QUIZ \#4 - MATH 435

MARCH 23RD, 2012

1. Suppose that R is a ring.
(a) Prove that $a(-b)=-(a b)$ for all $a, b \in R$. (1 point)
(b) Suppose R is a commutative ring for which $a b=a c$ implies $b=c$ whenever $a \neq 0$. Prove that R is an integral domain. (1 point)

Solution:

(a) $a(-b)+a b=a(-b+b)=a 0=0$. Thus $a(-b)=-(a b)$.
(b) Suppose $a b=0$, and that $a \neq 0$ and $b \neq 0$. Thus $a b=0=a 0$ which implies that $b=0$, a contradiction. Thus either $a=0$ or $b=0$ as desired.
2. Consider the set S of 2×2 matrices of the form $\left[\begin{array}{ll}x & 0 \\ y & z\end{array}\right]$ with entries x, y, z in \mathbb{Z}. You may take it as given that this is a subring of 2×2 matrices with coefficients in \mathbb{R}.
(a) Determine whether this ring is commutative or not (justify your answer). (1 point)
(b) Show that this ring is not a division ring but that it does have unity. (1 point)
(c) Find 4 different elements of S which are invertible. (1 point)

Solution:

(a) This ring is not commutative, note $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ but that we do have $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right]$.
(b) It does have the identity element $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ but it is not a division ring since if $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}x & 0 \\ y & z\end{array}\right]=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ since then $2 x=1$ and $0 z=1$. Neither of those equations have solutions in \mathbb{Z}.
(c) Here are my 4 elements:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

The first three elements are their own inverses. The last element has inverse $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$

