that

$$
(a b)\left(b^{-1} a^{-1}=a\left(\left(b b^{-1}\right) a^{-1}\right)=a\left(e a^{-1}\right)=a a^{-1}=e\right.
$$

and

$$
\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(\left(a^{-1} a\right) b\right)=b^{-1}(e b)=b^{-1} b=e .
$$

This ends the proof of the Lemma.
Finally if $g \in H$, and $a \in G$, then notice that

$$
g^{-1} a=g^{-1}\left(a^{-1}\right)^{-1}=\left(a^{-1} g\right)^{-1}=\left(g a^{-1}\right)^{-1}=\left(a^{-1}\right)^{-1} g^{-1}=a g^{-1}
$$

where we use the lemma and the fact that $g \in H$.
5. The numbers $\{1,2, \ldots, 7\}$. The (potential) binary operation is mutliplication modulo 8 .

Solution: This is not a group since $4 \cdot 2=0$ modulo 8 which is not in the set.

